MICROCHIP MTE1122-SO

MTE1122
Energy Management Controller IC
FEATURES
•
•
•
•
•
•
•
Energy Management Controller
Based on 8-bit RISC Technology
Proprietary Power Management Algorithm
Reduces the power consumption of induction
motor systems
5V Operation
18-pin PDIP and SOIC Packages
8-bit Analog-to-Digital (A/D) Converter
Automatic Power-on Reset
Power-up Timer
Commercial and Industrial Temperature Range
Operation
Multiple parts can be slaved for three-phase operation
18-Lead PDIP/SOIC
VSS1
P-Sense
VSS
RESET
VSS
ZC-Sense
TTRIG
NC
NC
•1
2
3
4
5
6
7
8
9
MTE1122
•
•
•
•
PACKAGE TYPE
18
17
16
15
14
13
12
11
10
VSS
Gate Input
OSC1
OSC2
VDD
IND
NC
NC
NC
FIGURE 1: SYSTEM BLOCK DIAGRAM
LINE OUT
TO MOTOR
LINE IN
TRIAC
INTRODUCTION
The MTE1122 is an Energy Management Controller IC
for single-phase induction motors. This CMOS device
is based on Microchip Technology Inc’s RISC processor core and proprietary algorithms. When combined
with some external analog components, it will provide
an electronic system that economically reduces the
operating costs of small induction motors by as much
as 58%. It will also allow motors to run cooler and with
less vibration. The system operates on single phase
110 or 220 VAC.
VOLTAGE
ZERO-CROSS
VOLTAGE AMP
CURRENT
ZERO-CROSS
VCC
POWER
MTE1122
NEUTRAL IN
NEUTRAL OUT
FIGURE 2: ENERGY SAVINGS
60.0
50.0
Percent Savings
40.0
30.0
20.0
10.0
0.0
0
10
20
30
40
50
60
70
80
90
100
Percent Load
 1995 Microchip Technology Inc.
Preliminary
DS21112B-page 1
MTE1122
FUNCTIONAL DESCRIPTION
A 1/3 HP motor will typically see 85 VAC at no load
when powered through the MTE1122, for an energy
savings of as much as 58%.
Single-phase induction motors run most efficiently at
full load. As the applied load lessens, a greater portion
of the energy consumed by the motor is wasted, mostly
as heat.
A system block diagram is shown in Figure 1. A graph
of energy savings vs. motor load is shown in Figure 2.
A graph of motor efficiency with and without an
MTE1122-based energy management controller (EMC)
is shown in Figure 3. The data for the graphs are
shown in Table 1. These figures are based on a 1/3 HP
induction motor coupled to a dynamometer. Actual
savings may vary based on motor size, motor load and
motor construction.
It is estimated by the EPA that 50% of the energy produced in the US is consumed by small electric motors,
and that 20% of this energy does no useful work. There
are perhaps three major reasons for this:
1.
2.
3.
Over-specification -- sometimes its easier or
costs no more to specify a larger motor than
determine actual loads.
Worst case design -- pumps, conveyers, fans,
and the like must be able to operate properly
with clogged filters, maximum heads, or specified loads. If filters are clean, or loads are lower,
the motor will be running only partly loaded.
Idle time -- many times, systems can’t be shut
down conveniently when not in use.
PINOUT DESCRIPTIONS
P-Sense - analog input that is used by the device to
measure the load voltage.
Gate Enable - analog input that monitors the voltage
across the triac. It is used as a current feedback mechanism.
IND - TTL-compatible output that indicates that the system is operating normally. It is intended to control an
LED or another indicator device.
Number 1 above can be corrected by proper design.
For example, in modern refrigerators, the compressor
systems have been optimized quite effectively. Numbers 2 and 3 can not be improved using traditional
approaches. This is where the MTE1122 provides a
new, cost-effective solution.
ZC-Sense - TTL-compatible input that is used to determine the zero crossing point of the AC voltage waveform.
TTRIG - TTL-compatible output that is used to drive the
triac.
The MTE1122 calculates the amount of load on a motor
connected to it, and adjusts the motor’s supply voltage
to match that load. For example, if the load is lower
than the motor’s rated load, the voltage to the motor
can be reduced, thus decreasing the energy used by
the motor.
RESET - TTL-compatible input used to reset the device
by holding this pin low.
OSC1, OSC2 - Oscillator crystal or resonator connections.
FIGURE 3: MOTOR EFFICIENCY
70.0
With E.M.C.
60.0
Efficiency
50.0
40.0
30.0
20.0
Without E.M.C.
10.0
0.0
0
10
20
30
40
50
60
70
80
90
100
Percent Load
DS21112B-page 2
Preliminary
 1995 Microchip Technology Inc.
MTE1122
TABLE 1: OPERATING PARAMTER COMPARISONS
1/3 HP Motor without E.M.C.
Load
(%)
Load
(Nm)
Vrms
Irms
(A)
Power
Factor
Power
In (W)
RPM
Power
Out (W)
Power
Out
(HP)
Efficiency
(%)
0
0.00
115
5.7
0.18
120
1791
0
0.00
0.2
10
0.14
115
5.7
0.20
130
1788
26
0.04
20.1
20
0.29
115
5.7
0.24
160
1781
54
0.07
33.7
30
0.43
115
5.7
0.29
193
1777
80
0.11
41.4
40
0.57
115
5.7
0.35
229
1768
105
0.14
46.0
50
0.72
115
5.8
0.37
249
1764
133
0.18
53.3
60
0.86
115
5.8
0.42
280
1758
158
0.21
56.4
70
1.00
115
6.0
0.46
315
1750
183
0.25
58.0
80
1.14
116
6.1
0.49
348
1744
208
0.28
59.7
90
1.29
115
6.3
0.53
386
1736
234
0.31
60.6
100
1.43
116
6.5
0.57
428
1727
258
0.35
60.3
1/3 HP Motor with E.M.C.
Load
(%)
Load
(Nm)
Vrms
Irms
(A)
Power
Factor
Power
In (W)
RPM
Power
Out (W)
Power
Out
(HP)
Efficiency
(%)
0
0.00
113
3.1
0.14
50
1794
0
0.00
0.4
10
0.14
113
3.2
0.19
68
1786
26
0.04
38.4
20
0.29
113
3.5
0.26
104
1775
54
0.07
51.7
30
0.43
113
3.8
0.32
138
1764
79
0.11
57.4
40
0.57
113
4.1
0.38
178
1755
104
0.14
58.7
50
0.72
113
4.3
0.42
206
1749
132
0.18
63.8
60
0.86
112
4.6
0.47
243
1740
156
0.21
64.3
70
1.00
112
4.9
0.51
281
1730
181
0.24
64.3
80
1.14
112
5.3
0.55
329
1722
205
0.27
62.3
90
1.29
112
5.6
0.59
371
1713
231
0.31
62.2
100
1.43
111
6.0
0.61
406
1705
255
0.34
62.7
 1995 Microchip Technology Inc.
Preliminary
DS21112B-page 3
MTE1122
ELECTRICAL CHARACTERISTICS
Absolute Maximum Rating †
Ambient temperature under bias .................................................................................................................-55 to +125°C
Storage Temperature.............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD and RESET).................................................... -0.6V to VDD +0.6V
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V
Voltage on RESET with respect to VSS (Note 1) ................................................................................................0 to +14V
Total power Dissipation (Note 2) ...........................................................................................................................800mW
Max. Current out of VSS pin ...................................................................................................................................150mA
Max. Current into VDD pin ......................................................................................................................................100mA
Input Clamping Current, IIK (VI<0 or VI>VDD) .................................................................................................................. ±20mA
Output Clamping Current, IOK (V0<0 or V0>VDD) .......................................................................................................... ±20mA
Max. Output Current sunk by any I/O pin .................................................................................................................25mA
Max. Output Current sourced by any I/O pin............................................................................................................20mA
Note 1: Voltage spikes below VSS at the RESET pin, inducing currents greater than 80mA, may cause latch-up.
Thus, a series resistor of 50-100Ω should be used when applying a "low' level to the RESET pin rather than
pulling this pin directly to VSS.
Note 2: Total power dissipation should not exceed 800 mW for the package. Power dissipation is calculated as follows:
PDIS = VDD x {IDD - ∑ IOH} + ∑ {(VDD-VOH) x IOH} + ∑(VOL x IOL)
†NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device or compliance to AC and DC parametric specifications at
those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
TABLE 2: DC CHARACTERISTICS POWER SUPPLY PINS
Power Supply Pins
Characteristic
Supply Voltage
VDD start voltage to guarantee
power on reset
VDD rise rate to guarantee
Power-On Reset (Note 2)
Supply Current (Note 3)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ + 85°C for industrial,
0°C
≤ TA ≤ +70°C for commercial
Operating voltage VDD = 4.0V to 6.0V
Sym
Min
Typ
Max Units
Conditions
(Note 1)
4.0
6.0
V
VDD
VPOR
Vss
V
SVDD
IDD
0.05
V/ms
1.8
3.3
mA
FOSC = 4 MHz, VDD = 5.5V
Note 1: Data in the column labeled “Typical” is based on characterization results at 25°C. This data is for design guidance only and
is not tested for, or guaranteed by Microchip Technology.
2: This parameter is characterized but not tested.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
DS21112B-page 4
Preliminary
 1995 Microchip Technology Inc.
MTE1122
TABLE 3: DC CHARACTERISTICS: ALL PINS EXCEPT POWER SUPPLY
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ + 85°C for industrial,
0°C
≤ TA ≤ +70°C for commercial
Operating voltage VDD = 4.0V to 6.0V
Sym
Min
Typ
Max
Units
Conditions
All Pins Except Power
Characteristic
Input Low Voltage:
All Input Pins (Except OSC1)
RESET OSC1
Input High Voltage:
All Input Pins (Except RESET,
OSC1)
RESET
OSC1
Input Leakage Current:
(Notes 1,2)
IND, TTRIG, AC-Sense
VIL
VIH
VSS
VSS
0.2 VDD
0.3 VDD
V
V
VIH
VIH
VIH
0.36 VDD
0.85 VDD
0.7 VDD
VDD
VDD
VDD
V
V
V
4.5V ≤ VDD ≤ 5.5V
±1
µA
P-Sense, Gate Input
±1
µA
RESET
OSC1
Output Low Voltage:
All Output Pins
±1
±1
µA
µA
VSS ≤ VPIN ≤ VDD,
Pin at hi-impedance
VSS ≤ VPIN ≤ VDD,
Pin at hi-impedance
VSS ≤ VPIN ≤ VDD
VSS ≤ VPIN ≤ VDD
VOL
0.6
V
IOL = 8.5mA, VDD = 4.5V,
-40°C to +85°C
Output High Voltage:
All Output Pins (Note 2)
VOH
V
IOH 83.mA, VDD = 4.5V,
-40°C to +85°C
IIL
0.7 VDD
Note 1: The leakage current on the RESET pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
2: Negative current is defined as current coming out of the pin.
TABLE 4: AC CHARACTERISTICS
AC Characteristics
Characteristic
Oscillator Frequency
Clock in (OSC1) High or Low Time
Clock in (OSC1) Rise or Fall Time
RESET Pulse Width (low)
 1995 Microchip Technology Inc.
Sym
FOSC
TCKHLXT
TCKRFXT
TMCL
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ + 85°C for industrial,
0°C
≤ TA ≤ +70°C for commercial
Operating voltage VDD = 4.0V to 6.0V
Min
Typ
Max
Units
Conditions
4
4
MHz
50
25
200
Preliminary
ns
ns
ns
Note 1
Note 1
Note 1
DS21112B-page 5
MTE1122
PACKAGING INFORMATION
Package Type: 18-Lead Plastic Dual In-Line (300 mil)
N
E1
α
E
AAAA
AAAA
AA A
AAAA
AAAA
AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AAAA
AAAA
A
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AAAA
AAAA
A
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AAAA
AAAA
A
AAAA
AAAA
AAAA
AAAAA
A
AAAA
AAAA
AA
AAAA
AAAA
AA
AAAA
AAAAAA
Pin No. 1
Indicator
Area
C
eA
eB
AAAA
AAAA
AA AAAA
AAAA
AAAA
AAAA
AA
AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA
AA
D
S
S1
Base
Plane
Seating
Plane
L
B1
e1
B
A1 A2 A
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Symbol
Min
Max
α
A
A1
A2
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
0°
—
0.381
3.048
0.3556
1.524
0.203
22.479
20.320
7.620
6.096
2.4892
7.620
7.874
3.048
18
0.889
0.508
10°
4.064
3.810
0.5588
1.524
0.381
23.495
20.320
8.255
7.112
2.5908
7.620
9.906
3.556
18
—
—
DS21112B-page 6
Inches
Notes
Reference
Typical
Reference
Typical
Reference
Preliminary
Min
Max
0°
—
0.015
0.120
0.014
0.060
0.008
0.885
0.800
0.300
0.240
0.098
0.300
0.310
0.120
18
0.035
0.005
10°
0.160
—
0.150
0.022
0.060
0.015
0.925
0.800
0.325
0.280
0.102
0.300
0.390
0.140
18
—
—
Notes
Reference
Typical
Reference
Typical
Reference
 1995 Microchip Technology Inc.
MTE1122
Package Type: 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)
B
e
N
Index
Area
h x 45°
E
H
Chamfer
h x 45°
1
2 3
C
α
L
D
Seating
Plane
Base
Plane
CP
A1
A
Package Group: Plastic SOIC (SO)
Millimeters
Symbol
Min
Max
α
A
A1
B
C
D
E
e
H
h
L
N
CP
0°
2.3622
0.1016
0.3556
0.2413
11.3538
7.4168
1.270
10.0076
0.381
0.4064
18
—
8°
2.6416
0.29972
0.4826
0.3175
11.7348
7.5946
1.270
10.6426
0.762
1.143
18
0.1016
 1995 Microchip Technology Inc.
Inches
Notes
Reference
Preliminary
Min
Max
0°
0.093
0.004
0.014
0.0095
0.447
0.292
0.050
0.394
0.015
0.016
18
—
8°
0.104
0.0118
0.019
0.0125
0.462
0.299
0.050
0.419
0.030
0.045
18
0.004
Notes
Reference
DS21112B-page 7
MTE1122
MTE1122 Product Identification System
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed
sales offices.
PART NO. X /XX
Package:
P
SO
=
=
Plastic Dual In-line
Plastic SOIC
Temperature
Range:
I
=
=
0°C to +70°C
–40°C to +85°C
Device:
MTE1122
AMERICAS
AMERICAS (continued)
EUROPE
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.mchip.com/biz/mchip
Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990
Fax: 508 480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075
Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588
Dayton
Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259
France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI) Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883
ASIA/PACIFIC
Hong Kong
Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431
Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934
Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850
Taiwan
Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139
JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122
9/95
All rights reserved.
 1995, Microchip Technology Inc.,USA.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement
of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and
name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.
DS21112B-page 8
Preliminary
 1995 Microchip Technology Inc.