SHARP PQ015YZ01ZP

Low Power-Loss Voltage Regulators
PQ015YZ5MZ Series/PQ015YZ01Z Series
PQ015YZ5MZ Series/PQ015YZ01Z Series
Low Voltage Operation, Low Power-Loss Voltage Regulators (SC-63 Package)
■
●
■
Features
(Unit : mm)
Outline Dimensions
Low voltage operation (Minimum operating voltage: 1.7V)
1.8V input → available 1.0 to 1.5V output
(
) : Typical dimensions
2.3±0.5
MAX.
6.6
Variable output voltage type
● Surface mount package (equivalent to EIAJ SC-63)
●
5.2±0.5
(0.5)
3
(1.7)
(0 to 0.25)
0.5 +0.2
- 0.1
Model Line-up
Output current (IO)
0.5A
1A
Package type
Taping
Sleeve
Taping
Sleeve
Variable output
PQ015YZ5MZP
PQ015YZ5MZZ
PQ015YZ01ZP
PQ015YZ01ZZ
1
2
3
4
5
Internal connection diagram
3
1
Specific IC
2
4
5
■
Absolute Maximum Ratings
Parameter
❇1
Input voltage
Bias supply voltage
❇1
(0.5)
4(1.27)
(0.9)
■
5.5±0.5
Applications
Personal computers, power supply in peripherals
● Power supplies for various electronic equipment such as
DVD player or STB
●
2.5MIN.
■
9.7MAX.
Epoxy resin
015YZ5M
Output adjustment terminal voltage
3 DC output (VO)
4 Output voltage adjustment
terminal (VC)
5 GND
(Ta=25˚C)
Symbol
Rating
VIN
3.7
Unit
V
VB
7
V
VADJ
5
V
❇2
Output PQ015YZ5MZ series
current PQ015YZ01Z series
Power dissipation(with infinite heat sink)
PD
8
W
❇3
Junction temperature
Tj
150
˚C
˚C
˚C
˚C
IO
1 DC input (VIN)
2 Bias input (VB)
0.5
1
Operating temperature
Topr
–25 to +85
Storage temperature
Tstg
–40 to +150
Soldering temperature
Tsol
260 (10s)
A
❇1 All are open except GND and applicable terminals
❇2 PD:With infinite heat sink
❇3 Overheat protection may operate at Tj=125˚C to 150˚C
•Please refer to the chapter " Handling Precautions ".
Notice
In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
Low Power-Loss Voltage Regulators
■
PQ015YZ5MZ Series/PQ015YZ01Z Series
(Unless otherwise specified, condition shall be (PQ015YZ5MZ))
(Unless otherwise specified, condition shall be (PQ015YZ01Z))
Electrical Characteristics
Parameter
Symbol
Input voltage
VIN
Bias supply voltage
VB
VO
Output voltage
PQ015YZ5MZ
PQ015YZ01Z
Load regulation
Line regulation
Ripple Rejection
Reference voltage
Temperature coefficient of reference voltage
Bias inflow current
RegL
RegI
RR1
RR2
VREF
TCVREF
IB
Conditions
MIN.
1.7
On condition that 1.0V≤ VO ≤ 1.2V
On condition that 1.2V≤ VO ≤ 1.5V VO+0.5
2.35
–
1.0
–
IO=5mA to 0.5A
–
IO=5mA to 1A
–
VIN=1.7 to 3.7V, VB=2.35 to 7V, IO=5mA
–
Refer to Fig.2
–
Refer to Fig.3
0.97
–
–
Tj=0 to 125˚C, IO=5mA
–
–
TYP.
–
–
–
–
MAX.
3.7
3.7
7
1.5
Unit
0.2
1
%
0.2
65
60
1
±0.5
1.5
1
–
–
1.03
–
3
%
dB
dB
V
%
mA
V
V
V
Fig.1 Test Circuit
VIN
1
VO
3
R2
VB
4
A
0.33µF
A
R1
1kΩ
Iq
A
V
100µF
(Rated voltage : 50V)
RL
VO=VREF✕(1+R2/R1)
[R1=1kΩ, VREF .=. 1.0V]
Fig.2 Test Circuit for Ripple Rejection (1)
1
3
∼
IO
R2
VB
2
4
0.33µF
R1
1kΩ
1.8V
eo
VREF
5
VIN
100µF
(Rated voltage : 50V)
Fig.3 Test Circuit for Ripple Rejection (2)
1
f=120Hz (sine wave)
ei(rms)=0.1V
VIN=1.8V, VB=3.3V
3
2
4
0.33µF
IO
∼
R1
1kΩ
1.8V
eo
VREF
5
3.3V
RL
IO=0.3A
RR=20log (ei(rms)/eo(rms))
R2
VB
eb
V
∼
0.33µF
3.3V
VIN
V
5
IB
0.33µF
ei
IO
VREF
2
100µF
(Rated voltage : 50V)
V
∼
RL
0.33µF
f=120Hz (sine wave)
eb(rms)=0.1V
VIN=1.8V, VB=3.3V
IO=0.3A
RR=20log (eb(rms)/eo(rms))
Low Power-Loss Voltage Regulators
Fig.4 Power Dissipation vs. Ambient
Temperature
Fig.5 Overcurrent Protection
Characteristics (PQ015YZ5MZ)
PD: With infinite heat sink
8
Output voltage VO (V)
Power dissipation PD (W)
10
PQ015YZ5MZ Series/PQ015YZ01Z Series
5
0
–25
–20
0
20
40
60
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
80
VIN=3.7V
VIN=3.3V
VIN=2.5V
VIN=1.8V
VB=3.3V
VC=2.7V
On condition that VO=1.2V
CIN=0.33µF
CO=47µF
0
Ambient temperature Ta (˚C)
Note) Oblique line portion:Overheat protection may operate in this area.
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1.015
1.01
Reference voltage VREF (V)
VIN=3.7V
VIN=3.3V
VIN=2.5V
VIN=1.8V
VB=3.3V
VC=2.7V
On condition that VO=1.2V
CIN=0.33µF
CO=47µF
0
0.5
1.0
1.5
Output current IO (A)
2.0
Fig.8 Bias Inflow Current vs. Ambient
Temperature
2
Bias inflow current IB (mA)
1.9
1.4
Fig.7 Reference Voltage vs. Ambient
Temperature
PQ015YZ01Z
PQ015YZ5MZ
1.8
1.7
1.6
1.5
1.4
1.3
VIN=1.8V,VB=3.3V
1.2 VC=2.7V,IO=0A
1.1 R1=1kΩ,R2=200Ω
(On condition that VO=1.2V)
1
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (˚C)
1.005
PQ015YZ01Z:VIN=1.8V,VB=3.3V,
IO=0.5A, VC=2.7V,
R1=1kΩ, R2=200Ω
PQ015YZMZ:VIN=1.8V,VB=3.3V,
IO=0.3A, VC=2.7V,
R1=1kΩ, R2=200Ω
1.0
0.995
0.99
PQ015YZ01Z
0.985 PQ015YZ5MZ
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (˚C)
Fig.9 Output Short circuit Current vs.
Ambient Temperature
2
Output short circuit current IS (A)
Output voltage VO (V)
Fig.6 Overcurrent Protection
Characteristics
0.5
1.0
Output current IO (A)
1.9
1.8
1.7 VIN=1.8V,VB=3.3V,
VC=2.7V,RL=Short,
1.6 R1=1kΩ,R2=200Ω
1.5 (On condition that VO=1.2V)
PQ015YZ01Z
1.4
PQ015YZ5MZ
1.3
1.2
1.1
1
–50 –25 0 25 50 75 100 125 150
Ambient temperature Ta (˚C)
Low Power-Loss Voltage Regulators
PQ015YZ5MZ Series/PQ015YZ01Z Series
Fig.11 Output Voltage vs. Input Voltage
(PQ015YZ01Z)
IO=0A
IO=0.3A(RL=4Ω)
IO=0.5A(RL=2.4Ω)
Output voltage VO (V)
VB=3.3V
R1=1kΩ
R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF
CO=47µF
0
1
2
3
Input voltage VIN (V)
4
1.3
1.2
1.1
1.1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
IO=0A
IO=0.3A(RL=4Ω)
IO=0.5A(RL=2.4Ω)
VIN=1.8V
R1=1kΩ
R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF
CO=47µF
0
1
2
3
4
Bias supply voltage VB (V)
5
IIN
IIN-VIN
IB-VB
VIN=1.8V
VB=3.3V
VC=2.7V
VC=2.7V
CIN=0.33µF CIN=0.33µF
CO=47µF
CO=47µF
R1=1kΩ
R1=1kΩ
R2=200Ω
R2=200Ω
IB
2
1
0
0
1
2
3
4
5
Input voltage/Bias supply voltage VIN/VB (V)
Bias inflow current IB (mA)
Circuit operating current IIN/IBIAS (mA)
Fig.14 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ015YZ5MZ)
24
22
20
18
16
14
12
10
8
6
4
2
0
IO=0A
IO=0.5A(RL=2.4Ω)
IO=1A(RL=1.2Ω)
VB=3.3V
R1=1kΩ
R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF
CO=47µF
0
1
2
3
Input voltage VIN (V)
4
Fig.13 Output Voltage vs. Bias Supply
Voltage (PQ015YZ01Z)
Output voltage VO (V)
Output voltage VO (V)
Fig.12 Output Voltage vs. Bias Supply
Voltage (PQ015YZ5MZ)
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1.3
1.2
1.1
1.1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
IO=0A
=0.5A(RL=2.4Ω)
IO=1A(RL=1.2Ω)
VIN=1.8V
R1=1kΩ
R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF
CO=47µF
0
1
2
3
4
Bias supply voltage VB (V)
5
Fig.15 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ015YZ01Z)
24
22
20
18
16
14
12
10
8
6
4
2
0
IIN
IIN-VIN
IB-VB
VIN=1.8V
VB=3.3V
VC=2.7V
VC=2.7V
CIN=0.33µF CIN=0.33µF
CO=47µF
CO=47µF
R1=10kΩ
R1=10kΩ
R2=2kΩ
R2=2kΩ
IB
2
1
0
0
1
2
3
4
5
Input voltage/Bias supply voltage VIN/VB (V)
Bias inflow current IB (mA)
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Circuit operating current IIN/IBIAS (mA)
Output voltage VO (V)
Fig.10 Output Voltage vs. Input Voltage
(PQ015YZ5MZ)
Low Power-Loss Voltage Regulators
PQ015YZ5MZ Series/PQ015YZ01Z Series
1.5
IIN-VIN
IB-VB
VB=3.3V
VIN=1.8V
VC=2.7V
VC=2.7V
CIN=0.33µF CIN=0.33µF
CO=47µF
CO=47µF
R1=1kΩ
R1=1kΩ
R2=200kΩ
R2=200kΩ
IIN
Fig.17 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ015YZ5MZ)
2
IB
1
0
0
1
2
3
4
5
Input voltage/Bias supply voltage VIN/VB (V)
Fig.18 Output Voltage vs. Input Voltage/Bias
Supply Voltage (PQ015YZ01Z)
Output voltage deviation ∆VO (mV)
26
24
22
20
18
16
14
12
10
8
6
4
2
0
Bias inflow current IB (mA)
Circuit operating current IIN/IBIAS (mA)
Fig.16 Circuit Operating Current vs. Input Voltage
/Bias Supply Voltage (PQ015YZ01Z)
1.0
VB
0.5
VIN
R1=1kΩ, R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF, CO=47µF
IO=0A
Base on
VIN=1.8V, VB=3.3V
–0.5
–1.0
0
Fig.20 Ripple Rejection vs. Input Ripple
Frequency
0
+1.0
–0.5
–1.0
–1.5
–2.0 VIN=1.8V,VB=3.3V
VC=2.7V,CIN=0.33µF
–2.5 CO=47µF(Ar)
–3.0 On condition that VO=1.2V
(R1=1kΩ,R2=200Ω)
0
0
0.5
1.0
Output current IO (A)
55
PQ015YZ5M-VB
PQ015YZ01-VB
ei(rms)=0.1V,VIN=1.8V
50 VB=3.3V,VC=2.7V
IO=0.3A,CO=47µF
45 Ta=Room Temp
40 (On condition that VO=1.2V)
0.1
1
10
Input ripple frequency f (kHz)
100
Ripple rejection RR (dB)
60
1.5
Fig.21 Ripple Rejection vs. Output Current
75
PQ015YZ5M-VIN
PQ015YZ01Z
0
75
65
PQ015YZ5MZ
+0.5
80
PQ015YZ01-VIN
R1=1kΩ, R2=200Ω
(On condition that VO=1.2V)
CIN=0.33µF, CO=47µF
IO=0A
Base on
VIN=1.8V, VB=3.3V
–1.0
80
70
VIN
–0.5
+1.5
Output voltage deviation ∆VO (mV)
Output voltage deviation ∆VO (mV)
0
Fig.19 Output Voltage vs. Output Current
0
1
2
3
4
5
6
7
Input voltage/Bias supply voltage VIN/VB (V)
Ripple rejection RR (dB)
VB
0.5
0
1
2
3
4
5
6
7
Input voltage/Bias supply voltage VIN/VB (V)
1.5
0
1.0
PQ015YZ5M-VIN
70
PQ015YZ01-VIN
65
60
PQ015YZ5M-VB
55
PQ015YZ01-VB
ei(rms)=0.1V,f=120HZ
50 VIN=1.8V,VB=3.3V
VC=2.7V,CO=47µF
45 Ta=Room Temp
40 (On condition that VO=1.2V)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output current IO (A)
Low Power-Loss Voltage Regulators
PQ015YZ5MZ Series/PQ015YZ01Z Series
Fig.22 Typical Application
DC input
1
VO
3
R2
VIN
2
CIN
VB
+
CO
4
Load
5
CB
R1
1kΩ
Fig.23 Power Dissipation vs. Ambient
Temperature (Typical Value)
Power dissipation PD (W)
3
Cu area 740mm2
2
Cu area 180mm2
Cu area 100mm2
Cu area 70mm2
1
PWB
PWB
Cu
Cu area 36mm2
0
–20
Material
: Glass-cloth epoxy resin
Size
: 50×50×1.6mm
Cu thickness : 35µm
0
20
40
60
Ambient temperature Ta (˚C)
80
Fig.24 Output Voltage Adjustment
Characteristics (Typical Value)
1. 6
R1=1kΩ
Output voltage VO (V)
1. 5
1. 4
1. 3
1. 2
1. 1
1
0. 9
0. 8
0
100
200
300
R2 (Ω)
400
500
Low Power-Loss Voltage Regulators
■
PQ015YZ5MZ Series/PQ015YZ01Z Series
Setting of Output Voltage
Output voltage is able to set from 1.0V to 1.5V when resistors R1 and R2 are attached to ➂, ➃, ➄ terminals. As for the external
resistors to set output voltage, refer to the figure below and Fig.24.
VO
3
R2
−
4
R1
+
5
Vref
VO =Vref×(1+R2/R1)
[R1=1kΩ, Vref.=.1.0V]
NOTICE
●
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
●
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
●
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- -- Office automation equipment
- -- Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- -- Audio visual equipment
- -- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- -- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- -- Telecommunication equipment [trunk lines]
- -- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).
●
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
●
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
●
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.