Fairchild NDT454 P-channel enhancement mode field effect transistor Datasheet

June 1996
NDT454P
P-Channel Enhancement Mode Field Effect Transistor
General Description
Features
Power SOT P-Channel enhancement mode power field effect
transistors are produced using Fairchild's proprietary, high cell
density, DMOS technology. This very high density process is
especially tailored to minimize on-state resistance and provide
superior switching performance. These devices are particularly
suited for low voltage applications such as notebook computer
power management and other battery powered circuits where
fast switching, low in-line power loss, and resistance to
transients are needed.
-5.9A, -30V. RDS(ON) = 0.05Ω @ VGS = -10V
RDS(ON) = 0.07Ω @ VGS = -6V
RDS(ON) = 0.09Ω @ VGS = -4.5V.
High density cell design for extremely low RDS(ON).
High power and current handling capability in a widely used
surface mount package.
____________________________________________________________________________________________
D
G
Absolute Maximum Ratings
Symbol
Parameter
VDSS
Drain-Source Voltage
VGSS
Gate-Source Voltage
ID
Drain Current - Continuous
D
D
S
(Note 1a)
Maximum Power Dissipation
NDT454P
Units
-30
V
±20
V
±5.9
A
±15
(Note 1a)
3
(Note 1b)
1.3
(Note 1c)
TJ,TSTG
S
T A = 25°C unless otherwise noted
- Pulsed
PD
G
Operating and Storage Temperature Range
W
1.1
-65 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
42
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
12
°C/W
* Order option J23Z for cropped center drain lead.
© 1997 Fairchild Semiconductor Corporation
NDT454P Rev. D2
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
-30
Typ
Max
Units
-1
µA
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = -250 µA
IDSS
Zero Gate Voltage Drain Current
VDS = -24 V, VGS = 0 V
-5
µA
IGSSF
Gate - Body Leakage, Forward
VGS = 20 V, VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -20 V, VDS= 0 V
-100
nA
VDS = -15 V, VGS = 0 V
V
TJ = 70°C
ON CHARACTERISTICS (Note 2)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = -250 µA
RDS(ON)
Static Drain-Source On-Resistance
VGS = -10 V, ID = -5.9 A
0.038
0.05
VGS = -6 V, ID = -5.2 A
0.046
0.07
VGS = -4.5 V, ID = -4.6 A
0.064
0.09
ID(on)
gFS
On-State Drain Current
Forward Transconductance
-1
VGS = -10 V, VDS = -5 V
-15
VGS = -4.5, VDS = -5V
-5
-2.7
V
Ω
A
VDS = 15 V, ID = 5.9 A
10
S
VDS = 15 V, VGS = 0 V,
f = 1.0 MHz
950
pF
610
pF
220
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS (Note 2)
tD(on)
Turn - On Delay Time
tr
Turn - On Rise Time
tD(off)
Turn - Off Delay Time
tf
Turn - Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = -15 V, ID = -1 A,
VGEN = -10 V, RGEN = 6 Ω
VDS = -15 V,
ID = -5.9 A, VGS = -10 V
10
30
ns
18
60
ns
80
120
ns
45
100
ns
29
40
nC
3
11
NDT454P Rev. D2
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
-1.9
A
-1.3
V
100
ns
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
IS
Maximum Continuous Drain-Source Diode Forward Current
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = -5.9 A
trr
Reverse Recovery Time
VGS = 0V, IF = -5.9 A, dIF/dt = 100 A/µs
-0.85
(Note 2)
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design.
P D(t ) =
T J −TA
R θJA(t )
=
T J −TA
R θJC+RθCA(t )
= I 2D (t ) × RDS(ON )
TJ
Typical RθJA using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:
a. 42oC/W when mounted on a 1 in2 pad of 2oz copper.
b. 95oC/W when mounted on a 0.066 in2 pad of 2oz copper.
c. 110oC/W when mounted on a 0.0123 in2 pad of 2oz copper.
1a
1b
1c
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
NDT454P Rev. D2
Typical Electrical Characteristics
3
-6.0
-25
-5.0
-4.5
RDS(on) , NORMALIZED
I D , DRAIN-SOURCE CURRENT (A)
VGS =-10V
-4.0
-20
-15
-3.5
-10
-3.0
-5
DRAIN-SOURCE ON-RESISTANCE
-30
0
V GS = -3.5V
2.5
-4.0V
2
-4.5V
-5.0V
1.5
-6.0V
-10V
1
0.5
0
-1
-2
-3
-4
V DS , DRAIN-SOURCE VOLTAGE (V)
0
-5
Figure 1. On-Region Characteristics.
-16
-20
2
1.4
R DS(on) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
I D = -5.9A
VGS = -10V
1.2
1
0.8
0.6
-50
V GS = -10V
TJ = 125°C
1.5
25°C
1
-55°C
0.5
-25
0
25
50
75
100
125
150
0
-5
TJ , JUNCTION TEMPERATURE (°C)
-10
I D , DRAIN CURRENT (A)
-15
-20
Figure 4. On-Resistance Variation
with Drain Current and Temperature.
Figure 3. On-Resistance Variation
with Temperature.
1.2
V DS = -10V
TJ = -55°C
25
125
V th , NORMALIZED
-16
-12
-8
-4
0
-1
-2
-3
-4
-VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics.
-5
GATE-SOURCE THRESHOLD VOLTAGE
-20
-ID , DRAIN CURRENT (A)
-8
-12
I D , DRAIN CURRENT (A)
Figure 2. On-Resistance Variation
with Drain Current and Gate Voltage.
1.6
RDS(ON) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
-4
V DS = V GS
1.1
I D = -250µA
1
0.9
0.8
0.7
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
150
Figure 6. Gate Threshold Variation
with Temperature.
NDT454P Rev. D2
Typical Electrical Characteristics (continued)
20
I D = -250µA
10
-I S , REVERSE DRAIN CURRENT (A)
BV DSS , NORMALIZED
DRAIN-SOURCE BREAKDOWN VOLTAGE
1.1
1.08
1.06
1.04
1.02
1
0.98
0.96
0.94
-50
VGS = 0V
5
1
TJ = 125°C
25°C
-55°C
0.1
0.01
0.001
-25
0
25
TJ
50
75
100
125
150
0
I D = -5.9A
, GATE-SOURCE VOLTAGE (V)
C iss
1000
C oss
500
300
C rss
f = 1 MHz
GS
CAPACITANCE (pF)
1.2
1.5
10
2000
V
DS
= -10V
-15V
8
-20V
6
4
2
-V
VGS = 0 V
0
0.3
1
3
10
30
0
10
-VDS , DRAIN TO SOURCE VOLTAGE (V)
30
40
Figure 10. Gate Charge Characteristics.
-VDD
ton
t d(on)
t off
tr
RL
V IN
20
Q g , GATE CHARGE (nC)
Figure 9. Capacitance Characteristics.
t d(off)
tf
90%
90%
V OUT
D
VGS
0.9
Figure 8. Body Diode Forward Voltage Variation
with Source Current and
Temperature.
3000
100
0.1
0.6
-VSD , BODY DIODE FORWARD VOLTAGE (V)
Figure 7. Breakdown Voltage
Variation with Temperature.
200
0.3
, JUNCTION TEMPERATURE (°C)
VOUT
R GEN
10%
10%
DUT
G
90%
S
V IN
50%
50%
10%
PULSE WIDTH
Figure 11. Switching Test Circuit.
INVERTED
Figure 12. Switching Waveforms.
NDT454P Rev. D2
3.5
20
V DS = -15V
STEADY-STATE POWER DISSIPATION (W)
g FS, TRANSCONDUCTANCE (SIEMENS)
Typical Electrical and ThermalCharacteristics (continued)
T J = -55°C
16
25°C
12
125°C
8
4
0
0
-5
-10
-15
1a
3
2.5
2
1.5
1b
1c
1
4.5"x5" FR-4 Board
o
TA = 2 5 C
Still Air
0.5
0
-20
0.2
0.4
0.6
0.8
2oz COPPER MOUNTING PAD AREA (in 2 )
I D , DRAIN CURRENT (A)
Figure 14. SOT-223 Maximum Steady-State Power
Dissipation versus Copper Mounting Pad
Area.
Figure 13. Transconductance Variation with Drain
Current and Temperature.
7
30
10
1a
6
-I D, DRAIN CURRENT (A)
I D , STEADY-STATE DRAIN CURRENT (A)
1
5
1b
4
1c
4.5"x5" FR-4 Board
3
3
RD
LIM
10
0u
1m s
s
IT
10
10
0.3
1s
10
s
DC
VGS = -10V
0.1
ms
0m
s
SINGLE PULSE
R
0.03
Still Air
N)
1
o
TA = 2 5 C
S(O
θJ A
= See Note 1c
T A = 25°C
VG S = - 1 0 V
2
0
0.2
0.4
0.6
0.8
2oz COPPER MOUNTING PAD AREA (in 2 )
Figure 15. Maximum Steady-State Drain
Current versus Copper Mounting Pad
Area.
1
0.01
0.1
0.2
0.5
1
2
5
10
30
50
- VDS , DRAIN-SOURCE VOLTAGE (V)
Figure 16. Maximum Safe Operating Area.
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
1
0.5
D = 0.5
0.2
0.2
0.1
0.1
0.05
0.05
0.02
0.02
0.01
R JA (t) = r(t) * R JA
θ
θ
R JA = See Note 1 c
θ
P(pk)
0.01
t1
0.005
(t)
θJA
Duty Cycle, D = t 1 / t 2
Single Pulse
0.002
0.001
0.0001
t2
TJ - TA = P * R
0.001
0.01
0.1
t 1 , TIME (sec)
1
10
100
300
Figure 15. Transient Thermal Response Curve.
Note:
Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change
depending on the circuit board design.
NDT454P Rev. D2
Similar pages