TI1 F280048CPMQ Piccolo microcontroller Datasheet

Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
TMS320F28004x Piccolo™ Microcontrollers
1 Device Overview
1.1
Features
1
• TMS320C28x 32-Bit CPU
– 100 MHz
– IEEE 754 Single-Precision Floating-Point Unit
(FPU)
– Trigonometric Math Unit (TMU)
– 3×-Cycle to 4×-Cycle Improvement for
Common Trigonometric Functions Versus
Software Libraries
– 13-Cycle Park Transform
– Viterbi/Complex Math Unit (VCU-I)
– Ten Hardware Breakpoints
• Programmable Control Law Accelerator (CLA)
– 100 MHz
– IEEE 754 Single-Precision Floating-Point
Instructions
– Executes Code Independently of Main CPU
• On-Chip Memory
– 256KB (128KW) of Flash (ECC-Protected)
Across Two Independent Banks
– 100KB (50KW) of RAM (ECC-Protected or
Parity-Protected)
– Dual-Zone Security Supporting Third-Party
Development
– Unique Identification Number
• Clock and System Control
– Two Internal Zero-Pin 10-MHz Oscillators
– On-Chip Crystal Oscillator and External Clock
Input
– Windowed Watchdog Timer Module
– Missing Clock Detection Circuitry
• 1.2-V Core, 3.3-V I/O Design
– Internal VREG or DC-DC for 1.2-V Generation
Allows for Single-Supply Designs
– Brownout Reset (BOR) Circuit
• System Peripherals
– 6-Channel Direct Memory Access (DMA)
Controller
– 40 Individually Programmable Multiplexed
General-Purpose Input/Output (GPIO) Pins
– 21 Digital Inputs on Analog Pins
– Enhanced Peripheral Interrupt Expansion (ePIE)
Module
– Multiple Low-Power Mode (LPM) Support With
External Wakeup
– Embedded Real-Time Analysis and Diagnostic
(ERAD)
1
• Communications Peripherals
– One Power Management Bus (PMBus) Interface
– One Inter-Integrated Circuit (I2C) Interface
(Pin-Bootable)
– Two Controller Area Network (CAN) Bus Ports
(Pin-Bootable)
– Two Serial Peripheral Interface (SPI) Ports
(Pin-Bootable)
– Two Serial Communication Interfaces (SCIs)
(Pin-Bootable)
– One Local Interconnect Network (LIN)
– One Fast Serial Interface (FSI) With a
Transmitter and Receiver
• Analog System
– Three 3.45-MSPS, 12-Bit Analog-to-Digital
Converters (ADCs)
– Up to 21 External Channels
– Four Integrated Post-Processing Blocks
(PPBs) per ADC
– Seven Windowed Comparators (CMPSS) With
12-Bit Reference Digital-to-Analog Converters
(DACs)
– Digital Glitch Filters
– Two 12-Bit Buffered DAC Outputs
– Seven Programmable Gain Amplifiers (PGAs)
– Programmable Gain Settings: 3, 6, 12, 24
– Programmable Output Filtering
• Enhanced Control Peripherals
– 16 ePWM Channels With High-Resolution
Capability (150-ps Resolution)
– Integrated Dead-Band Support With High
Resolution
– Integrated Hardware Trip Zones (TZs)
– Seven Enhanced Capture (eCAP) Modules
– High-Resolution Capture (HRCAP) Available
on Two Modules
– Two Enhanced Quadrature Encoder Pulse
(eQEP) Modules With Support for CW/CCW
Operation Modes
– Four Sigma-Delta Filter Module (SDFM) Input
Channels (Two Parallel Filters per Channel)
– Standard SDFM Data Filtering
– Comparator Filter for Fast Action for
Overvalue or Undervalue Condition
• Configurable Logic Block (CLB)
– Augments Existing Peripheral Capability
– Supports Position Manager Solutions
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
• InstaSPIN-FOC™
– Sensorless Field-oriented Control (FOC) With
FAST™ Software Encoder
– Library in On-chip ROM Memory
• Package Options:
– 100-Pin Low-Profile Quad Flatpack (LQFP)
[PZ Suffix]
– 64-Pin LQFP [PM Suffix]
– 56-Pin Very Thin Quad Flatpack No-Lead
(VQFN) [RSH Suffix]
1.2
•
•
•
•
•
2
www.ti.com
• Temperature Options:
– S: –40°C to 125°C Junction
– Q: –40ºC to 125ºC Free-Air
(AEC Q100 Qualification for Automotive
Applications)
Applications
Appliances
Building Automation
Electric Vehicle/Hybrid Electric Vehicle (EV/HEV)
Powertrain
Factory Automation
Grid Infrastructure
Device Overview
•
•
•
•
•
•
Industrial Transport
Medical, Healthcare, and Fitness
Motor Drives
Power Delivery
Telecom Infrastructure
Test and Measurement
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
1.3
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Description
The Piccolo™ TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU)
that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory
on a single device.
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal
processing performance. The C28x CPU is further boosted by the new TMU extended instruction set,
which enables fast execution of algorithms with trigonometric operations commonly found in transforms
and torque loop calculations; and the VCU-I extended instruction set, which reduces the latency for
complex math operations commonly found in encoded applications.
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an
independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the
CLA has its own dedicated memory resources and it can directly access the key peripherals that are
required in a typical control system. Support of a subset of ANSI C is standard, as are key features like
hardware breakpoints and hardware task-switching.
The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks,
which enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also
available in blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM
ECC/parity, and dual-zone security are also supported.
High-performance analog blocks are integrated on the F28004x MCU to further enable system
consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog
signals, which ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip
voltage scaling before conversion. Seven analog comparator modules provide continuous monitoring of
input voltage levels for trip conditions.
The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel
SDFM allows for seamless integration of an oversampling sigma-delta modulator across an isolation
barrier.
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,
LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications.
New to the C2000™ platform is the fully compliant PMBus. Additionally, in an industry first, the FSI
enables high-speed, robust communication to complement the rich set of peripherals that are embedded
in the device.
A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block
(CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to
enable InstaSPIN-FOC™. See Device Comparison for more information.
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system
analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling.
Device Overview
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
3
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Device Information (1)
PACKAGE
BODY SIZE
TMS320F280049PZ
PART NUMBER
LQFP (100)
14.0 mm × 14.0 mm
TMS320F280049CPZ
LQFP (100)
14.0 mm × 14.0 mm
TMS320F280045PZ
LQFP (100)
14.0 mm × 14.0 mm
TMS320F280041PZ
LQFP (100)
14.0 mm × 14.0 mm
TMS320F280041CPZ
LQFP (100)
14.0 mm × 14.0 mm
TMS320F280049PM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280049CPM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280048PM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280048CPM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280045PM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280041PM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280041CPM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280040PM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280040CPM
LQFP (64)
10.0 mm × 10.0 mm
TMS320F280049RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F280049CRSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F280045RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F280041RSH
VQFN (56)
7.0 mm × 7.0 mm
TMS320F280041CRSH
VQFN (56)
7.0 mm × 7.0 mm
(1)
4
For more information on these devices, see Mechanical, Packaging, and Orderable Information.
Device Overview
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
1.4
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Functional Block Diagram
Figure 1-1 shows the CPU system and associated peripherals.
C28x RAM - ECC
M0 - 1KW (2KB)
M1 - 1KW (2KB)
C28x
TMU+FPU+VCU-I
CPU Timer0
CPU Timer1
CPU Timer2
C28x ROM
Boot - 64KW (128KB)
Secure - 32KW (64KB)
10 MHz INTOSC1, INTOSC2
10–20 MHz Crystal Oscillator
PLL
Missing Clock Detect
PF1
8x ePWM
7x eCAP
(2 HRCAP Channels)
2x eQEP
CLA to CPU - 128W
CLA
CPU to CLA - 128W
(Type 2)
Flash - ECC
Flash BANK0 - 16 Sectors
64KW (128KB)
Flash BANK1 - 16 Sectors
64KW (128KB)
DCSM OTP
ePIE
(16 Hi-Res Channels)
CLA MSG RAM - Parity
PF3
Result
7x CMPSS
Config.
3x 12-Bit ADC
2x Buffered DAC
7x PGA
(CW/CCW Support)
CLA ROM
Data
4KW (8KB)
Program
48KW (96KB)
Local Shared RAM - Parity
16KW (32KB)
LS0–LS7
8x (2KW [4KB])
Global Shared RAM - Parity
32KW (64KB)
DMA
GS0–GS3
4x (8KW [16KB])
PF4
(6 Channels)
PF2
PF7
PF8
PF9
Data Config.
GPIO
1x PMBUS
2x CAN
1x LIN
2x SCI
XBAR
1x FSI RX
2x SPI
1x FSI TX
4x SD Filters
1x I2C
NMI
Watchdog
Windowed
Watchdog
Copyright © 2017, Texas Instruments Incorporated
Figure 1-1. Functional Block Diagram
Device Overview
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
5
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table of Contents
1
2
3
Device Overview ......................................... 1
5
6.1
1.2
Applications ........................................... 2
1.3
Description ............................................ 3
1.4
Functional Block Diagram ............................ 5
.........................
............................................
6.4
Identification........................................
6.5
Bus Architecture – Peripheral Connectivity ........
6.6
C28x Processor ....................................
6.7
Control Law Accelerator (CLA) ....................
6.8
Direct Memory Access (DMA) .....................
6.9
Boot ROM and Peripheral Booting.................
6.10 Watchdog ..........................................
6.11 Configurable Logic Block (CLB) ...................
Applications, Implementation, and Layout ......
7.1
TI Design or Reference Design ....................
Device and Documentation Support ..............
Revision History ......................................... 7
Device Comparison .................................... 10
Related Products .................................... 12
Terminal Configuration and Functions ............ 13
4.1
Pin Diagrams ........................................ 13
4.2
Pin Attributes ........................................ 17
4.3
Signal Descriptions .................................. 30
4.4
Pin Multiplexing...................................... 41
4.5
Pins With Internal Pullup and Pulldown ............. 52
4.6
Connections for Unused Pins ....................... 53
7
8
Specifications ........................................... 54
5.1
........................ 54
ESD Ratings – Commercial ......................... 55
ESD Ratings – Automotive .......................... 55
Recommended Operating Conditions ............... 56
Power Consumption Summary ...................... 57
Electrical Characteristics ............................ 63
Thermal Resistance Characteristics ................ 64
System .............................................. 66
Analog Peripherals .................................. 95
Control Peripherals ................................ 128
Communications Peripherals ...................... 148
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
Table of Contents
9
Overview ........................................... 181
6.2
Functional Block Diagram
182
6.3
Memory
183
190
191
192
195
197
198
203
203
204
204
205
8.1
Device and Development Support Tool
Nomenclature ...................................... 205
8.2
Tools and Software ................................ 206
8.3
Documentation Support ............................ 208
8.4
Related Links
8.5
Community Resources............................. 209
8.6
Trademarks ........................................ 209
8.7
Electrostatic Discharge Caution
8.8
Glossary............................................ 209
Absolute Maximum Ratings
5.2
6
Detailed Description.................................. 181
Features .............................................. 1
3.1
4
6
1.1
......................................
...................
209
209
Mechanical, Packaging, and Orderable
Information ............................................. 210
9.1
Packaging Information ............................. 210
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
2 Revision History
Changes from October 7, 2017 to December 15, 2017 (from B Revision (October 2017) to C Revision)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Page
Global: TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,
TMS320F280041, TMS320F280041C, TMS320F280040, and TMS320F280040C are now fully qualified
production devices. See Device and Development Support Tool Nomenclature. ............................................ 1
Global: Removed STANDBY low-power mode. ................................................................................. 1
Global: Removed TMS320F280049M and InstaSPIN-MOTION™. ........................................................... 1
Section 1.1 (Features): Updated section. ......................................................................................... 1
Section 1.3 (Description): Added paragraph about Embedded Real-Time Analysis and Diagnostic (ERAD) module. . 3
Figure 4-4 (56-Pin RSH Very Thin Quad Flatpack No-Lead (Top View)): Updated figure. ............................... 16
Table 4-1 (Pin Attributes): Added "PAD" to "56 RSH" column of VSS. ...................................................... 17
Table 4-4 (Power and Ground): Added "PAD" to "56 RSH" column of VSS. ............................................... 30
Section 5 (Specifications): Updated ESD Ratings – Commercial. ............................................................ 54
Section 5: Updated ESD Ratings – Automotive. ................................................................................ 54
Section 5: Updated Recommended Operating Conditions. .................................................................... 54
Section 5: Updated Electrical Characteristics .................................................................................. 54
Figure 5-1 (Supply Voltages): Added figure. .................................................................................... 56
Section 5.5 (Power Consumption Summary): Removed STANDBY low-power mode. .................................... 57
Section 5.8.1.2 (Internal 1.2-V Switching Regulator (DC-DC)): Removed "Internal Switching Regulator
Characteristics" table. Power efficiency is now listed in Section 5.6. ........................................................ 66
Section 5.8.1.3 (Power Sequencing): Removed "Supply Ramp Rate" table. Supply ramp rate is now listed in
Section 5.4. .......................................................................................................................... 68
Section 5.8.1.4 (Power-On Reset (POR)): Updated section. ................................................................. 68
Section 5.8.1.5 (Brownout Reset (BOR)): Added section. .................................................................... 68
Table 5-19 (XCLKOUT Switching Characteristics): Moved f(XCO) parameter from Output Clock Frequency table to
this table. Removed Output Clock Frequency table. ........................................................................... 75
Section 5.8.3.3 (Input Clocks and PLLs): Updated description of the single-ended 3.3-V external clock. .............. 76
Table 5-25 (Flash Parameters): Updated table. ................................................................................ 80
Section 5.8.8 (Low-Power Modes): Removed STANDBY low-power mode. ............................................... 91
Table 5-39 (Analog Pins and Internal Connections): Updated COMPARATOR SUBSYSTEM (MUX) columns. ..... 100
Section 5.9.1.1.1 (Signal Mode): Added section. .............................................................................. 105
Table 5-43 (ADC Characteristics): Updated MIN and MAX values of Gain Error (External reference). ............... 106
Section 5.9.1.2.2 (ADC Timing Diagrams): Updated section. ............................................................... 111
Table 5-46 (ADC Timing Parameters): Added table. ......................................................................... 112
Section 5.9.2.1 (PGA Electrical Data and Timing): Added PGA Operating Conditions. ................................. 114
Table 5-49 (PGA Characteristics): Updated table. ............................................................................ 114
Section 5.9.2.1.1 (PGA Typical Characteristics Graphs): Added section................................................... 115
Section 5.9.4 (Buffered Digital-to-Analog Converter (DAC)): Updated section. .......................................... 117
Section 5.9.4.1 (Buffered DAC Electrical Data and Timing): Added Buffered DAC Operating Conditions. ........... 118
Table 5-52 (Buffered DAC Electrical Characteristics): Updated table. ..................................................... 118
Section 5.9.4.1.1 (Buffered DAC Illustrative Graphs): Added section. ..................................................... 119
Section 5.9.4.1.2 (Buffered DAC Typical Characteristics Graphs): Added section. ...................................... 121
Section 5.9.5.1.1 (CMPSS Illustrative Graphs): Added section. ............................................................ 126
Table 5-63 (eQEP Timing Requirements): Changed "Synchronous" to "Asynchronous/Synchronous". ............... 143
Table 5-63: Added footnote about limitations in the asynchronous mode. ................................................ 143
Section 5.11.2.1 (I2C Electrical Data and Timing): Added NOTE about meeting I2C protocol timing specifications. 152
Section 5.11.5.1.1 (Non-High-Speed Master Mode Timings): Updated parametric tables. ............................. 161
Section 5.11.5.1.2 (Non-High-Speed Slave Mode Timings): Updated parametric tables. ............................... 164
Section 5.11.5.1.3 (High-Speed Master Mode Timings): Updated parametric tables. ................................... 166
Section 5.11.5.1.4 (High-Speed Slave Mode Timings): Updated parametric tables. .................................... 169
Figure 5-83 (FSITX CPU Interface): Changed "VBUS" to "Register Interface". .......................................... 174
Figure 5-84 (FSITX Block Diagram): Changed "VBUS Interface" to "Register Interface". .............................. 175
Table 5-82 (FSITX Switching Characteristics): Updated table. ............................................................. 176
Table 5-81 (FSITX GPIO Mux Groups): Added table. ....................................................................... 176
Figure 5-85 (FSITX Timings): Updated figure. ................................................................................ 176
Figure 5-86 (FSIRX CPU Interface): Changed "VBUS" to "Register Interface". .......................................... 177
Figure 5-87 (FSIRX Block Diagram): Changed "VBUS Interface" to "Register Interface". .............................. 178
Table 5-83 (FSIRX Timing Requirements): Updated table. ................................................................. 179
Revision History
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
7
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
•
•
•
•
•
•
•
•
8
www.ti.com
Table 5-84 (FSITX SPI Mode Switching Characteristics): Updated table. ................................................
Table 6-4 (Peripheral Registers Memory Map): Updated REGISTER, STRUCTURE NAME, START ADDRESS,
and END ADDRESS columns of ERAD registers in Peripheral Frame 6. .................................................
Table 6-7 (Device Identification Registers): Added UID_UNIQUE. ........................................................
Section 6.6.1 (Embedded Real-Time Analysis and Diagnostic (ERAD)): Added section. ...............................
Section 6.10 (Watchdog): Added section. .....................................................................................
Section 7 (Applications, Implementation, and Layout): Added section. ....................................................
Section 8.2 (Tools and Software): Added "Models" section. ................................................................
Section 8.3 (Documentation Support): Updated section. ....................................................................
Revision History
180
186
190
192
203
204
206
208
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Changes from August 23, 2017 to October 6, 2017 (from A Revision (August 2017) to B Revision)
•
•
•
Page
Table 4-1 (Pin Attributes): Updated "64 PM" column and "64 PMQ" column. .............................................. 17
Table 4-3 (Digital Signals): Updated "64 PM" column and "64 PMQ" column. ............................................. 30
Table 4-7 (Digital Signals by GPIO): Updated "64 PM" column and "64 PMQ" column. .................................. 41
Revision History
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
9
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
3 Device Comparison
Table 3-1 lists the features of the TMS320F28004x devices.
Table 3-1. Device Comparison
F280049
F280049C
FEATURE(1)
F280048
F280048C
F280045
F280041
F280041C
F280040
F280040C
PROCESSOR AND ACCELERATORS
C28x
Frequency (MHz)
100
FPU
Yes
VCU-I
Yes
TMU – Type 0
CLA – Type 2
Yes
Available
Yes
Frequency (MHz)
100
No
–
6-Channel DMA – Type 0
Yes
MEMORY
Flash
256KB (128KW)
Dedicated and Local Shared RAM
RAM
128KB (64KW)
36KB (18KW)
Global Shared RAM
64KB (32KW)
TOTAL RAM
100KB (50KW)
Code security for on-chip flash, RAM, and OTP blocks
Yes
Boot ROM
Yes
User-configurable DCSM OTP
4KB (2KW)
SYSTEM(2)
Configurable Logic Block (CLB)
F280049C
F280048C
–
F280041C
F280040C
InstaSPIN-FOC™
F280049C
F280048C
–
F280041C
F280040C
32-bit CPU timers
3
Watchdog timers
1
Nonmaskable Interrupt Watchdog (NMIWD) timers
1
Crystal oscillator/External clock input
1
0-pin internal oscillator
GPIO pins
AIO inputs
2
100-pin PZ
40
–
40
40
–
64-pin PM
26
24
26
26
24
56-pin RSH
25
–
25
25
–
100-pin PZ
21
64-pin PM
14
56-pin RSH
12
External interrupts
10
Device Comparison
5
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 3-1. Device Comparison (continued)
F280049
F280049C
FEATURE(1)
F280048
F280048C
F280045
F280041
F280041C
F280040
F280040C
ANALOG PERIPHERALS
Number of ADCs
ADC 12-bit
ADC channels
(single-ended)
3
MSPS
3.45
Conversion Time (ns)(3)
300
100-pin PZ
21
64-pin PM
14
56-pin RSH
12
Temperature sensor
1
Buffered DAC
2
100-pin PZ
CMPSS
(each CMPSS has two
64-pin PM
comparators and two internal
DACs)
56-pin RSH
7
100-pin PZ
7
64-pin PM
5
PGAs
(Gain Settings: 3, 6, 12, 24)
6
5
56-pin RSH
4
CONTROL PERIPHERALS(4)
eCAP/HRCAP modules – Type 1
7 (2 with HRCAP capability)
ePWM/HRPWM channels – Type 4
eQEP modules – Type 1
SDFM channels – Type 1
16
100-pin PZ
2
64-pin PM
1
56-pin RSH
1
100-pin PZ
4
64-pin PM
3
56-pin RSH
3
COMMUNICATION PERIPHERALS(4)
CAN – Type 0
2
I2C – Type 1
1
SCI – Type 0
2
SPI – Type 2
2
LIN – Type 1
1
PMBus – Type 0
1
FSI – Type 0
1
PACKAGE OPTIONS, TEMPERATURE, AND QUALIFICATION
Junction Temperature (TJ)
Free-Air Temperature (TA)
S: –40°C to 125°C
(5)
Q: –40°C to 125°C
100-pin PZ
–
100-pin PZ
100-pin PZ
–
64-pin PM
–
64-pin PM
64-pin PM
–
56-pin RSH
–
56-pin RSH
56-pin RSH
–
100-pin PZ
64-pin PM
–
100-pin PZ
64-pin PM
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor
differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time
Control Peripherals Reference Guide.
(2) For more information about InstaSPIN-FOC™ devices, see Section 8.3 for a list of InstaSPIN Technical Reference Manuals.
(3) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.
(4) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to
the largest package offered within a part number. See Section 4 to identify which peripheral instances are accessible on pins in the
smaller package.
(5) The letter Q refers to AEC Q100 qualification for automotive applications.
Device Comparison
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
11
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
3.1
www.ti.com
Related Products
For information about other devices in this family of products, see the following links:
TMS320F2837xD Dual-Core Delfino™ Microcontrollers
The Delfino™ TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for
advanced closed-loop control applications such as industrial drives and servo motor control; solar
inverters and converters; digital power; transportation; and power line communications. Complete
development packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the
F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The
integrated analog and control peripherals also let designers consolidate control architectures and eliminate
multiprocessor use in high-end systems.
TMS320F2837xS Single-Core Delfino™ Microcontrollers
The Delfino™ TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for
advanced closed-loop control applications such as industrial drives and servo motor control; solar
inverters and converters; digital power; transportation; and power line communications. Complete
development packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives.
TMS320F2807x Piccolo™ Microcontrollers
The TMS320F2807x microcontroller platform is part of the Piccolo™ family and is suited for advanced
closed-loop control applications such as industrial drives and servo motor control; solar inverters and
converters; digital power; transportation; and power line communications. Complete development
packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives.
TMS320F2833x Delfino™ Microcontrollers
The TMS320F28335, TMS320F28334, and TMS320F28332 devices, members of the TMS320C28x/
Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control
applications.
TMS320F2823x Delfino™ Digital Signal Controllers
The TMS320F28235, TMS320F28234, and TMS320F28232 devices, members of the TMS320C28x/
Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control
applications.
TMS320C2834x Delfino™ Microcontrollers
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI's existing F2833x
high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point
performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the
C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip
peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time
control applications.
12
Device Comparison
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
4 Terminal Configuration and Functions
4.1
Pin Diagrams
GPIO4
GPIO8
VREGENZ
VSS
VDD
VDDIO
X1
GPIO18_X2
GPIO58
GPIO57
GPIO56
GPIO32
GPIO35/TDI
TMS
GPIO37/TDO
TCK
GPIO27
GPIO26
GPIO25
GPIO24
GPIO17
GPIO16
GPIO33
GPIO11
GPIO12
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
Figure 4-1 shows the pin assignments on the 100-pin PZ Low-Profile Quad Flatpack. Figure 4-2 shows the
pin assignments on the 64-Pin PM Low-Profile Quad Flatpack. Figure 4-3 shows the pin assignments on
the 64-Pin PM Low-Profile Quad Flatpack for the Q-temperature device. Figure 4-4 shows the pin
assignments on the 56-Pin RSH Very Thin Quad Flatpack No-Lead.
PGA7_GND
GPIO40
85
41
B0
VSS
86
40
A10,B1,C10,PGA7_OF
VDD
87
39
B4,C8,PGA4_OF
VDDIO
88
38
A9
GPIO5
89
37
A8,PGA6_OF
GPIO9
90
36
A4,B8,PGA2_OF
GPIO39
91
35
A5
GPIO59
92
34
VDDA
GPIO10
93
33
VSSA
GPIO34
94
32
PGA2_GND,PGA4_GND,PGA6_GND
GPIO15
95
31
C3,PGA4_IN
GPIO14
96
30
PGA2_IN
GPIO6
97
29
C1
GPIO30
98
28
C5,PGA6_IN
GPIO31
99
27
VREFLOA
GPIO29
100
26
VREFLOB,VREFLOC
VREFHIA
VREFHIB,VREFHIC
A0,B15,C15,DACA_OUT
A1,DACB_OUT
C2
PGA3_IN
C0
PGA1_IN
C4
PGA5_IN
PGA3_GND
PGA1_GND
PGA5_GND
VSSA
VDDA
A3
A2,B6,PGA1_OF
B3,VDAC
B2,C6,PGA3_OF
A6,PGA5_OF
VSS
VDD
VDDIO
XRSn
GPIO28
A.
25
42
24
84
23
PGA7_IN
GPIO7
22
43
21
83
20
C14
GPIO22_VFBSW
19
44
18
82
17
VSS
VSS_SW
16
45
15
81
14
VDD
GPIO23_VSW
13
46
12
80
11
VDDIO
VDDIO_SW
10
47
9
79
8
FLT2
GPIO0
7
48
6
78
5
FLT1
GPIO1
4
GPIO13
49
3
50
77
2
76
GPIO2
1
GPIO3
Not to scale
Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name.
Figure 4-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
13
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
GPIO4
GPIO8
VREGENZ
VSS
VDD
VDDIO
X1
GPIO18_X2
GPIO32
GPIO35/TDI
TMS
GPIO37/TDO
TCK
GPIO24
GPIO17
GPIO16
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
www.ti.com
48
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
VDDIO_SW
53
28
VDDIO
GPIO23_VSW
54
27
VDD
VSS_SW
55
26
VSS
GPIO22_VFBSW
56
25
A10,B1,C10,PGA7_OF
GPIO7
57
24
B4,C8,PGA4_OF
VSS
58
23
A4,B8,PGA2_OF
VDD
59
22
VDDA
VDDIO
60
21
VSSA
GPIO5
61
20
PGA2_GND,PGA4_GND,PGA6_GND
GPIO9
62
19
C3,PGA4_IN
GPIO10
63
18
C1,PGA2_IN
GPIO6
64
17
VREFLOA,VREFLOB,VREFLOC
VREFHIA,VREFHIB,VREFHIC
A0,B15,C15,DACA_OUT
A1,DACB_OUT
C2,PGA3_IN
C0,PGA1_IN
C4,PGA5_IN
PGA1_GND,PGA3_GND,PGA5_GND
A2,B6,PGA1_OF
B3,VDAC
B2,C6,PGA3_OF
A6,PGA5_OF
VSS
VDD
XRSn
GPIO28
GPIO29
A.
16
GPIO13
15
29
14
52
13
GPIO0
12
GPIO12
11
30
10
51
9
GPIO1
8
GPIO11
7
31
6
50
5
GPIO2
4
GPIO33
3
32
2
49
1
GPIO3
Not to scale
Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name.
Figure 4-2. F280049/C/M, F280045, F280041/C 64-Pin PM Low-Profile Quad Flatpack (Top View)
14
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
GPIO4
GPIO8
VREGENZ
VSS
VDD
VDDIO
X1
GPIO18_X2
GPIO32
GPIO35/TDI
TMS
GPIO37/TDO
TCK
GPIO24
GPIO17
GPIO16
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
48
www.ti.com
VDDIO_SW
53
28
VDDIO
GPIO23_VSW
54
27
VDD
VSS_SW
55
26
VSS
GPIO22_VFBSW
56
25
A10,B1,C10,PGA7_OF
GPIO7
57
24
B4,C8,PGA4_OF
VSS
58
23
A4,B8,PGA2_OF
VDD
59
22
VDDA
VDDIO
60
21
VSSA
GPIO5
61
20
PGA2_GND,PGA4_GND,PGA6_GND
GPIO9
62
19
C3,PGA4_IN
GPIO10
63
18
C1,PGA2_IN
GPIO6
64
17
VREFLOA,VREFLOB,VREFLOC
VREFHIA,VREFHIB,VREFHIC
A0,B15,C15,DACA_OUT
A1,DACB_OUT
C2,PGA3_IN
C0,PGA1_IN
C4,PGA5_IN
PGA1_GND,PGA3_GND,PGA5_GND
A2,B6,PGA1_OF
B3,VDAC
B2,C6,PGA3_OF
A6,PGA5_OF
VSS
VDD
XRSn
GPIO28
GPIO29
A.
16
FLT2
15
29
14
52
13
GPIO0
12
FLT1
11
30
10
51
9
GPIO1
8
GPIO11
7
31
6
50
5
GPIO2
4
GPIO33
3
32
2
49
1
GPIO3
Not to scale
Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name.
Figure 4-3. F280048/C, F280040/C 64-Pin PM Low-Profile Quad Flatpack — Q-Temperature (Top View)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
15
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
GPIO8
VDD
VDDIO
X1
GPIO18_X2
GPIO32
GPIO35/TDI
TMS
GPIO37/TDO
TCK
GPIO24
GPIO17
GPIO16
GPIO33
41
40
39
38
37
36
35
34
33
32
31
30
29
www.ti.com
42
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
GPIO4
43
28
GPIO11
GPIO3
44
27
GPIO12
GPIO2
45
26
GPIO13
GPIO1
46
25
VDDIO
GPIO0
47
24
VDD
VDDIO_SW
48
23
A10,B1,C10,PGA7_OF
GPIO23_VSW
49
22
B4,C8,PGA4_OF
VSS_SW
50
21
A4,B8,PGA2_OF
GPIO22_VFBSW
51
20
VDDA
GPIO7
52
19
VSSA
VDD
53
18
PGA2_GND,PGA4_GND,PGA6_GND
VDDIO
54
17
C3,PGA4_IN
GPIO5
55
16
C1,PGA2_IN
GPIO9
56
15
VREFLOA,VREFLOB,VREFLOC
A.
B.
14
VREFHIA,VREFHIB,VREFHIC
9
PGA1_GND,PGA3_GND,PGA5_GND
13
8
A2,B6,PGA1_OF
A0,B15,C15,DACA_OUT
7
B3,VDAC
12
6
B2,C6,PGA3_OF
A1,DACB_OUT
5
VDD
11
4
XRSn
C2,PGA3_IN
3
GPIO28
10
2
GPIO29
C0,PGA1_IN
1
GPIO6
VSS
Not to scale
Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name.
This figure shows the top view of the 56-pin RSH package. The terminals are actually on the bottom side of the
package. See Section 9 for the 56-pin RSH mechanical drawing.
Figure 4-4. 56-Pin RSH Very Thin Quad Flatpack No-Lead (Top View)
16
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Pin Attributes
Table 4-1. Pin Attributes
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
ANALOG
A0
I
ADC-A Input 0
B15
I
ADC-B Input 15
C15
I
ADC-C Input 15
DACA_OUT
23
15
15
13
O
Buffered DAC-A Output
AIO231
I
Digital Input-231 on ADC Pin
A1
I
ADC-A Input 1
O
Buffered DAC-B Output
AIO232
I
Digital Input-232 on ADC Pin
A10
I
ADC-A Input 10
B1
I
ADC-B Input 1
C10
I
ADC-C Input 10
O
PGA-7 Output Filter (Optional)
CMP7_HP0
I
CMPSS-7 High Comparator Positive Input 0
CMP7_LP0
I
CMPSS-7 Low Comparator Positive Input 0
AIO230
I
Digital Input-230 on ADC Pin
A2
I
ADC-A Input 2
B6
I
ADC-B Input 6
PGA1_OF
O
PGA-1 Output Filter (Optional)
DACB_OUT
PGA7_OF
22
40
CMP1_HP0
9
14
25
9
14
25
9
12
23
8
I
CMPSS-1 High Comparator Positive Input 0
CMP1_LP0
I
CMPSS-1 Low Comparator Positive Input 0
AIO224
I
Digital Input-224 on ADC Pin
A3
I
ADC-A Input 3
CMP1_HP3
I
CMPSS-1 High Comparator Positive Input 3
CMP1_HN0
I
CMPSS-1 High Comparator Negative Input 0
I
CMPSS-1 Low Comparator Positive Input 3
CMP1_LN0
I
CMPSS-1 Low Comparator Negative Input 0
AIO233
I
Digital Input-233 on ADC Pin
A4
I
ADC-A Input 4
B8
I
ADC-B Input 8
PGA2_OF
O
PGA-2 Output Filter (Optional)
I
CMPSS-2 High Comparator Positive Input 0
CMP2_LP0
I
CMPSS-2 Low Comparator Positive Input 0
AIO225
I
Digital Input-225 on ADC Pin
A5
I
ADC-A Input 5
CMP2_HP3
I
CMPSS-2 High Comparator Positive Input 3
I
CMPSS-2 High Comparator Negative Input 0
I
CMPSS-2 Low Comparator Positive Input 3
CMP2_LN0
I
CMPSS-2 Low Comparator Negative Input 0
AIO234
I
Digital Input-234 on ADC Pin
A6
I
ADC-A Input 6
PGA5_OF
O
PGA-5 Output Filter (Optional)
I
CMPSS-5 High Comparator Positive Input 0
CMP5_LP0
I
CMPSS-5 Low Comparator Positive Input 0
AIO228
I
Digital Input-228 on ADC Pin
CMP1_LP3
CMP2_HP0
CMP2_HN0
CMP2_LP3
CMP5_HP0
10
36
23
23
35
6
6
6
21
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
17
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
A8
I
ADC-A Input 8
PGA6_OF
O
PGA-6 Output Filter (Optional)
I
CMPSS-6 High Comparator Positive Input 0
CMP6_LP0
I
CMPSS-6 Low Comparator Positive Input 0
AIO229
I
Digital Input-229 on ADC Pin
A9
I
ADC-A Input 9
CMP6_HP3
I
CMPSS-6 High Comparator Positive Input 3
I
CMPSS-6 High Comparator Negative Input 0
I
CMPSS-6 Low Comparator Positive Input 3
CMP6_LN0
I
CMPSS-6 Low Comparator Negative Input 0
AIO236
I
Digital Input-236 on ADC Pin
B0
I
ADC-B Input 0
CMP7_HP3
I
CMPSS-7 High Comparator Positive Input 3
I
CMPSS-7 High Comparator Negative Input 0
I
CMPSS-7 Low Comparator Positive Input 3
CMP7_LN0
I
CMPSS-7 Low Comparator Negative Input 0
AIO241
I
Digital Input-241 on ADC Pin
B2
I
ADC-B Input 2
C6
I
ADC-C Input 6
PGA3_OF
O
PGA-3 Output Filter (Optional)
CMP6_HP0
CMP6_HN0
CMP6_LP3
CMP7_HN0
CMP7_LP3
CMP3_HP0
37
38
41
7
7
7
6
I
CMPSS-3 High Comparator Positive Input 0
CMP3_LP0
I
CMPSS-3 Low Comparator Positive Input 0
AIO226
I
Digital Input-226 on ADC Pin
B3
I
ADC-B Input 3
I
Optional external reference voltage for on-chip DACs. There
is a 100-pF capacitor to VSSA on this pin whether used for
ADC input or DAC reference which cannot be disabled. If
this pin is being used as a reference for the on-chip DACs,
place at least a 1-µF capacitor on this pin.
VDAC
CMP3_HP3
8
8
8
7
I
CMPSS-3 High Comparator Positive Input 3
CMP3_HN0
I
CMPSS-3 High Comparator Negative Input 0
CMP3_LP3
I
CMPSS-3 Low Comparator Positive Input 3
CMP3_LN0
I
CMPSS-3 Low Comparator Negative Input 0
AIO242
I
Digital Input-242 on ADC Pin
B4
I
ADC-B Input 4
C8
I
ADC-C Input 8
PGA4_OF
O
PGA-4 Output Filter (Optional)
CMP4_HP0
39
24
24
22
I
CMPSS-4 High Comparator Positive Input 0
CMP4_LP0
I
CMPSS-4 Low Comparator Positive Input 0
AIO227
I
Digital Input-227 on ADC Pin
C0
I
ADC-C Input 0
CMP1_HP1
I
CMPSS-1 High Comparator Positive Input 1
CMP1_HN1
I
CMPSS-1 High Comparator Negative Input 1
I
CMPSS-1 Low Comparator Positive Input 1
CMP1_LN1
I
CMPSS-1 Low Comparator Negative Input 1
AIO237
I
Digital Input-237 on ADC Pin
CMP1_LP1
18
19
Terminal Configuration and Functions
12
12
10
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
C1
I
ADC-C Input 1
CMP2_HP1
I
CMPSS-2 High Comparator Positive Input 1
CMP2_HN1
I
CMPSS-2 High Comparator Negative Input 1
CMP2_LP1
29
18
18
16
I
CMPSS-2 Low Comparator Positive Input 1
CMP2_LN1
I
CMPSS-2 Low Comparator Negative Input 1
AIO238
I
Digital Input-238 on ADC Pin
C14
I
ADC-C Input 14
CMP7_HP1
I
CMPSS-7 High Comparator Positive Input 1
CMP7_HN1
I
CMPSS-7 High Comparator Negative Input 1
I
CMPSS-7 Low Comparator Positive Input 1
CMP7_LN1
I
CMPSS-7 Low Comparator Negative Input 1
AIO246
I
Digital Input-246 on ADC Pin
C2
I
ADC-C Input 2
CMP3_HP1
I
CMPSS-3 High Comparator Positive Input 1
CMP3_HN1
I
CMPSS-3 High Comparator Negative Input 1
I
CMPSS-3 Low Comparator Positive Input 1
CMP3_LN1
I
CMPSS-3 Low Comparator Negative Input 1
AIO244
I
Digital Input-244 on ADC Pin
C3
I
ADC-C Input 3
CMP4_HP1
I
CMPSS-4 High Comparator Positive Input 1
I
CMPSS-4 High Comparator Negative Input 1
I
CMPSS-4 Low Comparator Positive Input 1
CMP4_LN1
I
CMPSS-4 Low Comparator Negative Input 1
AIO245
I
Digital Input-245 on ADC Pin
C4
I
ADC-C Input 4
CMP5_HP1
I
CMPSS-5 High Comparator Positive Input 1
CMP5_HN1
I
CMPSS-5 High Comparator Negative Input 1
CMP7_LP1
CMP3_LP1
CMP4_HN1
CMP4_LP1
CMP5_LP1
44
21
31
17
13
19
11
13
19
11
17
11
I
CMPSS-5 Low Comparator Positive Input 1
CMP5_LN1
I
CMPSS-5 Low Comparator Negative Input 1
AIO239
I
Digital Input-239 on ADC Pin
C5
I
ADC-C Input 5
CMP6_HP1
I
CMPSS-6 High Comparator Positive Input 1
CMP6_HN1
I
CMPSS-6 High Comparator Negative Input 1
CMP6_LP1
28
I
CMPSS-6 Low Comparator Positive Input 1
CMP6_LN1
I
CMPSS-6 Low Comparator Negative Input 1
AIO240
I
Digital Input-240 on ADC Pin
I
PGA-1 Ground
I
PGA-1 Input
I
CMPSS-1 High Comparator Positive Input 2
I
CMPSS-1 Low Comparator Positive Input 2
I
PGA-2 Ground
I
PGA-2 Input
I
CMPSS-2 High Comparator Positive Input 2
I
CMPSS-2 Low Comparator Positive Input 2
I
PGA-3 Ground
PGA1_GND
14
10
10
9
18
12
12
10
PGA1_IN
CMP1_HP2
CMP1_LP2
PGA2_GND
32
20
20
18
PGA2_IN
CMP2_HP2
30
18
18
16
15
10
10
9
CMP2_LP2
PGA3_GND
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
19
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
20
13
13
11
PIN
TYPE
PGA3_IN
CMP3_HP2
CMP3_LP2
PGA4_GND
32
20
20
18
PGA4_IN
CMP4_HP2
31
19
19
17
CMP4_LP2
PGA5_GND
13
10
10
9
PGA5_IN
CMP5_HP2
16
11
11
32
20
20
CMP5_LP2
PGA6_GND
18
PGA6_IN
CMP6_HP2
28
CMP6_LP2
PGA7_GND
42
PGA7_IN
CMP7_HP2
43
CMP7_LP2
VREFHIA
25
VREFHIB
24
16
16
16
16
14
14
DESCRIPTION
I
PGA-3 Input
I
CMPSS-3 High Comparator Positive Input 2
I
CMPSS-3 Low Comparator Positive Input 2
I
PGA-4 Ground
I
PGA-4 Input
I
CMPSS-4 High Comparator Positive Input 2
I
CMPSS-4 Low Comparator Positive Input 2
I
PGA-5 Ground
I
PGA-5 Input
I
CMPSS-5 High Comparator Positive Input 2
I
CMPSS-5 Low Comparator Positive Input 2
I
PGA-6 Ground
I
PGA-6 Input
I
CMPSS-6 High Comparator Positive Input 2
I
CMPSS-6 Low Comparator Positive Input 2
I
PGA-7 Ground
I
PGA-7 Input
I
CMPSS-7 High Comparator Positive Input 2
I
CMPSS-7 Low Comparator Positive Input 2
I/O
ADC-A High Reference. In external reference mode,
externally drive the high reference voltage onto this pin. In
internal reference mode, a voltage is driven onto this pin by
the device. In either mode, place at least a 2.2-µF capacitor
on this pin. This capacitor should be placed as close to the
device as possible between the VREFHIA and VREFLOA
pins. Do not load this pin externally in either internal or
external reference mode.
I/O
ADC-B High Reference. In external reference mode,
externally drive the high reference voltage onto this pin. In
internal reference mode, a voltage is driven onto this pin by
the device. In either mode, place at least a 2.2-µF capacitor
on this pin. This capacitor should be placed as close to the
device as possible between the VREFHIB and VREFLOB
pins. Do not load this pin externally in either internal or
external reference mode.
ADC-C High Reference. In external reference mode,
externally drive the high reference voltage onto this pin. In
internal reference mode, a voltage is driven onto this pin by
the device. In either mode, place at least a 2.2-µF capacitor
on this pin. This capacitor should be placed as close to the
device as possible between the VREFHIC and VREFLOC
pins. Do not load this pin externally in either internal or
external reference mode.
VREFHIC
24
16
16
14
I/O
VREFLOA
27
17
17
15
I
ADC-A Low Reference
VREFLOB
26
17
17
15
I
ADC-B Low Reference
VREFLOC
26
17
17
15
I
ADC-C Low Reference
GPIO
GPIO0
0, 4, 8, 12
EPWM1_A
1
I2CA_SDA
6
GPIO1
52
52
47
1
I2CA_SCL
6
I/O
General-Purpose Input Output 0
O
ePWM-1 Output A
I/OD
0, 4, 8, 12
EPWM1_B
20
79
78
Terminal Configuration and Functions
51
51
46
I2C-A Open-Drain Bidirectional Data
I/O
General-Purpose Input Output 1
O
ePWM-1 Output B
I/OD
I2C-A Open-Drain Bidirectional Clock
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO2
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 2
EPWM2_A
1
O
ePWM-2 Output A
OUTPUTXBAR1
5
O
Output X-BAR Output 1
PMBUSA_SDA
6
SCIA_TX
9
O
SCI-A Transmit Data
FSIRXA_D1
10
I
FSIRX-A Optional Additional Data Input
0, 4, 8, 12
I/O
General-Purpose Input Output 3
1
O
ePWM-2 Output B
2, 5
O
Output X-BAR Output 2
GPIO3
EPWM2_B
OUTPUTXBAR2
77
49
50
49
45
44
I/OD
I/OD
PMBus-A Open-Drain Bidirectional Data
PMBUSA_SCL
6
SPIA_CLK
7
I/O
SCIA_RX
9
I
SCI-A Receive Data
FSIRXA_D0
10
I
FSIRX-A Primary Data Input
GPIO4
76
50
PMBus-A Open-Drain Bidirectional Clock
SPI-A Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 4
EPWM3_A
1
O
ePWM-3 Output A
OUTPUTXBAR3
5
O
Output X-BAR Output 3
CANA_TX
6
O
CAN-A Transmit
FSIRX-A Input Clock
FSIRXA_CLK
75
48
48
43
10
I
0, 4, 8, 12
I/O
General-Purpose Input Output 5
EPWM3_B
1
O
ePWM-3 Output B
OUTPUTXBAR3
3
O
Output X-BAR Output 3
CANA_RX
6
I
CAN-A Receive
SPIA_STE
7
GPIO5
FSITXA_D1
89
61
61
55
I/O
SPI-A Slave Transmit Enable (STE)
9
O
FSITX-A Optional Additional Data Output
0, 4, 8, 12
I/O
General-Purpose Input Output 6
EPWM4_A
1
O
ePWM-4 Output A
OUTPUTXBAR4
2
O
Output X-BAR Output 4
SYNCOUT
3
O
External ePWM Synchronization Pulse
EQEP1_A
5
I
eQEP-1 Input A
CANB_TX
6
O
CAN-B Transmit
SPIB_SOMI
7
I/O
SPI-B Slave Out, Master In (SOMI)
FSITXA_D0
9
O
FSITX-A Primary Data Output
0, 4, 8, 12
I/O
General-Purpose Input Output 7
EPWM4_B
1
O
ePWM-4 Output B
OUTPUTXBAR5
3
O
Output X-BAR Output 5
EQEP1_B
5
I
eQEP-1 Input B
CANB_RX
6
I
CAN-B Receive
SPIB_SIMO
7
I/O
SPI-B Slave In, Master Out (SIMO)
FSITXA_CLK
9
O
FSITX-A Output Clock
GPIO6
GPIO7
97
84
64
57
64
57
1
52
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
21
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO8
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 8
EPWM5_A
1
O
ePWM-5 Output A
CANB_TX
2
O
CAN-B Transmit
ADCSOCAO
3
O
ADC Start of Conversion A Output for External ADC (from
ePWM modules)
EQEP1_STROBE
5
I/O
eQEP-1 Strobe
SCIA_TX
6
O
SCI-A Transmit Data
SPIA_SIMO
7
I/O
SPI-A Slave In, Master Out (SIMO)
I2CA_SCL
9
I/OD
FSITXA_D1
10
O
FSITX-A Optional Additional Data Output
GPIO9
74
47
47
42
I2C-A Open-Drain Bidirectional Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 9
EPWM5_B
1
O
ePWM-5 Output B
SCIB_TX
2
O
SCI-B Transmit Data
OUTPUTXBAR6
3
O
Output X-BAR Output 6
EQEP1_INDEX
5
I/O
eQEP-1 Index
SCIA_RX
6
I
SPIA_CLK
7
I/O
SPI-A Clock
FSITXA_D0
90
62
62
56
SCI-A Receive Data
10
O
FSITX-A Primary Data Output
0, 4, 8, 12
I/O
General-Purpose Input Output 10
EPWM6_A
1
O
ePWM-6 Output A
CANB_RX
2
I
CAN-B Receive
ADCSOCBO
3
O
ADC Start of Conversion B Output for External ADC (from
ePWM modules)
EQEP1_A
5
I
eQEP-1 Input A
SCIB_TX
6
O
SCI-B Transmit Data
SPIA_SOMI
7
I/O
SPI-A Slave Out, Master In (SOMI)
I2CA_SDA
9
I/OD
I2C-A Open-Drain Bidirectional Data
GPIO10
FSITXA_CLK
GPIO11
EPWM6_B
SCIB_RX
93
63
63
10
O
FSITX-A Output Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 11
1
O
ePWM-6 Output B
2, 6
I
SCI-B Receive Data
O
Output X-BAR Output 7
5
I
eQEP-1 Input B
7
I/O
OUTPUTXBAR7
3
EQEP1_B
SPIA_STE
FSIRXA_D1
52
31
31
28
SPI-A Slave Transmit Enable (STE)
9
I
0, 4, 8, 12
I/O
General-Purpose Input Output 12
EPWM7_A
1
O
ePWM-7 Output A
CANB_TX
2
EQEP1_STROBE
5
SCIB_TX
GPIO12
FSIRX-A Optional Additional Data Input
O
CAN-B Transmit
I/O
eQEP-1 Strobe
6
O
SCI-B Transmit Data
PMBUSA_CTL
7
I
PMBus-A Control Signal
FSIRXA_D0
9
I
FSIRX-A Primary Data Input
22
51
Terminal Configuration and Functions
30
27
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO13
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 13
EPWM7_B
1
O
ePWM-7 Output B
CANB_RX
2
I
CAN-B Receive
EQEP1_INDEX
5
SCIB_RX
6
I
PMBUSA_ALERT
7
I/OD
FSIRXA_CLK
9
I
GPIO14
50
29
26
I/O
eQEP-1 Index
SCI-B Receive Data
PMBus-A Open-Drain Bidirectional Alert Signal
FSIRX-A Input Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 14
EPWM8_A
1
O
ePWM-8 Output A
SCIB_TX
2
O
SCI-B Transmit Data
OUTPUTXBAR3
6
O
Output X-BAR Output 3
PMBUSA_SDA
7
I/OD
SPIB_CLK
9
I/O
EQEP2_A
96
PMBus-A Open-Drain Bidirectional Data
SPI-B Clock
10
I
0, 4, 8, 12
I/O
General-Purpose Input Output 15
EPWM8_B
1
O
ePWM-8 Output B
SCIB_RX
2
I
SCI-B Receive Data
OUTPUTXBAR4
6
O
Output X-BAR Output 4
PMBUSA_SCL
7
I/OD
SPIB_STE
9
I/O
GPIO15
EQEP2_B
95
eQEP-2 Input A
PMBus-A Open-Drain Bidirectional Clock
SPI-B Slave Transmit Enable (STE)
10
I
0, 4, 8, 12
I/O
General-Purpose Input Output 16
SPIA_SIMO
1
I/O
SPI-A Slave In, Master Out (SIMO)
CANB_TX
2
O
CAN-B Transmit
OUTPUTXBAR7
3
O
Output X-BAR Output 7
EPWM5_A
5
O
ePWM-5 Output A
SCIA_TX
6
O
SCI-A Transmit Data
SD1_D1
7
I
SDFM-1 Channel 1 Data Input
EQEP1_STROBE
9
I/O
PMBUSA_SCL
10
I/OD
XCLKOUT
11
O
External Clock Output. This pin outputs a divided-down
version of a chosen clock signal from within the device.
0, 4, 8, 12
I/O
General-Purpose Input Output 17
SPIA_SOMI
1
I/O
SPI-A Slave Out, Master In (SOMI)
CANB_RX
2
I
CAN-B Receive
OUTPUTXBAR8
3
O
Output X-BAR Output 8
EPWM5_B
5
O
ePWM-5 Output B
SCIA_RX
6
I
SCI-A Receive Data
SD1_C1
7
I
SDFM-1 Channel 1 Clock Input
EQEP1_INDEX
9
I/O
PMBUSA_SDA
10
I/OD
GPIO16
GPIO17
54
55
33
34
33
34
30
31
eQEP-2 Input B
eQEP-1 Strobe
PMBus-A Open-Drain Bidirectional Clock
eQEP-1 Index
PMBus-A Open-Drain Bidirectional Data
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
23
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 18. This pin and its digital
mux options can only be used when the system is clocked
by INTOSC and X1 has an external pulldown resistor
(recommended 1 kΩ).
SPIA_CLK
1
I/O
SPI-A Clock
SCIB_TX
2
O
SCI-B Transmit Data
CANA_RX
3
I
CAN-A Receive
EPWM6_A
5
O
ePWM-6 Output A
I2CA_SCL
6
I/OD
SD1_D2
7
I
SDFM-1 Channel 2 Data Input
EQEP2_A
9
I
eQEP-2 Input A
PMBUSA_CTL
10
I
PMBus-A Control Signal
XCLKOUT
11
O
External Clock Output. This pin outputs a divided-down
version of a chosen clock signal from within the device.
GPIO18_X2
X2
68
41
41
38
I2C-A Open-Drain Bidirectional Clock
ALT
I/O
Crystal oscillator output
GPIO20
0
I/O
General-Purpose Input Output 20
GPIO21
0
I/O
General-Purpose Input Output 21
GPIO22_VFBSW
0, 4, 8, 12
I/O
General-Purpose Input Output 22. If the internal DC-DC
regulator is not used, this can be configured as GeneralPurpose Input Output 22.
EQEP1_STROBE
1
I/O
eQEP-1 Strobe
SCIB_TX
3
O
SCI-B Transmit Data
SPIB_CLK
6
I/O
SPI-B Clock
SD1_D4
7
I
SDFM-1 Channel 4 Data Input
LINA_TX
9
O
LIN-A Transmit
VFBSW
ALT
-
Internal DC-DC regulator feedback signal. If the internal DCDC regulator is used, tie this pin to the node where L(VSW)
connects to the VDD rail (as close as possible to the device).
I/O
General-Purpose Input Output 23. If the internal DC-DC
regulator is not used, this pin can be configured as GeneralPurpose Input Output 23. This pin has an internal
capacitance of approximately 100 pF. TI Recommends using
an alternate GPIO, or using this pin only for applications
which do not require a fast switching response.
GPIO23_VSW
VSW
GPIO24
0
83
81
56
54
56
54
51
49
ALT
-
Switching output of the internal DC-DC regulator
0, 4, 8, 12
I/O
General-Purpose Input Output 24
OUTPUTXBAR1
1
O
Output X-BAR Output 1
EQEP2_A
2
I
eQEP-2 Input A
EPWM8_A
5
O
ePWM-8 Output A
SPIB_SIMO
6
I/O
SPI-B Slave In, Master Out (SIMO)
SD1_D1
7
I
PMBUSA_SCL
10
I/OD
SCIA_TX
11
O
SCI-A Transmit Data
ERRORSTS
13
O
Error Status Output. This signal requires an external pullup.
24
56
Terminal Configuration and Functions
35
35
32
SDFM-1 Channel 1 Data Input
PMBus-A Open-Drain Bidirectional Clock
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO25
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 25
OUTPUTXBAR2
1
O
Output X-BAR Output 2
EQEP2_B
2
I
eQEP-2 Input B
SPIB_SOMI
6
SD1_C1
7
FSITXA_D1
PMBUSA_SDA
SCIA_RX
I/O
57
SPI-B Slave Out, Master In (SOMI)
I
SDFM-1 Channel 1 Clock Input
9
O
FSITX-A Optional Additional Data Output
10
I/OD
PMBus-A Open-Drain Bidirectional Data
11
I
0, 4, 8, 12
I/O
General-Purpose Input Output 26
OUTPUTXBAR3
1, 5
O
Output X-BAR Output 3
EQEP2_INDEX
2
I/O
eQEP-2 Index
SPIB_CLK
6
I/O
SPI-B Clock
SD1_D2
7
GPIO26
58
SCI-A Receive Data
I
SDFM-1 Channel 2 Data Input
FSITXA_D0
9
O
FSITX-A Primary Data Output
PMBUSA_CTL
10
I
PMBus-A Control Signal
I2CA_SDA
11
I/OD
0, 4, 8, 12
I/O
General-Purpose Input Output 27
GPIO27
OUTPUTXBAR4
I2C-A Open-Drain Bidirectional Data
1, 5
O
Output X-BAR Output 4
EQEP2_STROBE
2
I/O
eQEP-2 Strobe
SPIB_STE
6
I/O
SPI-B Slave Transmit Enable (STE)
SD1_C2
7
I
SDFM-1 Channel 2 Clock Input
FSITXA_CLK
9
O
FSITX-A Output Clock
PMBUSA_ALERT
10
I/OD
PMBus-A Open-Drain Bidirectional Alert Signal
I2C-A Open-Drain Bidirectional Clock
I2CA_SCL
59
11
I/OD
0, 4, 8, 12
I/O
SCIA_RX
1
I
SCI-A Receive Data
EPWM7_A
3
O
ePWM-7 Output A
OUTPUTXBAR5
5
O
Output X-BAR Output 5
EQEP1_A
6
I
eQEP-1 Input A
SD1_D3
7
I
SDFM-1 Channel 3 Data Input
GPIO28
1
2
2
3
General-Purpose Input Output 28
EQEP2_STROBE
9
I/O
eQEP-2 Strobe
LINA_TX
10
O
LIN-A Transmit
SPIB_CLK
11
I/O
SPI-B Clock
ERRORSTS
13
O
Error Status Output. This signal requires an external pullup.
GPIO29
0, 4, 8, 12
I/O
General-Purpose Input Output 29
SCIA_TX
1
O
SCI-A Transmit Data
EPWM7_B
3
O
ePWM-7 Output B
OUTPUTXBAR6
5
O
Output X-BAR Output 6
EQEP1_B
6
I
eQEP-1 Input B
SD1_C3
7
I
SDFM-1 Channel 3 Clock Input
100
1
1
2
EQEP2_INDEX
9
I/O
eQEP-2 Index
LINA_RX
10
I
LIN-A Receive
SPIB_STE
11
I/O
SPI-B Slave Transmit Enable (STE)
ERRORSTS
13
O
Error Status Output. This signal requires an external pullup.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
25
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO30
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
CANA_RX
1
I
SPIB_SIMO
3
I/O
SPI-B Slave In, Master Out (SIMO)
OUTPUTXBAR7
5
O
Output X-BAR Output 7
EQEP1_STROBE
6
I/O
eQEP-1 Strobe
SD1_D4
7
I
GPIO31
0, 4, 8, 12
I/O
General-Purpose Input Output 31
98
General-Purpose Input Output 30
CAN-A Receive
SDFM-1 Channel 4 Data Input
CANA_TX
1
O
CAN-A Transmit
SPIB_SOMI
3
I/O
SPI-B Slave Out, Master In (SOMI)
OUTPUTXBAR8
5
O
Output X-BAR Output 8
EQEP1_INDEX
6
I/O
eQEP-1 Index
SD1_C4
7
I
SDFM-1 Channel 4 Clock Input
FSIRXA_D1
9
I
FSIRX-A Optional Additional Data Input
GPIO32
99
0, 4, 8, 12
I/O
I2CA_SDA
1
I/OD
SPIB_CLK
3
I/O
SPI-B Clock
EPWM8_B
5
O
ePWM-8 Output B
LINA_TX
6
O
LIN-A Transmit
SD1_D3
7
I
SDFM-1 Channel 3 Data Input
FSIRXA_D0
9
I
FSIRX-A Primary Data Input
CANA_TX
64
40
40
37
General-Purpose Input Output 32
I2C-A Open-Drain Bidirectional Data
10
O
CAN-A Transmit
0, 4, 8, 12
I/O
General-Purpose Input Output 33
I2CA_SCL
1
I/OD
SPIB_STE
3
I/O
SPI-B Slave Transmit Enable (STE)
OUTPUTXBAR4
5
O
Output X-BAR Output 4
LINA_RX
6
I
LIN-A Receive
SD1_C3
7
I
SDFM-1 Channel 3 Clock Input
FSIRXA_CLK
9
I
FSIRX-A Input Clock
CANA_RX
10
I
CAN-A Receive
0, 4, 8, 12
I/O
General-Purpose Input Output 34
O
Output X-BAR Output 1
GPIO33
GPIO34
53
32
32
29
OUTPUTXBAR1
1
PMBUSA_SDA
6
I/OD
0, 4, 8, 12
I/O
GPIO35
94
I2C-A Open-Drain Bidirectional Clock
PMBus-A Open-Drain Bidirectional Data
General-Purpose Input Output 35
SCIA_RX
1
I
I2CA_SDA
3
I/OD
CANA_RX
5
I
PMBUSA_SCL
6
I/OD
LINA_RX
7
I
LIN-A Receive
EQEP1_A
9
I
eQEP-1 Input A
PMBUSA_CTL
10
I
PMBus-A Control Signal
I
JTAG Test Data Input (TDI) - TDI is the default mux
selection for the pin. The internal pullup is disabled by
default. The internal pullup should be enabled or an external
pullup added on the board if this pin is used as JTAG TDI to
avoid a floating input.
TDI
26
63
15
Terminal Configuration and Functions
39
39
36
SCI-A Receive Data
I2C-A Open-Drain Bidirectional Data
CAN-A Receive
PMBus-A Open-Drain Bidirectional Clock
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO37
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 37
OUTPUTXBAR2
1
O
Output X-BAR Output 2
I2CA_SCL
3
I/OD
SCIA_TX
5
O
SCI-A Transmit Data
CANA_TX
6
O
CAN-A Transmit
LINA_TX
7
O
LIN-A Transmit
EQEP1_B
9
I
eQEP-1 Input B
PMBUSA_ALERT
10
TDO
61
0, 4, 8, 12
CANB_RX
6
FSIRXA_CLK
7
GPIO40
37
34
I/OD
15
GPIO39
37
91
PMBus-A Open-Drain Bidirectional Alert Signal
O
JTAG Test Data Output (TDO) - TDO is the default mux
selection for the pin. The internal pullup is disabled by
default. The TDO function will be in a tri-state condition when
there is no JTAG activity, leaving this pin floating; the internal
pullup should be enabled or an external pullup added on the
board to avoid a floating GPIO input.
I/O
General-Purpose Input Output 39
I
CAN-B Receive
I
FSIRX-A Input Clock
0, 4, 8, 12
I/O
PMBUSA_SDA
6
I/OD
FSIRXA_D0
7
SCIB_TX
9
EQEP1_A
GPIO41
85
I2C-A Open-Drain Bidirectional Clock
General-Purpose Input Output 40
PMBus-A Open-Drain Bidirectional Data
I
FSIRX-A Primary Data Input
O
SCI-B Transmit Data
10
I
eQEP-1 Input A
0
I/O
General-Purpose Input Output 41
GPIO42
0
I/O
General-Purpose Input Output 42
GPIO43
0
I/O
General-Purpose Input Output 43
GPIO44
0
I/O
General-Purpose Input Output 44
GPIO45
0
I/O
General-Purpose Input Output 45
GPIO46
0
I/O
General-Purpose Input Output 46
GPIO47
0
I/O
General-Purpose Input Output 47
GPIO48
0
I/O
General-Purpose Input Output 48
GPIO49
0
I/O
General-Purpose Input Output 49
GPIO50
0
I/O
General-Purpose Input Output 50
GPIO51
0
I/O
General-Purpose Input Output 51
GPIO52
0
I/O
General-Purpose Input Output 52
GPIO53
0
I/O
General-Purpose Input Output 53
GPIO54
0
I/O
General-Purpose Input Output 54
GPIO55
0
I/O
General-Purpose Input Output 55
GPIO56
0, 4, 8, 12
I/O
General-Purpose Input Output 56
SPIA_CLK
1
I/O
SPI-A Clock
EQEP2_STROBE
5
I/O
eQEP-2 Strobe
SCIB_TX
6
O
SCI-B Transmit Data
SD1_D3
7
I
SDFM-1 Channel 3 Data Input
SPIB_SIMO
9
I/O
EQEP1_A
11
I
65
SPI-B Slave In, Master Out (SIMO)
eQEP-1 Input A
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
27
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
GPIO57
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 57
SPIA_STE
1
I/O
SPI-A Slave Transmit Enable (STE)
EQEP2_INDEX
5
I/O
eQEP-2 Index
SCIB_RX
6
I
SCI-B Receive Data
SD1_C3
7
I
SDFM-1 Channel 3 Clock Input
SPIB_SOMI
9
I/O
EQEP1_B
11
I
GPIO58
66
SPI-B Slave Out, Master In (SOMI)
eQEP-1 Input B
0, 4, 8, 12
I/O
General-Purpose Input Output 58
OUTPUTXBAR1
5
O
Output X-BAR Output 1
SPIB_CLK
6
I/O
SPI-B Clock
SD1_D4
7
I
SDFM-1 Channel 4 Data Input
LINA_TX
9
O
LIN-A Transmit
CANB_TX
10
O
CAN-B Transmit
EQEP1_STROBE
67
11
I/O
eQEP-1 Strobe
0, 4, 8, 12
I/O
General-Purpose Input Output 59
OUTPUTXBAR2
5
O
Output X-BAR Output 2
SPIB_STE
6
I/O
SPI-B Slave Transmit Enable (STE)
SD1_C4
7
I
SDFM-1 Channel 4 Clock Input
LINA_RX
9
I
LIN-A Receive
CANB_RX
10
I
CAN-B Receive
EQEP1_INDEX
11
GPIO59
92
I/O
eQEP-1 Index
TEST, JTAG, VOLTAGE REGULATOR, AND RESET
FLT1
49
30
FLT2
48
29
TCK
60
36
36
TMS
62
38
38
VREGENZ
73
46
46
X1
XRSn
28
69
2
Terminal Configuration and Functions
42
3
42
3
33
35
39
4
I/O
Flash test pin 1. Reserved for TI. Must be left unconnected.
I/O
Flash test pin 2. Reserved for TI. Must be left unconnected.
I
JTAG test clock with internal pullup.
I
JTAG test-mode select (TMS) with internal pullup. This serial
control input is clocked into the TAP controller on the rising
edge of TCK. This device does not have a TRSTn pin. An
external pullup resistor (recommended 2.2 kΩ) on the TMS
pin to VDDIO should be placed on the board to keep JTAG
in reset during normal operation.
I
Internal voltage regulator enable with internal pulldown. Tie
directly to VSS (low) to enable the internal VREG. Tie
directly to VDDIO (high) to use an external supply.
I/O
Crystal oscillator input or single-ended clock input. The
device initialization software must configure this pin before
the crystal oscillator is enabled. To use this oscillator, a
quartz crystal circuit must be connected to X1 and X2. This
pin can also be used to feed a single-ended 3.3-V level
clock.
I/OD
Device Reset (in) and Watchdog Reset (out). During a
power-on condition, this pin is driven low by the device. An
external circuit may also drive this pin to assert a device
reset. This pin is also driven low by the MCU when a
watchdog reset occurs. During watchdog reset, the XRSn pin
is driven low for the watchdog reset duration of 512 OSCCLK
cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should
be placed between XRSn and VDDIO. If a capacitor is
placed between XRSn and VSS for noise filtering, it should
be 100 nF or smaller. These values allow the watchdog to
properly drive the XRSn pin to VOL within 512 OSCCLK
cycles when the watchdog reset is asserted. The output
buffer of this pin is an open-drain with an internal pullup. If
this pin is driven by an external device, TI recommends
using an open-drain device.
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-1. Pin Attributes (continued)
SIGNAL NAME
MUX
POSITION
100
PZ
64
PMQ
64 PM
56
RSH
PIN
TYPE
DESCRIPTION
POWER AND GROUND
1.2-V Digital Logic Power Pins. TI recommends placing a
decoupling capacitor near each VDD pin with a minimum
total capacitance of approximately 20 µF. When not using
the internal voltage regulator, the exact value of the
decoupling capacitance should be determined by your
system voltage regulation solution.
VDD
4, 46,
71, 87
4, 27,
44, 59
4, 27,
44, 59
5, 24,
41, 53
VDDA
11, 34
22
22
20
VDDIO
3, 47,
70, 88
28,
43, 60
28,
43, 60
25,
40, 54
80
53
53
48
VSS
5, 45,
72, 86
5, 26,
45, 58
5, 26,
45, 58
PAD
Digital Ground
VSSA
12, 33
21
21
19
Analog Ground
82
55
55
50
Internal DC-DC regulator ground. If the internal DC-DC
regulator is not used, this pin must be treated as a VSS pin.
VDDIO_SW
VSS_SW
3.3-V Analog Power Pins. Place a minimum 2.2-µF
decoupling capacitor to VSSA on each pin.
3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF
decoupling capacitor on each pin.
Supply pin for the internal DC-DC regulator. If the internal
DC-DC regulator is used, a bulk input capacitance of 20-µF
should be placed on this pin. If the internal DC-DC regulator
is not used, this pin should be treated as a VDDIO pin.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
29
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
4.3
www.ti.com
Signal Descriptions
4.3.1
Analog Signals
Table 4-2. Analog Signals
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
A0
ADC-A Input 0
I
23
15
15
13
A1
ADC-A Input 1
I
22
14
14
12
A2
ADC-A Input 2
I
9
9
9
8
A3
ADC-A Input 3
I
10
A4
ADC-A Input 4
I
36
23
23
21
A5
ADC-A Input 5
I
35
A6
ADC-A Input 6
I
6
6
6
A8
ADC-A Input 8
I
37
A9
ADC-A Input 9
I
38
A10
ADC-A Input 10
I
40
25
25
AIO224
Digital Input-224 on ADC Pin
I
9
9
9
8
AIO225
Digital Input-225 on ADC Pin
I
36
23
23
21
AIO226
Digital Input-226 on ADC Pin
I
7
7
7
6
AIO227
Digital Input-227 on ADC Pin
I
39
24
24
22
AIO228
Digital Input-228 on ADC Pin
I
6
6
6
AIO229
Digital Input-229 on ADC Pin
I
37
AIO230
Digital Input-230 on ADC Pin
I
40
25
25
23
AIO231
Digital Input-231 on ADC Pin
I
23
15
15
13
AIO232
Digital Input-232 on ADC Pin
I
22
14
14
12
AIO233
Digital Input-233 on ADC Pin
I
10
AIO234
Digital Input-234 on ADC Pin
I
35
AIO236
Digital Input-236 on ADC Pin
I
38
AIO237
Digital Input-237 on ADC Pin
I
19
12
12
10
AIO238
Digital Input-238 on ADC Pin
I
29
18
18
16
AIO239
Digital Input-239 on ADC Pin
I
17
11
11
AIO240
Digital Input-240 on ADC Pin
I
28
AIO241
Digital Input-241 on ADC Pin
I
41
AIO242
Digital Input-242 on ADC Pin
I
8
8
8
7
AIO244
Digital Input-244 on ADC Pin
I
21
13
13
11
AIO245
Digital Input-245 on ADC Pin
I
31
19
19
17
AIO246
Digital Input-246 on ADC Pin
I
44
B0
ADC-B Input 0
I
41
B1
ADC-B Input 1
I
40
25
25
23
B2
ADC-B Input 2
I
7
7
7
6
B3
ADC-B Input 3
I
8
8
8
7
B4
ADC-B Input 4
I
39
24
24
22
B6
ADC-B Input 6
I
9
9
9
8
B8
ADC-B Input 8
I
36
23
23
21
B15
ADC-B Input 15
I
23
15
15
13
C0
ADC-C Input 0
I
19
12
12
10
C1
ADC-C Input 1
I
29
18
18
16
C2
ADC-C Input 2
I
21
13
13
11
C3
ADC-C Input 3
I
31
19
19
17
30
Terminal Configuration and Functions
23
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-2. Analog Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
11
11
56 RSH
C4
ADC-C Input 4
I
17
C5
ADC-C Input 5
I
28
C6
ADC-C Input 6
I
7
7
7
6
C8
ADC-C Input 8
I
39
24
24
22
C10
ADC-C Input 10
I
40
25
25
23
C14
ADC-C Input 14
I
44
C15
ADC-C Input 15
I
23
15
15
13
CMP1_HN0
CMPSS-1 High Comparator Negative Input 0
I
10
CMP1_HN1
CMPSS-1 High Comparator Negative Input 1
I
19
12
12
10
CMP1_HP0
CMPSS-1 High Comparator Positive Input 0
I
9
9
9
8
CMP1_HP1
CMPSS-1 High Comparator Positive Input 1
I
19
12
12
10
CMP1_HP2
CMPSS-1 High Comparator Positive Input 2
I
18
12
12
10
CMP1_HP3
CMPSS-1 High Comparator Positive Input 3
I
10
CMP1_LN0
CMPSS-1 Low Comparator Negative Input 0
I
10
CMP1_LN1
CMPSS-1 Low Comparator Negative Input 1
I
19
12
12
10
CMP1_LP0
CMPSS-1 Low Comparator Positive Input 0
I
9
9
9
8
CMP1_LP1
CMPSS-1 Low Comparator Positive Input 1
I
19
12
12
10
CMP1_LP2
CMPSS-1 Low Comparator Positive Input 2
I
18
12
12
10
CMP1_LP3
CMPSS-1 Low Comparator Positive Input 3
I
10
CMP2_HN0
CMPSS-2 High Comparator Negative Input 0
I
35
CMP2_HN1
CMPSS-2 High Comparator Negative Input 1
I
29
18
18
16
CMP2_HP0
CMPSS-2 High Comparator Positive Input 0
I
36
23
23
21
CMP2_HP1
CMPSS-2 High Comparator Positive Input 1
I
29
18
18
16
CMP2_HP2
CMPSS-2 High Comparator Positive Input 2
I
30
18
18
16
CMP2_HP3
CMPSS-2 High Comparator Positive Input 3
I
35
CMP2_LN0
CMPSS-2 Low Comparator Negative Input 0
I
35
CMP2_LN1
CMPSS-2 Low Comparator Negative Input 1
I
29
18
18
16
CMP2_LP0
CMPSS-2 Low Comparator Positive Input 0
I
36
23
23
21
CMP2_LP1
CMPSS-2 Low Comparator Positive Input 1
I
29
18
18
16
CMP2_LP2
CMPSS-2 Low Comparator Positive Input 2
I
30
18
18
16
CMP2_LP3
CMPSS-2 Low Comparator Positive Input 3
I
35
CMP3_HN0
CMPSS-3 High Comparator Negative Input 0
I
8
8
8
7
CMP3_HN1
CMPSS-3 High Comparator Negative Input 1
I
21
13
13
11
CMP3_HP0
CMPSS-3 High Comparator Positive Input 0
I
7
7
7
6
CMP3_HP1
CMPSS-3 High Comparator Positive Input 1
I
21
13
13
11
CMP3_HP2
CMPSS-3 High Comparator Positive Input 2
I
20
13
13
11
CMP3_HP3
CMPSS-3 High Comparator Positive Input 3
I
8
8
8
7
CMP3_LN0
CMPSS-3 Low Comparator Negative Input 0
I
8
8
8
7
CMP3_LN1
CMPSS-3 Low Comparator Negative Input 1
I
21
13
13
11
CMP3_LP0
CMPSS-3 Low Comparator Positive Input 0
I
7
7
7
6
CMP3_LP1
CMPSS-3 Low Comparator Positive Input 1
I
21
13
13
11
CMP3_LP2
CMPSS-3 Low Comparator Positive Input 2
I
20
13
13
11
CMP3_LP3
CMPSS-3 Low Comparator Positive Input 3
I
8
8
8
7
CMP4_HN1
CMPSS-4 High Comparator Negative Input 1
I
31
19
19
17
CMP4_HP0
CMPSS-4 High Comparator Positive Input 0
I
39
24
24
22
CMP4_HP1
CMPSS-4 High Comparator Positive Input 1
I
31
19
19
17
CMP4_HP2
CMPSS-4 High Comparator Positive Input 2
I
31
19
19
17
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
31
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-2. Analog Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
CMP4_LN1
CMPSS-4 Low Comparator Negative Input 1
I
31
19
19
17
CMP4_LP0
CMPSS-4 Low Comparator Positive Input 0
I
39
24
24
22
CMP4_LP1
CMPSS-4 Low Comparator Positive Input 1
I
31
19
19
17
CMP4_LP2
CMPSS-4 Low Comparator Positive Input 2
I
31
19
19
17
CMP5_HN1
CMPSS-5 High Comparator Negative Input 1
I
17
11
11
CMP5_HP0
CMPSS-5 High Comparator Positive Input 0
I
6
6
6
CMP5_HP1
CMPSS-5 High Comparator Positive Input 1
I
17
11
11
CMP5_HP2
CMPSS-5 High Comparator Positive Input 2
I
16
11
11
CMP5_LN1
CMPSS-5 Low Comparator Negative Input 1
I
17
11
11
CMP5_LP0
CMPSS-5 Low Comparator Positive Input 0
I
6
6
6
CMP5_LP1
CMPSS-5 Low Comparator Positive Input 1
I
17
11
11
CMP5_LP2
CMPSS-5 Low Comparator Positive Input 2
I
16
11
11
CMP6_HN0
CMPSS-6 High Comparator Negative Input 0
I
38
CMP6_HN1
CMPSS-6 High Comparator Negative Input 1
I
28
CMP6_HP0
CMPSS-6 High Comparator Positive Input 0
I
37
CMP6_HP1
CMPSS-6 High Comparator Positive Input 1
I
28
CMP6_HP2
CMPSS-6 High Comparator Positive Input 2
I
28
CMP6_HP3
CMPSS-6 High Comparator Positive Input 3
I
38
CMP6_LN0
CMPSS-6 Low Comparator Negative Input 0
I
38
CMP6_LN1
CMPSS-6 Low Comparator Negative Input 1
I
28
CMP6_LP0
CMPSS-6 Low Comparator Positive Input 0
I
37
CMP6_LP1
CMPSS-6 Low Comparator Positive Input 1
I
28
CMP6_LP2
CMPSS-6 Low Comparator Positive Input 2
I
28
CMP6_LP3
CMPSS-6 Low Comparator Positive Input 3
I
38
CMP7_HN0
CMPSS-7 High Comparator Negative Input 0
I
41
CMP7_HN1
CMPSS-7 High Comparator Negative Input 1
I
44
CMP7_HP0
CMPSS-7 High Comparator Positive Input 0
I
40
25
25
23
CMP7_HP1
CMPSS-7 High Comparator Positive Input 1
I
44
CMP7_HP2
CMPSS-7 High Comparator Positive Input 2
I
43
CMP7_HP3
CMPSS-7 High Comparator Positive Input 3
I
41
CMP7_LN0
CMPSS-7 Low Comparator Negative Input 0
I
41
CMP7_LN1
CMPSS-7 Low Comparator Negative Input 1
I
44
CMP7_LP0
CMPSS-7 Low Comparator Positive Input 0
I
40
25
25
23
CMP7_LP1
CMPSS-7 Low Comparator Positive Input 1
I
44
CMP7_LP2
CMPSS-7 Low Comparator Positive Input 2
I
43
CMP7_LP3
CMPSS-7 Low Comparator Positive Input 3
I
41
DACA_OUT
Buffered DAC-A Output
O
23
15
15
13
DACB_OUT
Buffered DAC-B Output
O
22
14
14
12
PGA1_GND
PGA-1 Ground
I
14
10
10
9
PGA1_IN
PGA-1 Input
I
18
12
12
10
PGA1_OF
PGA-1 Output Filter (Optional)
O
9
9
9
8
PGA2_GND
PGA-2 Ground
I
32
20
20
18
PGA2_IN
PGA-2 Input
I
30
18
18
16
PGA2_OF
PGA-2 Output Filter (Optional)
O
36
23
23
21
PGA3_GND
PGA-3 Ground
I
15
10
10
9
PGA3_IN
PGA-3 Input
I
20
13
13
11
PGA3_OF
PGA-3 Output Filter (Optional)
O
7
7
7
6
32
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-2. Analog Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
PGA4_GND
PGA-4 Ground
I
32
20
20
18
PGA4_IN
PGA-4 Input
I
31
19
19
17
PGA4_OF
PGA-4 Output Filter (Optional)
O
39
24
24
22
PGA5_GND
PGA-5 Ground
I
13
10
10
9
PGA5_IN
PGA-5 Input
I
16
11
11
PGA5_OF
PGA-5 Output Filter (Optional)
O
6
6
6
PGA6_GND
PGA-6 Ground
I
32
20
20
18
PGA6_IN
PGA-6 Input
I
28
PGA6_OF
PGA-6 Output Filter (Optional)
O
37
PGA7_GND
PGA-7 Ground
I
42
PGA7_IN
PGA-7 Input
I
43
PGA7_OF
PGA-7 Output Filter (Optional)
O
40
25
25
23
VDAC
Optional external reference voltage for onchip DACs. There is a 100-pF capacitor to
VSSA on this pin whether used for ADC input
or DAC reference which cannot be disabled. If
this pin is being used as a reference for the
on-chip DACs, place at least a 1-µF capacitor
on this pin.
I
8
8
8
7
VREFHIA
ADC-A High Reference. In external reference
mode, externally drive the high reference
voltage onto this pin. In internal reference
mode, a voltage is driven onto this pin by the
device. In either mode, place at least a 2.2-µF
capacitor on this pin. This capacitor should be
placed as close to the device as possible
between the VREFHIA and VREFLOA pins.
Do not load this pin externally in either
internal or external reference mode.
I/O
25
16
16
14
VREFHIB
ADC-B High Reference. In external reference
mode, externally drive the high reference
voltage onto this pin. In internal reference
mode, a voltage is driven onto this pin by the
device. In either mode, place at least a 2.2-µF
capacitor on this pin. This capacitor should be
placed as close to the device as possible
between the VREFHIB and VREFLOB pins.
Do not load this pin externally in either
internal or external reference mode.
I/O
24
16
16
14
VREFHIC
ADC-C High Reference. In external reference
mode, externally drive the high reference
voltage onto this pin. In internal reference
mode, a voltage is driven onto this pin by the
device. In either mode, place at least a 2.2-µF
capacitor on this pin. This capacitor should be
placed as close to the device as possible
between the VREFHIC and VREFLOC pins.
Do not load this pin externally in either
internal or external reference mode.
I/O
24
16
16
14
VREFLOA
ADC-A Low Reference
I
27
17
17
15
VREFLOB
ADC-B Low Reference
I
26
17
17
15
VREFLOC
ADC-C Low Reference
I
26
17
17
15
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
33
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
4.3.2
www.ti.com
Digital Signals
Table 4-3. Digital Signals
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
42
ADCSOCAO
ADC Start of Conversion A Output for
External ADC (from ePWM modules)
O
8
74
47
47
ADCSOCBO
ADC Start of Conversion B Output for
External ADC (from ePWM modules)
O
10
93
63
63
CANA_RX
CAN-A Receive
I
18, 30,
33, 35,
5
53, 63,
68, 89,
98
32, 39,
41, 61
32, 39,
41, 61
29, 36,
38, 55
CANA_TX
CAN-A Transmit
O
31, 32,
37, 4
61, 64,
75, 99
37, 40,
48
37, 40,
48
34, 37,
43
CANB_RX
CAN-B Receive
I
10, 13,
17, 39,
59, 7
50, 55,
84, 91,
92, 93
34, 57,
63
29, 34,
57, 63
26, 31,
52
CANB_TX
CAN-B Transmit
O
12, 16,
58, 6, 8
51, 54,
67, 74,
97
33, 47,
64
30, 33,
47, 64
1, 27,
30, 42
EPWM1_A
ePWM-1 Output A
O
0
79
52
52
47
EPWM1_B
ePWM-1 Output B
O
1
78
51
51
46
EPWM2_A
ePWM-2 Output A
O
2
77
50
50
45
EPWM2_B
ePWM-2 Output B
O
3
76
49
49
44
EPWM3_A
ePWM-3 Output A
O
4
75
48
48
43
EPWM3_B
ePWM-3 Output B
O
5
89
61
61
55
EPWM4_A
ePWM-4 Output A
O
6
97
64
64
1
EPWM4_B
ePWM-4 Output B
O
7
84
57
57
52
EPWM5_A
ePWM-5 Output A
O
16, 8
54, 74
33, 47
33, 47
30, 42
EPWM5_B
ePWM-5 Output B
O
17, 9
55, 90
34, 62
34, 62
31, 56
EPWM6_A
ePWM-6 Output A
O
10, 18
68, 93
41, 63
41, 63
38
EPWM6_B
ePWM-6 Output B
O
11
52
31
31
28
EPWM7_A
ePWM-7 Output A
O
12, 28
1, 51
2
2, 30
27, 3
EPWM7_B
ePWM-7 Output B
O
13, 29
100, 50
1
1, 29
2, 26
EPWM8_A
ePWM-8 Output A
O
14, 24
56, 96
35
35
32
EPWM8_B
ePWM-8 Output B
O
15, 32
64, 95
40
40
37
EQEP1_A
eQEP-1 Input A
I
10, 28,
35, 40,
56, 6
1, 63,
65, 85,
93, 97
2, 39,
63, 64
2, 39,
63, 64
1, 3, 36
EQEP1_B
eQEP-1 Input B
I
11, 29,
37, 57,
7
100, 52,
61, 66,
84
1, 31,
37, 57
1, 31,
37, 57
2, 28,
34, 52
EQEP1_INDEX
eQEP-1 Index
I/O
13, 17,
31, 59,
9
50, 55,
90, 92,
99
34, 62
29, 34,
62
26, 31,
56
EQEP1_STROBE
eQEP-1 Strobe
I/O
12, 16,
22, 30,
58, 8
51, 54,
67, 74,
83, 98
33, 47,
56
30, 33,
47, 56
27, 30,
42, 51
EQEP2_A
eQEP-2 Input A
I
14, 18,
24
56, 68,
96
35, 41
35, 41
32, 38
EQEP2_B
eQEP-2 Input B
I
15, 25
57, 95
EQEP2_INDEX
eQEP-2 Index
I/O
26, 29,
57
100, 58,
66
1
1
2
EQEP2_STROBE
eQEP-2 Strobe
I/O
27, 28,
56
1, 59,
65
2
2
3
34
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-3. Digital Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
ERRORSTS
Error Status Output. This signal requires an
external pullup.
O
24, 28,
29
1, 100,
56
1, 2, 35
1, 2, 35
2, 3, 32
FSIRXA_CLK
FSIRX-A Input Clock
I
13, 33,
39, 4
50, 53,
75, 91
32, 48
29, 32,
48
26, 29,
43
FSIRXA_D0
FSIRX-A Primary Data Input
I
12, 3,
32, 40
51, 64,
76, 85
40, 49
30, 40,
49
27, 37,
44
FSIRXA_D1
FSIRX-A Optional Additional Data Input
I
11, 2,
31
52, 77,
99
31, 50
31, 50
28, 45
FSITXA_CLK
FSITX-A Output Clock
O
10, 27,
7
59, 84,
93
57, 63
57, 63
52
FSITXA_D0
FSITX-A Primary Data Output
O
26, 6, 9
58, 90,
97
62, 64
62, 64
1, 56
FSITXA_D1
FSITX-A Optional Additional Data Output
O
25, 5, 8
57, 74,
89
47, 61
47, 61
42, 55
GPIO0
General-Purpose Input Output 0
I/O
0
79
52
52
47
GPIO1
General-Purpose Input Output 1
I/O
1
78
51
51
46
GPIO2
General-Purpose Input Output 2
I/O
2
77
50
50
45
GPIO3
General-Purpose Input Output 3
I/O
3
76
49
49
44
GPIO4
General-Purpose Input Output 4
I/O
4
75
48
48
43
GPIO5
General-Purpose Input Output 5
I/O
5
89
61
61
55
GPIO6
General-Purpose Input Output 6
I/O
6
97
64
64
1
GPIO7
General-Purpose Input Output 7
I/O
7
84
57
57
52
GPIO8
General-Purpose Input Output 8
I/O
8
74
47
47
42
GPIO9
General-Purpose Input Output 9
I/O
9
90
62
62
56
GPIO10
General-Purpose Input Output 10
I/O
10
93
63
63
GPIO11
General-Purpose Input Output 11
I/O
11
52
31
31
28
GPIO12
General-Purpose Input Output 12
I/O
12
51
30
27
GPIO13
General-Purpose Input Output 13
I/O
13
50
29
26
GPIO14
General-Purpose Input Output 14
I/O
14
96
GPIO15
General-Purpose Input Output 15
I/O
15
95
GPIO16
General-Purpose Input Output 16
I/O
16
54
33
33
30
GPIO17
General-Purpose Input Output 17
I/O
17
55
34
34
31
GPIO18_X2
General-Purpose Input Output 18. This pin
and its digital mux options can only be used
when the system is clocked by INTOSC and
X1 has an external pulldown resistor
(recommended 1 kΩ).
I/O
18
68
41
41
38
GPIO20
General-Purpose Input Output 20
I/O
20
GPIO21
General-Purpose Input Output 21
I/O
21
GPIO22_VFBSW
General-Purpose Input Output 22. If the
internal DC-DC regulator is not used, this can
be configured as General-Purpose Input
Output 22.
I/O
22
83
56
56
51
GPIO23_VSW
General-Purpose Input Output 23. If the
internal DC-DC regulator is not used, this pin
can be configured as General-Purpose Input
Output 23. This pin has an internal
capacitance of approximately 100 pF. TI
Recommends using an alternate GPIO, or
using this pin only for applications which do
not require a fast switching response.
I/O
23
81
54
54
49
GPIO24
General-Purpose Input Output 24
I/O
24
56
35
35
32
GPIO25
General-Purpose Input Output 25
I/O
25
57
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
35
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-3. Digital Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
GPIO26
General-Purpose Input Output 26
I/O
26
58
GPIO27
General-Purpose Input Output 27
I/O
27
59
GPIO28
General-Purpose Input Output 28
I/O
28
1
2
2
3
GPIO29
General-Purpose Input Output 29
I/O
29
100
1
1
2
GPIO30
General-Purpose Input Output 30
I/O
30
98
GPIO31
General-Purpose Input Output 31
I/O
31
99
GPIO32
General-Purpose Input Output 32
I/O
32
64
40
40
37
GPIO33
General-Purpose Input Output 33
I/O
33
53
32
32
29
GPIO34
General-Purpose Input Output 34
I/O
34
94
GPIO35
General-Purpose Input Output 35
I/O
35
63
39
39
36
GPIO37
General-Purpose Input Output 37
I/O
37
61
37
37
34
GPIO39
General-Purpose Input Output 39
I/O
39
91
GPIO40
General-Purpose Input Output 40
I/O
40
85
GPIO41
General-Purpose Input Output 41
I/O
41
GPIO42
General-Purpose Input Output 42
I/O
42
GPIO43
General-Purpose Input Output 43
I/O
43
GPIO44
General-Purpose Input Output 44
I/O
44
GPIO45
General-Purpose Input Output 45
I/O
45
GPIO46
General-Purpose Input Output 46
I/O
46
GPIO47
General-Purpose Input Output 47
I/O
47
GPIO48
General-Purpose Input Output 48
I/O
48
GPIO49
General-Purpose Input Output 49
I/O
49
GPIO50
General-Purpose Input Output 50
I/O
50
GPIO51
General-Purpose Input Output 51
I/O
51
GPIO52
General-Purpose Input Output 52
I/O
52
GPIO53
General-Purpose Input Output 53
I/O
53
GPIO54
General-Purpose Input Output 54
I/O
54
GPIO55
General-Purpose Input Output 55
I/O
55
GPIO56
General-Purpose Input Output 56
I/O
56
65
GPIO57
General-Purpose Input Output 57
I/O
57
66
GPIO58
General-Purpose Input Output 58
I/O
58
67
GPIO59
General-Purpose Input Output 59
I/O
59
92
53, 59,
61, 68,
74, 78
32, 37,
41, 47,
51
32, 37,
41, 47,
51
29, 34,
38, 42,
46
I2CA_SCL
I2C-A Open-Drain Bidirectional Clock
I/OD
1, 18,
27, 33,
37, 8
I2CA_SDA
I2C-A Open-Drain Bidirectional Data
I/OD
0, 10,
26, 32,
35
58, 63,
64, 79,
93
39, 40,
52, 63
39, 40,
52, 63
36, 37,
47
LINA_RX
LIN-A Receive
I
29, 33,
35, 59
100, 53,
63, 92
1, 32,
39
1, 32,
39
2, 29,
36
LINA_TX
LIN-A Transmit
O
22, 28,
32, 37,
58
1, 61,
64, 67,
83
2, 37,
40, 56
2, 37,
40, 56
3, 34,
37, 51
OUTPUTXBAR1
Output X-BAR Output 1
O
2, 24,
34, 58
56, 67,
77, 94
35, 50
35, 50
32, 45
OUTPUTXBAR2
Output X-BAR Output 2
O
25, 3,
37, 59
57, 61,
76, 92
37, 49
37, 49
34, 44
OUTPUTXBAR3
Output X-BAR Output 3
O
14, 26,
4, 5
58, 75,
89, 96
48, 61
48, 61
43, 55
36
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-3. Digital Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
OUTPUTXBAR4
Output X-BAR Output 4
O
15, 27,
33, 6
53, 59,
95, 97
32, 64
32, 64
1, 29
OUTPUTXBAR5
Output X-BAR Output 5
O
28, 7
1, 84
2, 57
2, 57
3, 52
OUTPUTXBAR6
Output X-BAR Output 6
O
29, 9
100, 90
1, 62
1, 62
2, 56
52, 54,
98
31, 33
31, 33
28, 30
OUTPUTXBAR7
Output X-BAR Output 7
O
11, 16,
30
OUTPUTXBAR8
Output X-BAR Output 8
O
17, 31
55, 99
34
34
31
PMBUSA_ALERT
PMBus-A Open-Drain Bidirectional Alert
Signal
I/OD
13, 27,
37
50, 59,
61
37
29, 37
26, 34
PMBUSA_CTL
PMBus-A Control Signal
I
12, 18,
26, 35
51, 58,
63, 68
39, 41
30, 39,
41
27, 36,
38
PMBUSA_SCL
PMBus-A Open-Drain Bidirectional Clock
I/OD
15, 16,
24, 3,
35
54, 56,
63, 76,
95
33, 35,
39, 49
33, 35,
39, 49
30, 32,
36, 44
PMBUSA_SDA
PMBus-A Open-Drain Bidirectional Data
I/OD
14, 17,
2, 25,
34, 40
55, 57,
77, 85,
94, 96
34, 50
34, 50
31, 45
SCIA_RX
SCI-A Receive Data
I
17, 25,
28, 3,
35, 9
1, 55,
57, 63,
76, 90
2, 34,
39, 49,
62
2, 34,
39, 49,
62
3, 31,
36, 44,
56
SCIA_TX
SCI-A Transmit Data
O
16, 2,
24, 29,
37, 8
100, 54,
56, 61,
74, 77
1, 33,
35, 37,
47, 50
1, 33,
35, 37,
47, 50
2, 30,
32, 34,
42, 45
SCIB_RX
SCI-B Receive Data
I
11, 13,
15, 57
50, 52,
66, 95
31
29, 31
26, 28
SCIB_TX
SCI-B Transmit Data
O
10, 12,
14, 18,
22, 40,
56, 9
51, 65,
68, 83,
85, 90,
93, 96
41, 56,
62, 63
30, 41,
56, 62,
63
27, 38,
51, 56
SD1_C1
SDFM-1 Channel 1 Clock Input
I
17, 25
55, 57
34
34
31
SD1_C2
SDFM-1 Channel 2 Clock Input
I
27
59
SD1_C3
SDFM-1 Channel 3 Clock Input
I
29, 33,
57
100, 53,
66
1, 32
1, 32
2, 29
SD1_C4
SDFM-1 Channel 4 Clock Input
I
31, 59
92, 99
SD1_D1
SDFM-1 Channel 1 Data Input
I
16, 24
54, 56
33, 35
33, 35
30, 32
SD1_D2
SDFM-1 Channel 2 Data Input
I
18, 26
58, 68
41
41
38
SD1_D3
SDFM-1 Channel 3 Data Input
I
28, 32,
56
1, 64,
65
2, 40
2, 40
3, 37
SD1_D4
SDFM-1 Channel 4 Data Input
I
22, 30,
58
67, 83,
98
56
56
51
SPIA_CLK
SPI-A Clock
I/O
18, 3,
56, 9
65, 68,
76, 90
41, 49,
62
41, 49,
62
38, 44,
56
SPIA_SIMO
SPI-A Slave In, Master Out (SIMO)
I/O
16, 8
54, 74
33, 47
33, 47
30, 42
SPIA_SOMI
SPI-A Slave Out, Master In (SOMI)
I/O
10, 17
55, 93
34, 63
34, 63
31
52, 66,
89
31, 61
31, 61
28, 55
SPIA_STE
SPI-A Slave Transmit Enable (STE)
I/O
11, 5,
57
SPIB_CLK
SPI-B Clock
I/O
14, 22,
26, 28,
32, 58
1, 58,
64, 67,
83, 96
2, 40,
56
2, 40,
56
3, 37,
51
SPIB_SIMO
SPI-B Slave In, Master Out (SIMO)
I/O
24, 30,
56, 7
56, 65,
84, 98
35, 57
35, 57
32, 52
SPIB_SOMI
SPI-B Slave Out, Master In (SOMI)
I/O
25, 31,
57, 6
57, 66,
97, 99
64
64
1
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
37
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-3. Digital Signals (continued)
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
100 PZ
64
PMQ
64 PM
56 RSH
SPIB_STE
SPI-B Slave Transmit Enable (STE)
I/O
15, 27,
29, 33,
59
100, 53,
59, 92,
95
1, 32
1, 32
2, 29
SYNCOUT
External ePWM Synchronization Pulse
O
6
97
64
64
1
TDI
JTAG Test Data Input (TDI) - TDI is the
default mux selection for the pin. The internal
pullup is disabled by default. The internal
pullup should be enabled or an external pullup
added on the board if this pin is used as
JTAG TDI to avoid a floating input.
I
35
63
39
39
36
TDO
JTAG Test Data Output (TDO) - TDO is the
default mux selection for the pin. The internal
pullup is disabled by default. The TDO
function will be in a tri-state condition when
there is no JTAG activity, leaving this pin
floating; the internal pullup should be enabled
or an external pullup added on the board to
avoid a floating GPIO input.
O
37
61
37
37
34
VFBSW
Internal DC-DC regulator feedback signal. If
the internal DC-DC regulator is used, tie this
pin to the node where L(VSW) connects to the
VDD rail (as close as possible to the device).
-
22
83
56
56
51
VSW
Switching output of the internal DC-DC
regulator
-
23
81
54
54
49
X2
Crystal oscillator output
I/O
18
68
41
41
38
XCLKOUT
External Clock Output. This pin outputs a
divided-down version of a chosen clock signal
from within the device.
O
16, 18
54, 68
33, 41
33, 41
30, 38
38
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.3.3
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Power and Ground
Table 4-4. Power and Ground
100 PZ
64
PMQ
64 PM
56 RSH
VDD
1.2-V Digital Logic Power Pins. TI
recommends placing a decoupling capacitor
near each VDD pin with a minimum total
capacitance of approximately 20 µF. When
not using the internal voltage regulator, the
exact value of the decoupling capacitance
should be determined by your system voltage
regulation solution.
4, 46,
71, 87
27, 4,
44, 59
27, 4,
44, 59
24, 41,
5, 53
VDDA
3.3-V Analog Power Pins. Place a minimum
2.2-µF decoupling capacitor to VSSA on each
pin.
11, 34
22
22
20
VDDIO
3.3-V Digital I/O Power Pins. Place a
minimum 0.1-µF decoupling capacitor on each
pin.
3, 47,
70, 88
28, 43,
60
28, 43,
60
25, 40,
54
VDDIO_SW
Supply pin for the internal DC-DC regulator. If
the internal DC-DC regulator is used, a bulk
input capacitance of 20-µF should be placed
on this pin. If the internal DC-DC regulator is
not used, this pin should be treated as a
VDDIO pin.
80
53
53
48
VSS
Digital Ground
45, 5,
72, 86
26, 45,
5, 58
26, 45,
5, 58
PAD
VSSA
Analog Ground
12, 33
21
21
19
VSS_SW
Internal DC-DC regulator ground. If the
internal DC-DC regulator is not used, this pin
must be treated as a VSS pin.
82
55
55
50
SIGNAL NAME
DESCRIPTION
PIN
TYPE
GPIO
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
39
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
4.3.4
www.ti.com
Test, JTAG, Voltage Regulator, and Reset
Table 4-5. Test, JTAG, Voltage Regulator, and Reset
DESCRIPTION
PIN
TYPE
100 PZ
64
PMQ
FLT1
Flash test pin 1. Reserved for TI. Must be left
unconnected.
I/O
49
30
FLT2
Flash test pin 2. Reserved for TI. Must be left
unconnected.
I/O
48
29
TCK
JTAG test clock with internal pullup.
I
60
TMS
JTAG test-mode select (TMS) with internal
pullup. This serial control input is clocked into
the TAP controller on the rising edge of TCK.
This device does not have a TRSTn pin. An
external pullup resistor (recommended 2.2
kΩ) on the TMS pin to VDDIO should be
placed on the board to keep JTAG in reset
during normal operation.
I
VREGENZ
Internal voltage regulator enable with internal
pulldown. Tie directly to VSS (low) to enable
the internal VREG. Tie directly to VDDIO
(high) to use an external supply.
X1
Crystal oscillator input or single-ended clock
input. The device initialization software must
configure this pin before the crystal oscillator
is enabled. To use this oscillator, a quartz
crystal circuit must be connected to X1 and
X2. This pin can also be used to feed a
single-ended 3.3-V level clock.
XRSn
Device Reset (in) and Watchdog Reset (out).
During a power-on condition, this pin is driven
low by the device. An external circuit may also
drive this pin to assert a device reset. This pin
is also driven low by the MCU when a
watchdog reset occurs. During watchdog
reset, the XRSn pin is driven low for the
watchdog reset duration of 512 OSCCLK
cycles. A resistor with a value from 2.2 kΩ to
10 kΩ should be placed between XRSn and
VDDIO. If a capacitor is placed between
XRSn and VSS for noise filtering, it should be
100 nF or smaller. These values allow the
watchdog to properly drive the XRSn pin to
VOL within 512 OSCCLK cycles when the
watchdog reset is asserted. The output buffer
of this pin is an open-drain with an internal
pullup. If this pin is driven by an external
device, TI recommends using an open-drain
device.
SIGNAL NAME
40
Terminal Configuration and Functions
GPIO
64 PM
56 RSH
36
36
33
62
38
38
35
I
73
46
46
I/O
69
42
42
39
I/OD
2
3
3
4
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.4
4.4.1
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Pin Multiplexing
GPIO Muxed Pins
Table 4-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except
GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected
by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register
should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux
selections. Columns that are not shown and blank cells are reserved GPIO Mux settings.
NOTE
GPIO20, GPIO21, and GPIO41 to GPIO55 are not available on any packages. Boot ROM
enables pullups on these pins. For more details, see Section 4.5.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
41
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-6. GPIO Muxed Pins
0, 4, 8, 12
1
GPIO0
EPWM1_A
GPIO1
EPWM1_B
GPIO2
EPWM2_A
GPIO3
EPWM2_B
GPIO4
EPWM3_A
GPIO5
EPWM3_B
GPIO6
EPWM4_A
GPIO7
EPWM4_B
GPIO8
EPWM5_A
GPIO9
EPWM5_B
GPIO10
EPWM6_A
GPIO11
GPIO12
2
3
5
6
7
9
10
SCIA_TX
FSIRXA_D1
SPIA_CLK
SCIA_RX
11
13
15
I2CA_SDA
I2CA_SCL
OUTPUTXBAR2
OUTPUTXBAR1
PMBUSA_SDA
OUTPUTXBAR2
PMBUSA_SCL
OUTPUTXBAR3
CANA_TX
OUTPUTXBAR3
FSIRXA_D0
FSIRXA_CLK
CANA_RX
SPIA_STE
SYNCOUT
EQEP1_A
CANB_TX
SPIB_SOMI
FSITXA_D0
OUTPUTXBAR5
EQEP1_B
CANB_RX
SPIB_SIMO
FSITXA_CLK
CANB_TX
ADCSOCAO
EQEP1_STROBE
SCIA_TX
SPIA_SIMO
I2CA_SCL
FSITXA_D1
SCIB_TX
OUTPUTXBAR6
EQEP1_INDEX
SCIA_RX
SPIA_CLK
CANB_RX
ADCSOCBO
EQEP1_A
SCIB_TX
SPIA_SOMI
I2CA_SDA
FSITXA_CLK
EPWM6_B
SCIB_RX
OUTPUTXBAR7
EQEP1_B
SCIB_RX
SPIA_STE
FSIRXA_D1
EPWM7_A
CANB_TX
EQEP1_STROBE
SCIB_TX
PMBUSA_CTL
FSIRXA_D0
GPIO13
EPWM7_B
CANB_RX
EQEP1_INDEX
SCIB_RX
PMBUSA_ALERT
FSIRXA_CLK
GPIO14
EPWM8_A
SCIB_TX
OUTPUTXBAR3
PMBUSA_SDA
SPIB_CLK
GPIO15
EPWM8_B
SCIB_RX
OUTPUTXBAR4
PMBUSA_SCL
SPIB_STE
EQEP2_B
GPIO16
SPIA_SIMO
CANB_TX
OUTPUTXBAR7
EPWM5_A
SCIA_TX
SD1_D1
EQEP1_STROBE
PMBUSA_SCL
GPIO17
SPIA_SOMI
CANB_RX
OUTPUTXBAR8
EPWM5_B
SCIA_RX
SD1_C1
EQEP1_INDEX
PMBUSA_SDA
GPIO18_X2
SPIA_CLK
SCIB_TX
CANA_RX
EPWM6_A
I2CA_SCL
SD1_D2
EQEP2_A
PMBUSA_CTL
SPIB_CLK
SD1_D4
LINA_TX
SPIB_SIMO
SD1_D1
SPIB_SOMI
SD1_C1
OUTPUTXBAR4
FSITXA_D1
FSITXA_D0
EQEP2_A
XCLKOUT
XCLKOUT
GPIO20
GPIO21
GPIO22_VFBSW
EQEP1_STROBE
SCIB_TX
GPIO23_VSW
GPIO24
OUTPUTXBAR1
EQEP2_A
GPIO25
OUTPUTXBAR2
EQEP2_B
EPWM8_A
PMBUSA_SCL
SCIA_TX
PMBUSA_SDA
SCIA_RX
GPIO26
OUTPUTXBAR3
EQEP2_INDEX
OUTPUTXBAR3
SPIB_CLK
SD1_D2
GPIO27
OUTPUTXBAR4
EQEP2_STROBE
OUTPUTXBAR4
SPIB_STE
SD1_C2
FSITXA_D0
PMBUSA_CTL
I2CA_SDA
FSITXA_CLK
PMBUSA_ALERT
GPIO28
SCIA_RX
EPWM7_A
OUTPUTXBAR5
EQEP1_A
SD1_D3
I2CA_SCL
EQEP2_STROBE
LINA_TX
SPIB_CLK
GPIO29
SCIA_TX
EPWM7_B
OUTPUTXBAR6
EQEP1_B
SD1_C3
ERRORSTS
EQEP2_INDEX
LINA_RX
SPIB_STE
GPIO30
CANA_RX
SPIB_SIMO
OUTPUTXBAR7
EQEP1_STROBE
SD1_D4
ERRORSTS
GPIO31
CANA_TX
SPIB_SOMI
OUTPUTXBAR8
EQEP1_INDEX
SD1_C4
GPIO32
I2CA_SDA
SPIB_CLK
EPWM8_B
LINA_TX
SD1_D3
FSIRXA_D0
CANA_TX
GPIO33
I2CA_SCL
SPIB_STE
OUTPUTXBAR4
LINA_RX
SD1_C3
FSIRXA_CLK
CANA_RX
GPIO34
OUTPUTXBAR1
GPIO35
SCIA_RX
I2CA_SDA
CANA_RX
PMBUSA_SCL
LINA_RX
EQEP1_A
PMBUSA_CTL
TDI
GPIO37
OUTPUTXBAR2
I2CA_SCL
SCIA_TX
CANA_TX
LINA_TX
EQEP1_B
PMBUSA_ALERT
TDO
GPIO39
CANB_RX
FSIRXA_CLK
GPIO40
PMBUSA_SDA
FSIRXA_D0
SCIB_TX
EQEP1_A
FSITXA_D1
ERRORSTS
FSIRXA_D1
PMBUSA_SDA
GPIO41
42
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-6. GPIO Muxed Pins (continued)
0, 4, 8, 12
1
2
3
5
6
7
9
10
11
13
15
GPIO42
GPIO43
GPIO44
GPIO45
GPIO46
GPIO47
GPIO48
GPIO49
GPIO50
GPIO51
GPIO52
GPIO53
GPIO54
GPIO55
GPIO56
SPIA_CLK
EQEP2_STROBE
SCIB_TX
SD1_D3
SPIB_SIMO
GPIO57
SPIA_STE
EQEP2_INDEX
SCIB_RX
SD1_C3
SPIB_SOMI
EQEP1_A
GPIO58
OUTPUTXBAR1
SPIB_CLK
SD1_D4
LINA_TX
CANB_TX
EQEP1_STROBE
GPIO59
OUTPUTXBAR2
SPIB_STE
SD1_C4
LINA_RX
CANB_RX
EQEP1_INDEX
EQEP1_B
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
43
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-7 lists all muxed signals available and the respective GPIO within each package.
Table 4-7. Digital Signals by GPIO
SIGNAL NAME
PIN TYPE
DESCRIPTION
100 PZ
64 PMQ
64 PM
56 RSH
ADCSOCAO
O
ADC Start of Conversion A Output for External
ADC (from ePWM modules)
GPIO8
GPIO8
GPIO8
GPIO8
ADCSOCBO
O
ADC Start of Conversion B Output for External
ADC (from ePWM modules)
GPIO10
GPIO10
GPIO10
CAN-A Receive
GPIO5
GPIO18_
X2
GPIO30
GPIO33
GPIO35/T
DI
GPIO5
GPIO18_
X2
GPIO33
GPIO35/T
DI
GPIO5
GPIO18_
X2
GPIO33
GPIO35/T
DI
GPIO5
GPIO18_
X2
GPIO33
GPIO35/T
DI
CAN-A Transmit
GPIO4
GPIO31
GPIO32
GPIO37/T
DO
GPIO4
GPIO32
GPIO37/T
DO
GPIO4
GPIO32
GPIO37/T
DO
GPIO4
GPIO32
GPIO37/T
DO
CAN-B Receive
GPIO7
GPIO10
GPIO13
GPIO17
GPIO39
GPIO59
GPIO7
GPIO10
GPIO17
GPIO7
GPIO10
GPIO13
GPIO17
GPIO7
GPIO13
GPIO17
GPIO6
GPIO8
GPIO16
GPIO6
GPIO8
GPIO12
GPIO16
GPIO6
GPIO8
GPIO12
GPIO16
CANA_RX
CANA_TX
CANB_RX
I
O
I
CANB_TX
O
CAN-B Transmit
GPIO6
GPIO8
GPIO12
GPIO16
GPIO58
EPWM1_A
O
ePWM-1 Output A
GPIO0
GPIO0
GPIO0
GPIO0
EPWM1_B
O
ePWM-1 Output B
GPIO1
GPIO1
GPIO1
GPIO1
EPWM2_A
O
ePWM-2 Output A
GPIO2
GPIO2
GPIO2
GPIO2
EPWM2_B
O
ePWM-2 Output B
GPIO3
GPIO3
GPIO3
GPIO3
EPWM3_A
O
ePWM-3 Output A
GPIO4
GPIO4
GPIO4
GPIO4
EPWM3_B
O
ePWM-3 Output B
GPIO5
GPIO5
GPIO5
GPIO5
EPWM4_A
O
ePWM-4 Output A
GPIO6
GPIO6
GPIO6
GPIO6
EPWM4_B
O
ePWM-4 Output B
GPIO7
GPIO7
GPIO7
GPIO7
GPIO8
GPIO16
GPIO8
GPIO16
GPIO8
GPIO16
EPWM5_A
O
ePWM-5 Output A
GPIO8
GPIO16
EPWM5_B
O
ePWM-5 Output B
GPIO9
GPIO17
GPIO9
GPIO17
GPIO9
GPIO17
GPIO9
GPIO17
EPWM6_A
O
ePWM-6 Output A
GPIO10
GPIO18_
X2
GPIO10
GPIO18_
X2
GPIO10
GPIO18_
X2
GPIO18_
X2
EPWM6_B
O
ePWM-6 Output B
GPIO11
GPIO11
GPIO11
GPIO11
GPIO28
GPIO12
GPIO28
GPIO12
GPIO28
EPWM7_A
O
ePWM-7 Output A
GPIO12
GPIO28
EPWM7_B
O
ePWM-7 Output B
GPIO13
GPIO29
GPIO29
GPIO13
GPIO29
GPIO13
GPIO29
EPWM8_A
O
ePWM-8 Output A
GPIO14
GPIO24
GPIO24
GPIO24
GPIO24
EPWM8_B
O
ePWM-8 Output B
GPIO15
GPIO32
GPIO32
GPIO32
GPIO32
44
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-7. Digital Signals by GPIO (continued)
SIGNAL NAME
100 PZ
64 PMQ
64 PM
56 RSH
eQEP-1 Input A
GPIO6
GPIO10
GPIO28
GPIO35/T
DI
GPIO40
GPIO56
GPIO6
GPIO10
GPIO28
GPIO35/T
DI
GPIO6
GPIO10
GPIO28
GPIO35/T
DI
GPIO6
GPIO28
GPIO35/T
DI
eQEP-1 Input B
GPIO7
GPIO11
GPIO29
GPIO37/T
DO
GPIO57
GPIO7
GPIO11
GPIO29
GPIO37/T
DO
GPIO7
GPIO11
GPIO29
GPIO37/T
DO
GPIO7
GPIO11
GPIO29
GPIO37/T
DO
eQEP-1 Index
GPIO9
GPIO13
GPIO17
GPIO31
GPIO59
GPIO9
GPIO17
GPIO9
GPIO13
GPIO17
GPIO9
GPIO13
GPIO17
I/O
eQEP-1 Strobe
GPIO8
GPIO12
GPIO16
GPIO22_
VFBSW
GPIO30
GPIO58
GPIO8
GPIO16
GPIO22_
VFBSW
GPIO8
GPIO12
GPIO16
GPIO22_
VFBSW
GPIO8
GPIO12
GPIO16
GPIO22_
VFBSW
EQEP2_A
I
eQEP-2 Input A
GPIO14
GPIO18_
X2
GPIO24
GPIO18_
X2
GPIO24
GPIO18_
X2
GPIO24
GPIO18_
X2
GPIO24
EQEP2_B
I
eQEP-2 Input B
GPIO15
GPIO25
EQEP1_A
PIN TYPE
I
EQEP1_B
I
EQEP1_INDEX
EQEP1_STROBE
I/O
DESCRIPTION
EQEP2_INDEX
I/O
eQEP-2 Index
GPIO26
GPIO29
GPIO57
GPIO29
GPIO29
GPIO29
EQEP2_STROBE
I/O
eQEP-2 Strobe
GPIO27
GPIO28
GPIO56
GPIO28
GPIO28
GPIO28
ERRORSTS
O
Error Status Output. This signal requires an
external pullup.
GPIO24
GPIO28
GPIO29
GPIO24
GPIO28
GPIO29
GPIO24
GPIO28
GPIO29
GPIO24
GPIO28
GPIO29
FSIRXA_CLK
I
FSIRX-A Input Clock
GPIO4
GPIO13
GPIO33
GPIO39
GPIO4
GPIO33
GPIO4
GPIO13
GPIO33
GPIO4
GPIO13
GPIO33
FSIRXA_D0
I
FSIRX-A Primary Data Input
GPIO3
GPIO12
GPIO32
GPIO40
GPIO3
GPIO32
GPIO3
GPIO12
GPIO32
GPIO3
GPIO12
GPIO32
FSIRXA_D1
I
FSIRX-A Optional Additional Data Input
GPIO2
GPIO11
GPIO31
GPIO2
GPIO11
GPIO2
GPIO11
GPIO2
GPIO11
FSITXA_CLK
O
FSITX-A Output Clock
GPIO7
GPIO10
GPIO27
GPIO7
GPIO10
GPIO7
GPIO10
GPIO7
FSITXA_D0
O
FSITX-A Primary Data Output
GPIO6
GPIO9
GPIO26
GPIO6
GPIO9
GPIO6
GPIO9
GPIO6
GPIO9
FSITXA_D1
O
FSITX-A Optional Additional Data Output
GPIO5
GPIO8
GPIO25
GPIO5
GPIO8
GPIO5
GPIO8
GPIO5
GPIO8
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
45
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-7. Digital Signals by GPIO (continued)
SIGNAL NAME
I2CA_SCL
PIN TYPE
I/OD
I2CA_SDA
I/OD
LINA_RX
I
LINA_TX
O
OUTPUTXBAR1
OUTPUTXBAR2
O
O
DESCRIPTION
100 PZ
64 PMQ
64 PM
56 RSH
I2C-A Open-Drain Bidirectional Clock
GPIO1
GPIO8
GPIO18_
X2
GPIO27
GPIO33
GPIO37/T
DO
GPIO1
GPIO8
GPIO18_
X2
GPIO33
GPIO37/T
DO
GPIO1
GPIO8
GPIO18_
X2
GPIO33
GPIO37/T
DO
GPIO1
GPIO8
GPIO18_
X2
GPIO33
GPIO37/T
DO
I2C-A Open-Drain Bidirectional Data
GPIO0
GPIO10
GPIO26
GPIO32
GPIO35/T
DI
GPIO0
GPIO10
GPIO32
GPIO35/T
DI
GPIO0
GPIO10
GPIO32
GPIO35/T
DI
GPIO0
GPIO32
GPIO35/T
DI
LIN-A Receive
GPIO29
GPIO33
GPIO35/T
DI
GPIO59
GPIO29
GPIO33
GPIO35/T
DI
GPIO29
GPIO33
GPIO35/T
DI
GPIO29
GPIO33
GPIO35/T
DI
LIN-A Transmit
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO37/T
DO
GPIO58
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO37/T
DO
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO37/T
DO
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO37/T
DO
Output X-BAR Output 1
GPIO2
GPIO24
GPIO34
GPIO58
GPIO2
GPIO24
GPIO2
GPIO24
GPIO2
GPIO24
Output X-BAR Output 2
GPIO3
GPIO25
GPIO37/T
DO
GPIO59
GPIO3
GPIO37/T
DO
GPIO3
GPIO37/T
DO
GPIO3
GPIO37/T
DO
GPIO4
GPIO5
GPIO4
GPIO5
GPIO4
GPIO5
OUTPUTXBAR3
O
Output X-BAR Output 3
GPIO4
GPIO5
GPIO14
GPIO26
OUTPUTXBAR4
O
Output X-BAR Output 4
GPIO6
GPIO15
GPIO27
GPIO33
GPIO6
GPIO33
GPIO6
GPIO33
GPIO6
GPIO33
OUTPUTXBAR5
O
Output X-BAR Output 5
GPIO7
GPIO28
GPIO7
GPIO28
GPIO7
GPIO28
GPIO7
GPIO28
OUTPUTXBAR6
O
Output X-BAR Output 6
GPIO9
GPIO29
GPIO9
GPIO29
GPIO9
GPIO29
GPIO9
GPIO29
OUTPUTXBAR7
O
Output X-BAR Output 7
GPIO11
GPIO16
GPIO30
GPIO11
GPIO16
GPIO11
GPIO16
GPIO11
GPIO16
OUTPUTXBAR8
O
Output X-BAR Output 8
GPIO17
GPIO31
GPIO17
GPIO17
GPIO17
PMBus-A Open-Drain Bidirectional Alert
Signal
GPIO13
GPIO27
GPIO37/T
DO
GPIO37/T
DO
GPIO13
GPIO37/T
DO
GPIO13
GPIO37/T
DO
PMBus-A Control Signal
GPIO12
GPIO18_
X2
GPIO26
GPIO35/T
DI
GPIO18_
X2
GPIO35/T
DI
GPIO12
GPIO18_
X2
GPIO35/T
DI
GPIO12
GPIO18_
X2
GPIO35/T
DI
PMBUSA_ALERT
PMBUSA_CTL
46
I/OD
I
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 4-7. Digital Signals by GPIO (continued)
SIGNAL NAME
PMBUSA_SCL
PMBUSA_SDA
SCIA_RX
SCIA_TX
SCIB_RX
PIN TYPE
I/OD
I/OD
I
O
I
DESCRIPTION
100 PZ
64 PMQ
64 PM
56 RSH
PMBus-A Open-Drain Bidirectional Clock
GPIO3
GPIO15
GPIO16
GPIO24
GPIO35/T
DI
GPIO3
GPIO16
GPIO24
GPIO35/T
DI
GPIO3
GPIO16
GPIO24
GPIO35/T
DI
GPIO3
GPIO16
GPIO24
GPIO35/T
DI
PMBus-A Open-Drain Bidirectional Data
GPIO2
GPIO14
GPIO17
GPIO25
GPIO34
GPIO40
GPIO2
GPIO17
GPIO2
GPIO17
GPIO2
GPIO17
SCI-A Receive Data
GPIO3
GPIO9
GPIO17
GPIO25
GPIO28
GPIO35/T
DI
GPIO3
GPIO9
GPIO17
GPIO28
GPIO35/T
DI
GPIO3
GPIO9
GPIO17
GPIO28
GPIO35/T
DI
GPIO3
GPIO9
GPIO17
GPIO28
GPIO35/T
DI
SCI-A Transmit Data
GPIO2
GPIO8
GPIO16
GPIO24
GPIO29
GPIO37/T
DO
GPIO2
GPIO8
GPIO16
GPIO24
GPIO29
GPIO37/T
DO
GPIO2
GPIO8
GPIO16
GPIO24
GPIO29
GPIO37/T
DO
GPIO2
GPIO8
GPIO16
GPIO24
GPIO29
GPIO37/T
DO
SCI-B Receive Data
GPIO11
GPIO13
GPIO15
GPIO57
GPIO11
GPIO11
GPIO13
GPIO11
GPIO13
GPIO9
GPIO10
GPIO18_
X2
GPIO22_
VFBSW
GPIO9
GPIO10
GPIO12
GPIO18_
X2
GPIO22_
VFBSW
GPIO9
GPIO12
GPIO18_
X2
GPIO22_
VFBSW
GPIO17
GPIO17
GPIO17
GPIO29
GPIO33
GPIO29
GPIO33
GPIO29
GPIO33
SCIB_TX
O
SCI-B Transmit Data
GPIO9
GPIO10
GPIO12
GPIO14
GPIO18_
X2
GPIO22_
VFBSW
GPIO40
GPIO56
SD1_C1
I
SDFM-1 Channel 1 Clock Input
GPIO17
GPIO25
SD1_C2
I
SDFM-1 Channel 2 Clock Input
GPIO27
SD1_C3
I
SDFM-1 Channel 3 Clock Input
GPIO29
GPIO33
GPIO57
SD1_C4
I
SDFM-1 Channel 4 Clock Input
GPIO31
GPIO59
SD1_D1
I
SDFM-1 Channel 1 Data Input
GPIO16
GPIO24
GPIO16
GPIO24
GPIO16
GPIO24
GPIO16
GPIO24
SD1_D2
I
SDFM-1 Channel 2 Data Input
GPIO18_
X2
GPIO26
GPIO18_
X2
GPIO18_
X2
GPIO18_
X2
SD1_D3
I
SDFM-1 Channel 3 Data Input
GPIO28
GPIO32
GPIO56
GPIO28
GPIO32
GPIO28
GPIO32
GPIO28
GPIO32
SD1_D4
I
SDFM-1 Channel 4 Data Input
GPIO22_
VFBSW
GPIO30
GPIO58
GPIO22_
VFBSW
GPIO22_
VFBSW
GPIO22_
VFBSW
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
47
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-7. Digital Signals by GPIO (continued)
SIGNAL NAME
PIN TYPE
DESCRIPTION
100 PZ
64 PMQ
64 PM
56 RSH
GPIO3
GPIO9
GPIO18_
X2
GPIO3
GPIO9
GPIO18_
X2
GPIO3
GPIO9
GPIO18_
X2
SPIA_CLK
I/O
SPI-A Clock
GPIO3
GPIO9
GPIO18_
X2
GPIO56
SPIA_SIMO
I/O
SPI-A Slave In, Master Out (SIMO)
GPIO8
GPIO16
GPIO8
GPIO16
GPIO8
GPIO16
GPIO8
GPIO16
SPIA_SOMI
I/O
SPI-A Slave Out, Master In (SOMI)
GPIO10
GPIO17
GPIO10
GPIO17
GPIO10
GPIO17
GPIO17
SPIA_STE
I/O
SPI-A Slave Transmit Enable (STE)
GPIO5
GPIO11
GPIO57
GPIO5
GPIO11
GPIO5
GPIO11
GPIO5
GPIO11
SPI-B Clock
GPIO14
GPIO22_
VFBSW
GPIO26
GPIO28
GPIO32
GPIO58
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO22_
VFBSW
GPIO28
GPIO32
GPIO22_
VFBSW
GPIO28
GPIO32
SPI-B Slave In, Master Out (SIMO)
GPIO7
GPIO24
GPIO30
GPIO56
GPIO7
GPIO24
GPIO7
GPIO24
GPIO7
GPIO24
SPI-B Slave Out, Master In (SOMI)
GPIO6
GPIO25
GPIO31
GPIO57
GPIO6
GPIO6
GPIO6
GPIO29
GPIO33
GPIO29
GPIO33
GPIO29
GPIO33
SPIB_CLK
I/O
SPIB_SIMO
SPIB_SOMI
I/O
I/O
SPIB_STE
I/O
SPI-B Slave Transmit Enable (STE)
GPIO15
GPIO27
GPIO29
GPIO33
GPIO59
SYNCOUT
O
External ePWM Synchronization Pulse
GPIO6
GPIO6
GPIO6
GPIO6
I
JTAG Test Data Input (TDI) - TDI is the
default mux selection for the pin. The internal
pullup is disabled by default. The internal
pullup should be enabled or an external pullup
added on the board if this pin is used as JTAG
TDI to avoid a floating input.
GPIO35/T
DI
GPIO35/T
DI
GPIO35/T
DI
GPIO35/T
DI
TDO
O
JTAG Test Data Output (TDO) - TDO is the
default mux selection for the pin. The internal
pullup is disabled by default. The TDO
function will be in a tri-state condition when
there is no JTAG activity, leaving this pin
floating; the internal pullup should be enabled
or an external pullup added on the board to
avoid a floating GPIO input.
GPIO37/T
DO
GPIO37/T
DO
GPIO37/T
DO
GPIO37/T
DO
VFBSW
-
Internal DC-DC regulator feedback signal. If
the internal DC-DC regulator is used, tie this
pin to the node where L(VSW) connects to the
VDD rail (as close as possible to the device).
GPIO22_
VFBSW
GPIO22_
VFBSW
GPIO22_
VFBSW
GPIO22_
VFBSW
VSW
-
Switching output of the internal DC-DC
regulator
GPIO23_
VSW
GPIO23_
VSW
GPIO23_
VSW
GPIO23_
VSW
TDI
X2
I/O
Crystal oscillator output
GPIO18_
X2
GPIO18_
X2
GPIO18_
X2
GPIO18_
X2
XCLKOUT
O
External Clock Output. This pin outputs a
divided-down version of a chosen clock signal
from within the device.
GPIO16
GPIO18_
X2
GPIO16
GPIO18_
X2
GPIO16
GPIO18_
X2
GPIO16
GPIO18_
X2
48
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.4.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Digital Inputs on ADC Pins (AIOs)
GPIOs on port H (GPIO224–GPIO255) are multiplexed with analog pins. These are also referred to as
AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and
the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or
analog operation.
NOTE
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can
occur with adjacent analog signals. The user should therefore limit the edge rate of signals
connected to AIOs if adjacent channels are being used for analog functions.
4.4.3
GPIO Input X-BAR
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs,
eCAPs, ePWMs, and external interrupts (see Figure 4-5). Table 4-8 lists the input X-BAR destinations. For
details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28004x Piccolo
Microcontrollers Technical Reference Manual.
GPIO0
GPIOx
Asynchronous
Synchronous
Sync. + Qual.
eCAP1
eCAP2
eCAP3
eCAP4
eCAP5
eCAP6
eCAP7
Input X-BAR
INPUT16
INPUT15
INPUT14
INPUT13
INPUT12
INPUT11
INPUT10
INPUT9
INPUT8
INPUT7
INPUT6
INPUT5
INPUT4
INPUT3
INPUT2
INPUT1
Other Sources
INPUT[16:1]
127:16
15:0
TZ1,TRIP1
TZ2,TRIP2
TZ3,TRIP3
TRIP6
CPU PIE
CLA
XINT1
XINT2
XINT3
XINT4
XINT5
TRIP4
TRIP5
ePWM
X-BAR
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
ePWM
Modules
Other
Sources
ADC
ADCEXTSOC
EXTSYNCIN1
EXTSYNCIN2
ePWM and eCAP
Sync Chain
Other Sources
Output X-BAR
Figure 4-5. Input X-BAR
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
49
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 4-8. Input X-BAR Destinations
INPUT
50
DESTINATIONS
INPUT1
eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR
INPUT2
eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR
INPUT3
eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR
INPUT4
eCAPx, ePWM X-BAR, XINT1, Output X-BAR
INPUT5
eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, Output
X-BAR
INPUT6
eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output
X-BAR
INPUT7
eCAPx, ePWM X-BAR
INPUT8
eCAPx, ePWM X-BAR
INPUT9
eCAPx, ePWM X-BAR
INPUT10
eCAPx, ePWM X-BAR
INPUT11
eCAPx, ePWM X-BAR
INPUT12
eCAPx, ePWM X-BAR
INPUT13
eCAPx, ePWM X-BAR, XINT4
INPUT14
eCAPx, ePWM X-BAR, XINT5
INPUT15
eCAPx
INPUT16
eCAPx
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.4.4
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
GPIO Output X-BAR and ePWM X-BAR
The Output X-BAR has eight outputs which are routed to the GPIO module. The ePWM X-BAR has eight
outputs which are routed to each ePWM module. Figure 4-6 shows the sources for both the Output X-BAR
and ePWM X-BAR. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR)
chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
CTRIPOUTH
CTRIPOUTL
(Output X-BAR only)
CMPSSx
CTRIPH
CTRIPL
ePWM and eCAP
Sync Chain
EXTSYNCOUT
ADCSOCAO
Select Ckt
ADCSOCAO
ADCSOCBO
Select Ckt
ADCSOCBO
eCAPx
ECAPxOUT
ADCx
EVT1
EVT2
EVT3
EVT4
Input X-BAR
CLAHALT
(ePWM X-BAR only)
Output
X-BAR
INPUT1-6
INPUT7-14
(ePWM X-BAR only)
OUTPUT1
OUTPUT2
OUTPUT3
OUTPUT4
OUTPUT5
OUTPUT6
OUTPUT7
OUTPUT8
GPIO
Mux
TRIP4
TRIP5
ePWM
X-BAR
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
All
ePWM
Modules
CLAHALT
FLT1.COMPH
FLT1.COMPL
X-BAR Flags
(shared)
SDFMx
FLT4.COMPH
FLT4.COMPL
Figure 4-6. Output X-BAR and ePWM X-BAR Sources
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
51
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
4.5
www.ti.com
Pins With Internal Pullup and Pulldown
Some pins on the device have internal pullups or pulldowns. Table 4-9 lists the pull direction and when it
is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To
avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not
bonded out in a particular package. Other pins noted in Table 4-9 with pullups and pulldowns are always
on and cannot be disabled.
Table 4-9. Pins With Internal Pullup and Pulldown
RESET
(XRSn = 0)
DEVICE BOOT
APPLICATION
Pullup disabled
Pullup disabled (1)
Application defined
PIN
GPIOx (including AIOs)
GPIO35/TDI
Pullup disabled
GPIO37/TDO
Pullup disabled
TCK
Pullup active
VREGENZ
Pulldown active
XRSn
Pullup active
Other pins
52
Application defined
Pullup active
TMS
(1)
Application defined
No pullup or pulldown present
Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
4.6
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Connections for Unused Pins
For applications that do not need to use all functions of the device, Table 4-10 lists acceptable
conditioning for any unused pins. When multiple options are listed in Table 4-10, any option is acceptable.
Pins not listed in Table 4-10 must be connected according to Section 4.
Table 4-10. Connections for Unused Pins
SIGNAL NAME
ACCEPTABLE PRACTICE
ANALOG
Analog input pins with
DACx_OUT
•
•
No Connect
Tie to VSSA through 4.7-kΩ or larger resistor
Analog input pins with
PGAx_OUTF
•
•
No Connect
Tie to VSSA through 4.7-kΩ or larger resistor
Analog input pins (except for
DACx_OUT and PGAx_OUTF)
•
•
•
No Connect
Tie to VSSA
Tie to VSSA through resistor
PGAx_GND
Tie to VSSA
VREFHIx
Tie to VDDA
VREFLOx
Tie to VSSA
DIGITAL
FLT1 (Flash Test pin 1)
•
•
No Connect
Tie to VSS through 4.7-kΩ or larger resistor
FLT2 (Flash Test pin 2)
•
•
No Connect
Tie to VSS through 4.7-kΩ or larger resistor
GPIOx
•
•
•
Input mode with internal pullup enabled
Input mode with external pullup or pulldown resistor
Output mode with internal pullup disabled
GPIO35/TDI
When TDI mux option is selected (default), the GPIO is in Input mode.
•
Internal pullup enabled
•
External pullup resistor
GPIO37/TDO
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.
•
Internal pullup enabled
•
External pullup resistor
TCK
•
•
TMS
Pullup resistor
VREGENZ
Tie to VDDIO if internal regulator is not used
X1
Tie to VSS
X2
No Connect
VDD
All VDD pins must be connected per Section 4.3.
VDDA
If a dedicated analog supply is not used, tie to VDDIO.
VDDIO
All VDDIO pins must be connected per Section 4.3.
VDDIO_SW
Must always be tied to VDDIO
VSS
All VSS pins must be connected to board ground.
VSS_SW
Tie to VSS
VSSA
If an analog ground is not used, tie to VSS.
No Connect
Pullup resistor
POWER AND GROUND
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
53
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5 Specifications
5.1
Absolute Maximum Ratings (1) (2)
over operating free-air temperature range (unless otherwise noted)
Supply voltage
MIN
MAX
VDDIO with respect to VSS
–0.3
4.6
VDDA with respect to VSSA
–0.3
4.6
VDD with respect to VSS
–0.3
1.5
Voltage difference between VDDIO
and VDDIO_SW pins
UNIT
V
±0.3
V
Input voltage
VIN (3.3 V)
–0.3
4.6
V
Output voltage
VO
–0.3
4.6
V
Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO)
–20
20
Analog input (per pin), IIKANALOG
(VIN < VSSA or VIN > VDDA)
–20
20
Total for all inputs, IIKTOTAL
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)
–20
20
Output current
Digital output (per pin), IOUT
–20
20
mA
Free-Air temperature
TA
–40
125
°C
Operating junction temperature
TJ
–40
150
°C
Tstg
–65
150
°C
Input clamp current
Storage temperature
(1)
(2)
(3)
54
(3)
mA
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.4 is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, unless otherwise noted.
Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.
For additional information, see the IC Package Thermal Metrics Application Report (SPRA953).
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
ESD Ratings – Commercial
VALUE
UNIT
F28004x in 100-pin PZ package (S temperature range)
V(ESD)
Electrostatic discharge
(ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1)
±2000
Charged-device model (CDM), per JEDEC specification
JESD22-C101 (2)
±500
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1)
±2000
Charged-device model (CDM), per JEDEC specification
JESD22-C101 (2)
±500
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1)
±2000
Charged-device model (CDM), per JEDEC specification
JESD22-C101 (2)
±500
V
F28004x in 64-pin PM package (S temperature range)
V(ESD)
Electrostatic discharge
(ESD)
V
F28004x in 56-pin RSH package (S temperature range)
V(ESD)
(1)
(2)
Electrostatic discharge
(ESD)
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
5.3
ESD Ratings – Automotive
VALUE
UNIT
F28004x in 100-pin PZ package (Q temperature range)
V(ESD)
Electrostatic discharge
Human body model (HBM), per
AEC Q100-002 (1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 100-pin PZ:
1, 25, 26, 50, 51, 75, 76, 100
±750
Human body model (HBM), per
AEC Q100-002 (1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 64-pin PM:
1, 16, 17, 32, 33, 48, 49, 64
±750
V
F28004x in 64-pin PM package (Q temperature range)
V(ESD)
(1)
Electrostatic discharge
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
55
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.4
www.ti.com
Recommended Operating Conditions
Device supply voltage, VDDIO and VDDA
Internal BOR enabled (1)
MIN
NOM
MAX
VBOR-VDDIO(MAX) +
VBOR-GB (2)
3.3
3.63
2.8
3.3
3.63
1.14
1.2
1.32
Internal BOR disabled
Device supply voltage, VDD
UNIT
V
V
Device ground, VSS
0
V
Analog ground, VSSA
0
V
SRSUPPLY
Supply ramp rate of VDDIO,
VDD, VDDA with respect to
VSS. (3)
tVDDIO-RAMP
VDDIO supply ramp time from
1 V to VBOR-VDDIO(MAX)
VBOR-GB
VDDIO BOR guard band (4)
Junction temperature, TJ
S version (5)
Free-Air temperature, TA
Q version (5)
(AEC Q100 qualification)
(1)
(2)
(3)
(4)
(5)
105
V/s
10
ms
–40
125
°C
–40
125
°C
0.1
V
Internal BOR is enabled by default.
The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics determines the lower voltage bound for device operation. TI
recommends that system designers budget an additional guard band (VBOR-GB) as shown in Figure 5-1.
Supply ramp rate faster than this can trigger the on-chip ESD protection.
TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator.
Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent
activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage listed
here is typical for many applications.
Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded
Processors for more information.
3.63 V
+10%
3.3 V
0%
3.1 V
–6.1%
3.0 V
–9.1%
Recommended
System Voltage
Regulator Range
F28004x
VDDIO
Operating
Range
VBOR-GB
BOR Guard Band
VBOR-VDDIO
Internal BOR Threshold
2.81 V
2.80 V
–14.8%
–15.1%
Copyright © 2017, Texas Instruments Incorporated
Figure 5-1. Supply Voltages
56
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.5
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Power Consumption Summary
Current values listed in this section are representative for the test conditions given and not the absolute
maximum possible. The actual device currents in an application will vary with application code and pin
configurations. Table 5-1 lists the system current consumption values for an external supply. Table 5-2
lists the system current consumption values for the internal VREG. Table 5-3 lists the system current
consumption values for the DCDC. See Section 5.5.1 for a detailed description of the test case run while
measuring the current consumption in operating mode.
Table 5-1. System Current Consumption (External Supply)
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
61
90
mA
26
45
mA
12
30
mA
18
40
mA
1.2
4
mA
0.9
1.2
mA
0.9
20
mA
0.8
4
mA
0.2
0.5
mA
40
70
mA
33
75
mA
0.1
2.5
mA
OPERATING MODE
IDD
VDD current consumption during
operational usage
IDDIO
VDDIO current consumption during
operational usage
IDDA
VDDA current consumption during
operational usage
See Section 5.5.1.
IDLE MODE
VDD current consumption while device
is in Idle mode
IDD
IDDIO
VDDIO current consumption while
device is in Idle mode
IDDA
VDDA current consumption while
device is in Idle mode
•
•
•
CPU is in IDLE mode
Flash is powered down
XCLKOUT is turned off
HALT MODE
VDD current consumption while device
is in Halt mode
IDD
IDDIO
VDDIO current consumption while
device is in Halt mode
IDDA
VDDA current consumption while
device is in Halt mode
•
•
•
CPU is in HALT mode
Flash is powered down
XCLKOUT is turned off
FLASH ERASE/PROGRAM
IDD
VDD Current consumption during
Erase/Program cycle (1)
IDDIO
VDDIO Current consumption during
Erase/Program cycle (1)
IDDA
VDDA Current consumption during
Erase/Program cycle
•
•
•
•
•
(1)
CPU is running from Flash,
performing Erase and
Program on the unused
sector.
VREG is disabled.
SYSCLK is running at 100
MHz.
I/Os are inputs with pullups
enabled.
Peripheral clocks are turned
OFF.
Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system
components with sufficient margin to avoid supply brownout conditions.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
57
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-2. System Current Consumption (Internal VREG)
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
86
113
mA
12
30
mA
OPERATING MODE
VDDIO current consumption during
operational usage
IDDIO
VDDA current consumption during
operational usage
IDDA
See Section 5.5.1.
IDLE MODE
IDDIO
VDDIO current consumption while
device is in Idle mode
IDDA
VDDA current consumption while
device is in Idle mode
•
•
•
CPU is in IDLE mode
Flash is powered down
XCLKOUT is turned off
19.2
36
mA
0.9
1.2
mA
•
•
•
CPU is in HALT mode
Flash is powered down
XCLKOUT is turned off
1.7
18
mA
0.2
0.5
mA
•
CPU is running from Flash,
performing Erase and
Program on the unused
sector.
Internal VREG is enabled.
SYSCLK is running at 100
MHz.
I/Os are inputs with pullups
enabled.
Peripheral clocks are turned
OFF.
72
106
mA
0.1
2.5
mA
HALT MODE
IDDIO
VDDIO current consumption while
device is in Halt mode
IDDA
VDDA current consumption while
device is in Halt mode
FLASH ERASE/PROGRAM
IDDIO
VDDIO current consumption during
Erase/Program cycle (1)
IDDA
VDDA current consumption during
Erase/Program cycle
•
•
•
•
(1)
58
Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system
components with sufficient margin to avoid supply brownout conditions.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-3. System Current Consumption (DCDC)
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
52
70
mA
12
25
mA
OPERATING MODE
VDDIO current consumption during
operational usage
IDDIO
VDDA current consumption during
operational usage
IDDA
See Section 5.5.1.
IDLE MODE
IDDIO
VDDIO current consumption while
device is in Idle mode
IDDA
VDDA current consumption while
device is in Idle mode
•
•
•
CPU is in IDLE mode
Flash is powered down
XCLKOUT is turned off
9.2
28
mA
0.9
1.5
mA
•
•
•
CPU is in HALT mode
Flash is powered down
XCLKOUT is turned off
1.7
17
mA
0.2
1.5
mA
•
CPU is running from Flash,
performing Erase and
Program on the unused
sector.
DCDC is enabled.
SYSCLK is running at 100
MHz.
I/Os are inputs with pullups
enabled.
Peripheral clocks are turned
OFF.
60
85
mA
0.25
2.5
mA
HALT MODE
IDDIO
VDDIO current consumption while
device is in Halt mode
IDDA
VDDA current consumption while
device is in Halt mode
FLASH ERASE/PROGRAM
IDDIO
VDDIO current consumption during
Erase/Program cycle (1)
IDDA
VDDA current consumption during
Erase/Program cycle
•
•
•
•
(1)
Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system
components with sufficient margin to avoid supply brownout conditions.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
59
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.5.1
www.ti.com
Operating Mode Test Description
Table 5-1, Table 5-2, and Table 5-3 list the current consumption values for the operational mode of the
device. The operational mode provides an estimation of what an application might encounter. The test
case run to achieve the values shown does the following in a loop. Peripherals that are not on the
following list have had their clocks disabled.
• Code is executing from RAM.
• FLASH is read and kept in active state.
• No external components are driven by I/O pins.
• All of the communication peripherals are exercised: SPI-A to SPI-C; SCI-A to SCI-C; I2C-A; CAN-A to
CAN-C; LIN-A; PMBUS-A; and FSI-A.
• ePWM-1 to ePWM-3 generate a 5-MHz output on 6 pins.
• ePWM-4 to ePWM-7 are in HRPWM mode and generating 25 MHz on 6 pins.
• CPU timers are active.
• CPU does FIR16 calculations.
• DMA does continuous 32-bit transfers.
• CLA-1 is executing a 1024-point DFT in a background task.
• All ADCs perform continuous conversions.
• All DACs vary voltage at the loop frequency ~11 kHz.
• All PGAs are enabled.
• All CMPSSs generate a square wave with a 100-kHz frequency.
• SDFM peripheral clock is enabled.
• eCAP-1 to eCAP-7 are in APWM mode, toggling at 250 kHz.
• All eQEP watchdogs are enabled and counting.
• System watchdog is enabled and counting.
60
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.5.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Current Consumption Graphs
Figure 5-2, Figure 5-3, and Figure 5-4 show a typical representation of the relationship between frequency
and current consumption on the device. The operational test from Table 5-1 was run across frequency at
VNOM and room temperature. Actual results will vary based on the system implementation and conditions.
Leakage current on the VDD core supply will increase with operating temperature in an exponential
manner as seen in Figure 5-5. The current consumption in HALT mode is primarily leakage current as
there is no active switching if the internal oscillator has been powered down.
100
65
60
55
50
45
40
35
30
25
20
15
10
5
0
IDD
IDDIO
IDDA
60
40
20
0
0
10
20
30
40
50
60
70
80
90
Frequency (MHz)
0
100
10
20
30
40
50
60
70
80
90
Frequency (MHz)
D001
100
D002
Figure 5-3. Current Versus Frequency — Internal VREG
Figure 5-2. Current Versus Frequency — External Supply
55
22
50
20
IDDIO
IDDA
45
18
16
40
IDD (mA)
Current (mA)
IDDIO
IDDA
80
Current (mA)
Current (mA)
Figure 5-5 shows the typical leakage current across temperature. The device was placed into HALT mode
under nominal voltage conditions.
35
30
25
20
14
12
10
8
6
15
4
10
2
5
0
10
20
30
40
50
60
70
80
90
Frequency (MHz)
Figure 5-4. Current Versus Frequency — DCDC
100
D003
0
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature (qC)
D004
Figure 5-5. Halt Current Versus Temperature (ºC)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
160
61
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.5.3
www.ti.com
Reducing Current Consumption
All C2000™ microcontrollers provide some methods to reduce the device current consumption:
• Either of the two low-power modes—IDLE and HALT—could be entered to reduce the current
consumption even further during idle periods in the application.
• The flash module may be powered down if the code is run from RAM.
• Disable the pullups on pins that assume an output function.
• Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be
achieved by turning off the clock to any peripheral that is not used in a given application. Table 5-4 lists
the typical current consumption value per peripheral at 100-MHz SYSCLK.
Table 5-4. Typical IDD Current Reduction per Disabled
Peripheral (at 100-MHz SYSCLK) (1)
PERIPHERAL
0.8
CAN
1.1
CLA
0.4
CLB
1.1
CMPSS (2)
0.4
CPU TIMER
0.1
(2)
0.2
DAC
DMA
0.5
eCAP1 to eCAP5
eCAP6 to eCAP7
0.4
0.7
eQEP
0.1
FSI
0.7
HRPWM
0.8
I2C
0.3
0.4
PGA
(2)
0.2
PMBUS
0.3
SCI
0.2
SDFM
0.9
SPI
0.2
DCC
0.1
PLL at 100 MHz
22.9
(1)
(2)
(3)
Specifications
0.1
(3)
ePWM
LIN
62
IDD CURRENT REDUCTION (mA)
ADC (2)
All peripherals are disabled upon reset. Use the PCLKCRx register
to individually enable peripherals. For peripherals with multiple
instances, the current quoted is for a single module.
This current represents the current drawn by the digital portion of the
each module.
eCAP6 and eCAP7 can also be configured as HRCAP.
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.6
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
MIN
TYP
MAX
UNIT
Digital and Analog IO
IOH = IOH MIN
VDDIO * 0.8
IOH = –100 μA
VDDIO – 0.2
VOH
High-level output voltage
VOL
Low-level output voltage
IOH
High-level output source current for all output
pins
IOL
Low-level output sink current for all output pins
ROH
High-level output impedance for all output pins
70
Ω
ROL
Low-level output impedance for all output pins
70
Ω
VIH
High-level input voltage (3.3 V)
2.0
VDDIO + 0.3
VIL
Low-level input voltage (3.3 V)
VSS – 0.3
0.8
VHYSTERESIS
Input hysteresis
IPULLDOWN
Input current
IPULLUP
Input current
Pin leakage
IOL = IOL MAX
0.4
IOL = 100 µA
0.2
–4
4
Digital inputs with
pullup enabled (1)
VDDIO = 3.3 V
VIN = 0 V
160
Analog inputs with
pullup enabled (1)
VDDA = 3.3 V
VIN = 0 V
160
All GPIOs except
GPIO23_VSW
Pullups and
outputs disabled
0 V ≤ VIN ≤ VDDIO
µA
2
45
0.1
Analog drivers
disabled
0 V ≤ VIN ≤ VDDA
2
µA
11
0.25
All digital GPIOs except
GPIO23_VSW
Input capacitance
V
µA
PGAx_OF
CI
V
mV
100
ADCINB3/VDAC
mA
150
VDDIO = 3.3 V
VIN = VDDIO
Analog pins (except
ADCINB3/VDAC and
PGAx_OF)
V
mA
Inputs with pulldown (1)
GPIO23_VSW
ILEAK
V
2
GPIO23_VSW
pF
100
Analog pins (2)
VREG, DC-DC, and BOR
VBOR-VDDIO
VDDIO brownout reset voltage
VVREG
Internal voltage regulator output
Internal VREG On
1.2
V
VDC-DC
Internal switching regulator output
Internal DC-DC On
1.2
V
Efficiency
Power efficiency of internal DC-DC switching
regulator
(1)
(2)
2.81
3.0
V
80%
See Table 4-9 for a list of pins with a pullup or pulldown.
The analog pins are specified separately; see Table 5-45.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
63
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.7
www.ti.com
Thermal Resistance Characteristics
5.7.1
PZ Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
7.6
N/A
RΘJB
Junction-to-board thermal resistance
24.2
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
46.1
0
37.3
150
34.8
250
32.6
500
0.2
0
0.4
150
0.4
250
0.6
500
RΘJMA
Junction-to-moving air thermal resistance
PsiJT
Junction-to-package top
PsiJB
(1)
(2)
Junction-to-board
23.8
0
22.8
150
22.4
250
21.9
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
5.7.2
PM Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
12.4
N/A
RΘJB
Junction-to-board thermal resistance
25.6
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
51.8
0
42.2
150
39.4
250
36.5
500
RΘJMA
Junction-to-moving air thermal resistance
PsiJT
Junction-to-package top
PsiJB
(1)
(2)
64
Junction-to-board
0.5
0
0.9
150
1.1
250
1.4
500
25.1
0
23.8
150
23.4
250
22.7
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.7.3
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
RSH Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
11.9
N/A
RΘJB
Junction-to-board thermal resistance
3.3
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
25.8
0
17.4
150
RΘJMA
Junction-to-moving air thermal resistance
15.1
250
13.4
500
PsiJT
Junction-to-package top
PsiJB
Junction-to-board
RΘJC, bottom
Junction-to-bottom case thermal resistance
(1)
(2)
0.2
0
0.3
150
0.4
250
0.4
500
3.3
0
3.2
150
3.2
250
3.2
500
0.7
0
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
65
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8
www.ti.com
System
5.8.1
Power Management
TMS320F28004x MCUs can be configured to operate with one of three options to supply the required
1.2 V to the core (VDD):
• An external supply (not available for 56-pin RSH package configurations)
• Internal 1.2-V LDO Voltage Regulator (VREG)
• Internal 1.2-V Switching Regulator (DC-DC)
The system requirements will dictate which supply option best suits the application.
NOTE
The same system voltage regulator must be used to drive both VDDIO and VDDIO_SW.
5.8.1.1
Internal 1.2-V LDO Voltage Regulator (VREG)
The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins.
Enable this functionality by pulling the VREGENZ pin low to VSS. The smaller pin-count packages may
not include the VREGENZ pin; therefore, the internal VREG is always enabled and, as such, is the
required supply source for the VDD pins. Review the description of VREGENZ in Table 4-5 to determine
package configuration. Although the internal VREG eliminates the need to use an external power supply
for VDD, decoupling capacitors are required on each VDD pin for VREG stability. There are two
recommended capacitor configurations (described in the list that follows) for the VDD rail when using the
internal VREG. The signal description for VDD can be found in Table 4-4.
• Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as
possible. In addition, a bulk capacitance must be placed on the VDD node to VSS (one 20-µF
capacitor or two parallel 10-µF capacitors).
• Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance
divided by four VDD pins).
5.8.1.2
Internal 1.2-V Switching Regulator (DC-DC)
The internal DC-DC regulator offers increased efficiency over the LDO for converting 3.3 V to 1.2 V. The
internal DC-DC regulator is supplied by the VDDIO_SW pin and generates the 1.2 V required to power the
VDD pins. To use the internal switching regulator, the core domain must power up initially using the
internal LDO VREG supply (tie the VREGENZ pin low to VSS) and then transition to the DC-DC regulator
through application software by setting the DCDCEN bit in the DCDCCTL register. The DC-DC regulator
also requires external components (inductor, input capacitance, and output capacitance). The output of
internal DC-DC regulator is not internally fed to the VDD rail and requires an external connection.
Figure 5-6 shows the schematic implementation.
LVSW
F28004x
VIN
VDDIO_SW
VDD
VSW
VFBSW
CVDDIO_SW
VSS_SW
VDD
CVDD_DECAP(A)
VSS_SW
VSS
VSS_SW
CVDD
VSS
VSS
Copyright © 2017, Texas Instruments Incorporated
A.
One decoupling capacitor per each of the four VDD pins
Figure 5-6. DC-DC Circuit Schematic
66
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
The VDDIO_SW supply pin (VIN) requires a 3.3-V level voltage. A total input capacitance (CVDDIO_SW) of
20 µF is required on VDDIO_SW. Due to the capacitor specification requirements detailed in Table 5-6,
two parallel 10-µF capacitors in parallel is the recommended configuration. Decoupling capacitors of
100 nF should also be placed on each VDD pin as close to the device as possible.
Table 5-5. DC-DC Inductor (LVSW) Specifications Requirements
VALUE AND
VARIATION
VALUE AT
SATURATION
DCR
RATED CURRENT
SATURATION
CURRENT
TEMPERATURE
2.2 µH ± 20%
1.54 µH ± 20%
80 mΩ ± 25%
>1000 mA
>600 mA
–40°C to 125°C
Table 5-6. DC-DC Capacitor (CVDDIO_SW and CVDD) Specifications Requirements
VALUE AND
VARIATION AT 0 V
VALUE AT 1.2 V
VALUE AT 125°C
ESR
RATED VOLTAGE
TEMPERATURE
10 µF ± 20%
10 µF ± 20%
8 µF ± 20%
<10 mΩ
4 V or 6.3 V
–40°C to 125°C
Table 5-7. DC-DC Circuit Component Values
COMPONENT
Inductor
MIN
NOM
MAX
UNIT
NOTES
1.76
2.2
2.64
µH
20% variance
Input capacitor
8
10
12
µF
20% varaince, two such capacitors in parallel
Output capacitor
8
10
12
µF
20% varaince, two such capacitors in parallel
5.8.1.2.1 PCB Layout and Component Guidelines
For optimal performance the application board layout and component selection is important. The list that
follows is a high-level guideline for laying out the DC-DC circuit.
• TI recommends star-connecting VDDIO_SW and VDDIO to the same 3.3-V supply.
• All external components should be placed as close to the pins as possible.
• The loop formed by the VDDIO_SW, input capacitor (CVDDIO_SW), and VSS_SW must be as short as
possible.
• The feedback trace must be as short as possible and kept away from any noise source such as the
switching output (VSW).
• It is necessary to have a separate island or surgical cut in the ground plane for the input cap
(CVDDIO_SW) and VSS_SW.
• A VDD plane is recommended for connecting the VDD node to the LVSW-CVDD point to minimize
parasitic resistance and inductance.
Table 5-8. Recommended External Components
MIN
CVDDIO
Bulk capacitance on VDDIO
CVDDIO_DECAP
Decoupling capacitor on each VDDIO
pin
CVDDA
Capacitor on VDDA pins
CVDDIO_SW
Capacitor on VDDIO_SW pin
CVDD
Bulk capacitance on VDD
CVDD_DECAP
Decoupling capacitor on each VDD pin
(1)
(2)
(3)
Based on External Supply IC
Requirements (1)
TYP
µF
0.1
µF
2.2
µF
20
For LDO-only operation
0.1
For LDO-only operation (3)
For DC-DC operation (2)
For LDO-only operation (3)
µF
20
12
20
27
0.1
0.1
UNIT
0.1
For DC-DC operation (2)
For DC-DC operation (2)
MAX
6.75
µF
µF
Bulk capacitance on this supply should be based on supply IC requirements.
See Section 5.8.1.2 for details.
See Section 5.8.1.1 for details.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
67
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-8. Recommended External Components (continued)
MIN
LVSW
Inductor between VSW pin and VDD
node for DC-DC
RLVSW-DCR
Allowed DCR for LVSW
ISAT-LVSW
LVSW saturation current
5.8.1.3
TYP
MAX
UNIT
2.2
µH
80
mΩ
600
mA
Power Sequencing
An external power supply must be used to supply 3.3 V to VDDIO, VDDIO_SW, and VDDA. TI
recommends powering up VDDIO, VDDIO_SW, and VDDA together and keeping them within 0.3 V of
each other during operation. Before powering the device, no voltage larger than 0.3 V above VDDIO can
be applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog
pin. The VREFHI voltage should not exceed VDDA at any time.
An external supply can be used to supply 1.2 V to the VDD pins when VREGENZ is pulled high to VDDIO.
When using an external source to supply VDD, the voltage on VDDIO must be greater than VDD or no
less than 0.3 V below VDD at all times. When using the internal VREG, the power sequence is handled
internally.
5.8.1.4
Power-On Reset (POR)
An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance
state during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO
crosses the POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset
(BOR) circuit takes control and holds the device in reset until the voltage crosses the BOR threshold (for
internal BOR details, see Section 5.8.1.5).
5.8.1.5
Brownout Reset (BOR)
An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage
dropping out of operational range. When the VDDIO voltage drops below the BOR threshold, the device is
forced into reset, and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the
operational range. The BOR is enabled by default. To disable the BOR, set the BORLVMONDIS bit in the
VMONCTL register. The internal BOR circuit monitors only the VDDIO rail. See Section 5.6 for BOR
characteristics. External supply voltage supervisor (SVS) devices can be used to monitor the voltage on
the 3.3-V and 1.2-V rails and to drive XRSn low if supplies fall outside operational specifications.
68
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Reset Timing
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in
power-on reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI
watchdog reset will also drive the pin low. An external circuit may drive the pin to assert a device reset.
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor
should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values
will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the
watchdog reset is asserted. Figure 5-7 shows the recommended reset circuit.
VDDIO
2.2 kW to 10 kW
XRSn
Optional Reset source
£100 nF
Figure 5-7. Reset Circuit
5.8.2.1
Reset Sources
Table 5-9 summarizes the various reset signals and their effect on the device.
Table 5-9. Reset Signals
CPU CORE
RESET
(C28x, FPU,
VCU)
PERIPHERALS
RESET
JTAG/
DEBUG LOGIC
RESET
I/Os
XRSn OUTPUT
POR
Yes
Yes
Yes
Hi-Z
Yes
XRSn Pin
Yes
Yes
Yes
Hi-Z
–
WDRS
Yes
Yes
Yes
Hi-Z
Yes
NMIWDRS
Yes
Yes
Yes
Hi-Z
Yes
SYSRS (Debugger Reset)
Yes
Yes
No
Hi-Z
No
SCCRESET
Yes
Yes
Yes
Hi-Z
No
RESET SOURCE
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
69
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
The parameter th(boot-mode) must account for a reset initiated from any of these sources.
See the Resets section of the System Control chapter in the TMS320F28004x Piccolo Microcontrollers
Technical Reference Manual.
CAUTION
Some reset sources are internally driven by the device. Some of these sources
will drive XRSn low, use this to disable any other devices driving the boot pins.
The SCCRESET and debugger reset sources do not drive XRSn; therefore, the
pins used for boot mode should not be actively driven by other devices in the
system. The boot configuration has a provision for changing the boot pins in
OTP; for more details, see the TMS320F28004x Piccolo Microcontrollers
Technical Reference Manual.
70
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.2.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Reset Electrical Data and Timing
Table 5-10 lists the reset (XRSn) timing requirements. Table 5-11 lists the reset (XRSn) switching
characteristics. Figure 5-8 shows the power-on reset. Figure 5-9 shows the warm reset.
Table 5-10. Reset (XRSn) Timing Requirements
MIN
MAX
UNIT
th(boot-mode)
Hold time for boot-mode pins
1.5
ms
tw(RSL2)
Pulse duration, XRSn low on warm reset
3.2
µs
Table 5-11. Reset (XRSn) Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
tw(RSL1)
Pulse duration, XRSn driven low by device after supplies are
stable
tw(WDRS)
Pulse duration, reset pulse generated by watchdog
TYP
MAX
UNIT
100
512tc(OSCCLK)
µs
cycles
VDDIO, VDDA
(3.3 V)
VDD (1.2 V)
tw(RSL1)
(A)
XRSn
Boot ROM
CPU
Execution
Phase
User-code
th(boot-mode)(B)
Boot-Mode
Pins
GPIO pins as input
Boot-ROM execution starts
I/O Pins
User-code dependent
Peripheral/GPIO function
Based on boot code
GPIO pins as input (pullups are disabled)
User-code dependent
A.
B.
The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see Table 4-1. On-chip POR
logic will hold this pin low until the supplies are in a valid range.
After reset from any source (see Section 5.8.2.1), the boot ROM code samples Boot Mode pins. Based on the status
of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code
executes after power-on conditions (in debugger environment), the boot code execution time is based on the current
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.
Figure 5-8. Power-on Reset
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
71
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
tw(RSL2)
XRSn
User Code
CPU
Execution
Phase
User Code
Boot ROM
Boot-ROM execution starts
(initiated by any reset source)
Boot-Mode
Pins
Peripheral/GPIO Function
GPIO Pins as Input
th(boot-mode)(A)
Peripheral/GPIO Function
User-Code Execution Starts
I/O Pins
GPIO Pins as Input (Pullups are Disabled)
User-Code Dependent
User-Code Dependent
A.
After reset from any source (see Section 5.8.2.1), the Boot ROM code samples BOOT Mode pins. Based on the
status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code
executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.
Figure 5-9. Warm Reset
5.8.3
Clock Specifications
5.8.3.1
Clock Sources
Table 5-12 lists three possible clock sources. Figure 5-10 shows the clocking system. Figure 5-11 shows
the system PLL.
Table 5-12. Possible Reference Clock Sources
CLOCK SOURCE
MODULES CLOCKED
COMMENTS
INTOSC1
Can be used to provide clock for:
•
Watchdog block
•
Main PLL
•
CPU-Timer 2
Internal oscillator 1.
Zero-pin overhead 10-MHz internal oscillator.
INTOSC2 (1)
Can be used to provide clock for:
•
Main PLL
•
CPU-Timer 2
Internal oscillator 2.
Zero-pin overhead 10-MHz internal oscillator.
X1 (XTAL)
Can be used to provide clock for:
•
Main PLL
•
CPU-Timer 2
External crystal or resonator connected between the X1 and X2 pins
or single-ended clock connected to the X1 pin.
(1)
72
On reset, internal oscillator 2 (INTOSC2) is the default clock source for the system PLL (OSCCLK).
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
INTOSC1
INTOSC2
CLKSRCCTL1
SYSPLLCTL1
OSCCLK
X1 (XTAL)
System PLL
To watchdog
timer
PLLSYSCLK
To NMIWD
CPUCLK
To local memories
SYSCLK
To ePIE, RAMs, GPIOs,
and DCSM
PERx.SYSCLK
To peripherals
PERx.LSPCLK
To SCIs and SPIs
CAN Bit Clock
To CANs
SYSCLKDIVSEL
SYSCLK
Divider
PLLRAWCLK
WDCLK
SYSCLK
CPU
One per SYSCLK peripheral
PCLKCRx
One per LSPCLK peripheral
LOSPCP
PCLKCRx
LSP
Divider
LSPCLK
One per CAN module
CLKSRCCTL2
Figure 5-10. Clocking System
OSCCLK
PLL
VCO
/ODIV
/1 to /8
fPLLRAWCLK
/NF
/1 to /127.75
PLLRAWCLK
(f OSCCLK ) u
NF
ODIV
NF = IMULT + FMULT/4
Figure 5-11. System PLL
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
73
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.3.2
www.ti.com
Clock Frequencies, Requirements, and Characteristics
This section provides the frequencies and timing requirements of the input clocks, PLL lock times,
frequencies of the internal clocks, and the frequency and switching characteristics of the output clock.
5.8.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
Table 5-13 lists the frequency requirements for the input clocks. Table 5-14 lists the X1 input level
characteristics when using an external clock source. Table 5-15 lists the XTAL oscillator characteristics.
Table 5-16 lists the X1 timing requirements. Table 5-17 lists the PLL lock times for the Main PLL.
Table 5-13. Input Clock Frequency
f(XTAL)
Frequency, X1/X2, from external crystal or resonator
f(X1)
MIN
MAX
UNIT
10
20
MHz
Frequency, X1, from external oscillator (PLL enabled)
2
20
Frequency, X1, from external oscillator (PLL disabled)
2
100
MHz
Table 5-14. X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)
over recommended operating conditions (unless otherwise noted)
PARAMETER
X1 VIL
Valid low-level input voltage
X1 VIH
Valid high-level input voltage
MIN
MAX
–0.3
0.3 * VDDIO
UNIT
V
0.7 * VDDIO
VDDIO + 0.3
V
Table 5-15. XTAL Oscillator Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
X1 VIL
Valid low-level input voltage
X1 VIH
Valid high-level input voltage
TYP
MAX
UNIT
–0.3
0.3 * VDDIO
V
0.7 * VDDIO
VDDIO + 0.3
V
Table 5-16. X1 Timing Requirements
MIN
MAX
tf(X1)
Fall time, X1
tr(X1)
Rise time, X1
tw(X1L)
Pulse duration, X1 low as a percentage of tc(X1)
45%
55%
tw(X1H)
Pulse duration, X1 high as a percentage of tc(X1)
45%
55%
NOM
MAX
UNIT
6
ns
6
ns
Table 5-17. PLL Lock Times
MIN
t(PLL)
74
Lock time, Main PLL
Specifications
25.5 µs + 1024 * tc(OSCCLK)
UNIT
µs
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.3.2.2 Internal Clock Frequencies
Table 5-18 provides the clock frequencies for the internal clocks.
Table 5-18. Internal Clock Frequencies
MIN
f(SYSCLK)
Frequency, device (system) clock
tc(SYSCLK)
Period, device (system) clock
f(VCO)
Frequency, PLL VCO (before output divider)
f(PLLRAWCLK)
Frequency, system PLL output (before SYSCLK
divider)
f(PLL)
f(LSP)
tc(LSPCLK)
Period, LSPCLK
f(OSCCLK)
Frequency, OSCCLK (INTOSC1 or INTOSC2 or
XTAL or X1)
f(HRPWM)
Frequency, HRPWMCLK
(1)
MAX
UNIT
2
NOM
100
MHz
10
500
ns
120
400
MHz
15
200
MHz
Frequency, PLLSYSCLK
2
100
MHz
Frequency, LSPCLK (1)
2
100
MHz
10
500
ns
See respective clock
60
MHz
100
MHz
Lower LSPCLK will reduce device power consumption. The default at reset is SYSCLK/4.
5.8.3.2.3 Output Clock Frequency and Switching Characteristics
Table 5-19 lists the switching characteristics of the output clock, XCLKOUT.
Table 5-19. XCLKOUT Switching Characteristics (1) (2)
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
tf(XCO)
Fall time, XCLKOUT
5
ns
tr(XCO)
Rise time, XCLKOUT
5
ns
tw(XCOL)
Pulse duration, XCLKOUT low
H–2
H+2
ns
tw(XCOH)
Pulse duration, XCLKOUT high
H–2
H+2
ns
f(XCO)
Frequency, XCLKOUT
(1)
(2)
50
MHz
A load of 40 pF is assumed for these parameters.
H = 0.5tc(XCO)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
75
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.3.3
www.ti.com
Input Clocks and PLLs
NOTE
GPIO18* and its mux options can be used only when the system is clocked by INTOSC and
X1 has an external pulldown resistor.
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:
• A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in
Figure 5-12, with the XTALCR.SE bit set to 1.
Microcontroller
GPIO18*
VSS
X1
Not available as a
GPIO when X1 is
used as a clock
+3.3 V
VDD
X2
Out
3.3-V Oscillator
Gnd
•
Figure 5-12. Single-ended 3.3-V External Clock
An external crystal. The crystal should be connected across X1 and X2 with its load capacitors
connected to VSS as shown in Figure 5-13.
Microcontroller
GPIO18*
VSS
•
76
X1
X2
Figure 5-13. External Crystal
An external resonator. The resonator should be connected across X1 and X2 with its ground
connected to VSS as shown in Figure 5-14.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Microcontroller
GPIO18*
VSS
X1
X2
Figure 5-14. External Resonator
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
77
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.3.4
www.ti.com
Crystal Oscillator
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to
prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should
be as small as possible because the size of the resistance affects start-up time (smaller RD = faster startup time). TI recommends that the crystal manufacturer characterize the crystal with the application board.
Table 5-20 lists the crystal oscillator parameters. Table 5-21 lists the crystal equivalent series resistance
(ESR) requirements. Table 5-22 lists the crystal oscillator electrical characteristics.
Table 5-20. Crystal Oscillator Parameters
CL1, CL2
Load capacitance
C0
Crystal shunt capacitance
MIN
MAX
12
24
UNIT
pF
7
pF
Table 5-21. Crystal Equivalent Series Resistance (ESR) Requirements (1) (2)
CRYSTAL FREQUENCY (MHz)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 12 pF)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 24 pF)
10
55
110
12
50
95
14
50
90
16
45
75
18
45
65
20
45
50
(1)
(2)
Crystal shunt capacitance (C0) should be less than or equal to 7 pF.
ESR = Negative Resistance/3
Table 5-22. Crystal Oscillator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
Start-up time (1)
Crystal drive level (DL)
(1)
78
TEST CONDITIONS
f = 20 MHz
ESR MAX = 50 Ω
CL1 = CL2 = 24 pF
C0 = 7 pF
MIN
TYP
MAX
2
UNIT
ms
1
mW
Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the
application with the chosen crystal.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.3.5
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Internal Oscillators
To reduce production board costs and application development time, all F28004x devices contain two
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are
enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and
INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system
reference clock (OSCCLK). Table 5-23 provides the electrical characteristics of the internal oscillators to
determine if this module meets the clocking requirements of the application.
Table 5-23. INTOSC Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
Frequency, INTOSC1 and
INTOSC2
fINTOSC
fINTOSC-STABILITY
Frequency stability at room
temperature
30°C, Nominal
VDD
Frequency stability over VDD
30°C
Frequency stability
tINT0SC-ST
TEST
CONDITIONS
Start-up and settling time
MIN
TYP
MAX
UNIT
9.7
10
10.3
MHz
±0.1%
±0.2%
–3%
3%
20
µs
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
79
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.4
www.ti.com
Flash Parameters
Table 5-24 lists the minimum required Flash wait states with different clock sources and frequencies.
Table 5-24. Minimum Required Flash Wait States with Different Clock Sources and Frequencies (1)
EXTERNAL OSCILLATOR OR CRYSTAL
CPUCLK (MHz)
FLASH READ OR
EXECUTE
97 < CPUCLK ≤ 100
80 < CPUCLK ≤ 97
77 < CPUCLK ≤ 80
60 < CPUCLK ≤ 77
58 < CPUCLK ≤ 60
40 < CPUCLK ≤ 58
38 < CPUCLK ≤ 40
20 < CPUCLK ≤ 38
19 < CPUCLK ≤ 20
CPUCLK ≤ 19
(1)
(2)
INTOSC1 OR INTOSC2
PROGRAM, ERASE,
BANK SLEEP, OR PUMP
SLEEP
FLASH READ OR
EXECUTE
4
4
3
3
2
2
1
1
0
0
PROGRAM, ERASE,
BANK SLEEP, OR PUMP
SLEEP (2)
5
4
4
3
3
2
2
1
1
0
Minimum required FRDCNTL[RWAIT].
PROGRAM, ERASE, or SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges
indicated. Any wait state FRDCNTL[RWAIT] change must be made before beginning a PROGRAM, ERASE, or SLEEP mode operation.
This setting impacts both flash banks. Applications which perform simultaneous READ of one bank and PROGRAM or ERASE of the
other bank must use the higher RWAIT setting during the PROGRAM or ERASE operation or use a clock source or frequency with a
common wait state setting.
The F28004x devices have an improved 128-bit prefetch buffer that provides high flash code execution
efficiency across wait states. Figure 5-15 and Figure 5-16 illustrate typical efficiency across wait-state
settings compared to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution
efficiency with a prefetch buffer will depend on how many branches are present in application software.
Two examples of linear code and if-then-else code are provided.
100%
100%
95%
90%
Efficiency (%)
Efficiency (%)
90%
80%
70%
60%
Flash with 64-Bit Prefetch
Flash with 128-Bit Prefetch
50%
80%
75%
Flash with 64-Bit Prefetch
Flash with 128-Bit Prefetch
70%
65%
40%
60%
30%
55%
0
1
2
3
Wait State
4
5
D005
Figure 5-15. Application Code With Heavy 32-Bit Floating-Point
Math Instructions
80
85%
Specifications
0
1
2
3
4
Wait State
5
D006
Figure 5-16. Application Code With 16-Bit If-Else Instructions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-25 lists the Flash parameters.
Table 5-25. Flash Parameters
PARAMETER
Program Time (1)
EraseTime (2) at < 25 cycles
EraseTime
(2)
MIN
TYP
MAX
150
300
µs
8KB sector
50
100
ms
8KB sector
15
100
ms
8KB sector
120
128 data bits + 16 ECC bits
at 20K cycles
Nwec Write/Erase Cycles
tretention Data retention duration at TJ = 85oC
(1)
(2)
UNIT
4000
ms
20000
cycles
20
years
Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the
time to transfer the following into RAM:
• Code that uses flash API to program the flash
• Flash API itself
• Flash data to be programmed
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for
programming. The transfer time will significantly vary depending on the speed of the emulator used.
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.
Erase time includes Erase verify by the CPU and does not involve any data transfer.
Erase time includes Erase verify by the CPU.
NOTE
The Main Array flash programming must be aligned to 64-bit address boundaries and each
64-bit word may only be programmed once per write/erase cycle.
The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128bit word may only be programmed once. The exceptions are:
1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should
be programmed together, and may be programmed 1 bit at a time as required by the
DCSM operation.
2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a
time on a 64-bit boundary to separate it from Zx-PSWDLOCK, which must only be
programmed once.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
81
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.5
www.ti.com
Emulation/JTAG
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port
has four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG has two pins: TMS and TCK.
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the
JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain.
Otherwise, each signal should be buffered. Additionally, for most emulator operations at 10 MHz, no
series resistors are needed on the JTAG signals. However, if high emulation speeds are expected
(35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal.
The PD (Power Detect) terminal of the emulator header should be connected to the board's 3.3-V supply.
Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also
be connected to board ground. The JTAG clock should be looped from the header TCK output terminal
back to the RTCK input terminal of the header (to sense clock continuity by the emulator). This MCU does
not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These
signals should always be pulled up at the emulation header through a pair of board pullup resistors
ranging from 2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ
value is used.
Header terminal RESET is an open-drain output from the emulator header that enables board components
to be reset through emulator commands (available only through the 20-pin header). Figure 5-17 shows
how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 5-18 shows how to
connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not
used and should be grounded.
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and
Watchpoints for C28x in CCS.
For more information about JTAG emulation, see the XDS Target Connection Guide.
NOTE
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is
disabled by default. If this pin is used as JTAG TDI, the internal pullup should be enabled or
an external pullup added on the board to avoid a floating input. In the cJTAG option, this pin
can be used as GPIO.
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is
disabled by default. The TDO function will be in a tri-state condition when there is no JTAG
activity, leaving this pin floating. The internal pullup should be enabled or an external pullup
added on the board to avoid a floating GPIO input. In the cJTAG option, this pin can be used
as GPIO.
82
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Distance between the header and the target
should be less than 6 inches (15.24 cm).
3.3 V
4.7 kΩ
1
TMS
TMS
TRST
TDI
TDIS
PD
KEY
2
3.3 V
10 kΩ
3
(A)
TDI
MCU
3.3 V
100 Ω
3.3 V
5
4
GND
6
10 kΩ
(A)
TDO
TDO
GND
9
RTCK
GND 10
TCK
GND 12
11
TCK
4.7 kΩ
3.3 V
A.
7
8
4.7 kΩ
13
EMU0
EMU1
14
3.3 V
TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.
Figure 5-17. Connecting to the 14-Pin JTAG Header
Distance between the header and the target
should be less than 6 inches (15.24 cm).
3.3 V
4.7 kΩ
TMS
1
3.3 V
10 kΩ
3
(A)
MCU
TDI
3.3 V
100 Ω
3.3V
10 kΩ
5
7
(A)
TDO
9
11
TCK
4.7 kΩ
TRST
TDI
TDIS
PD
KEY
TDO
GND
RTCK
GND
TCK
GND
2
4
8
10
12
EMU0
15
RESET
GND 16
17
EMU2
EMU3 18
19
A low pulse from the emulator
can be tied with other reset
sources to reset the board.
GND
EMU4
GND 20
Open
Drain
EMU1
GND
6
13
3.3 V
A.
TMS
4.7 kΩ
14
3.3 V
GND
TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.
Figure 5-18. Connecting to the 20-Pin JTAG Header
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
83
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.5.1
www.ti.com
JTAG Electrical Data and Timing
Table 5-26 lists the JTAG timing requirements. Table 5-27 lists the JTAG switching characteristics.
Figure 5-19 shows the JTAG timing.
Table 5-26. JTAG Timing Requirements
NO.
MIN
MAX
UNIT
1
tc(TCK)
Cycle time, TCK
66.66
ns
1a
tw(TCKH)
Pulse duration, TCK high (40% of tc)
26.66
ns
1b
tw(TCKL)
Pulse duration, TCK low (40% of tc)
26.66
ns
tsu(TDI-TCKH)
Input setup time, TDI valid to TCK high
13
tsu(TMS-TCKH)
Input setup time, TMS valid to TCK high
13
th(TCKH-TDI)
Input hold time, TDI valid from TCK high
7
th(TCKH-TMS)
Input hold time, TMS valid from TCK high
7
3
4
ns
ns
Table 5-27. JTAG Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
2
PARAMETER
td(TCKL-TDO)
Delay time, TCK low to TDO valid
MIN
MAX
6
25
UNIT
ns
1
1a
1b
TCK
2
TDO
3
4
TDI/TMS
Figure 5-19. JTAG Timing
84
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.5.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
cJTAG Electrical Data and Timing
Table 5-28 lists the cJTAG timing requirements. Table 5-29 lists the cJTAG switching characteristics.
Figure 5-20 shows the cJTAG timing.
Table 5-28. cJTAG Timing Requirements
NO.
MIN
1
tc(TCK)
Cycle time, TCK
1a
tw(TCKH)
1b
tw(TCKL)
3
4
MAX
UNIT
100
ns
Pulse duration, TCK high (40% of tc)
40
ns
Pulse duration, TCK low (40% of tc)
40
ns
tsu(TMS-TCKH)
Input setup time, TMS valid to TCK high
15
ns
tsu(TMS-TCKL)
Input setup time, TMS valid to TCK low
15
ns
th(TCKH-TMS)
Input hold time, TMS valid from TCK high
2
ns
th(TCKL-TMS)
Input hold time, TMS valid from TCK low
2
ns
Table 5-29. cJTAG Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
2
td(TCKL-TMS)
Delay time, TCK low to TMS valid
5
tdis(TCKH-TMS)
Delay time, TCK high to TMS disable
MIN
MAX
UNIT
6
20
ns
20
ns
1
1a
TCK
TMS
1b
3
4
TMS Input
3
4
TMS Input
2
5
TMS Output
Figure 5-20. cJTAG Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
85
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.6
www.ti.com
GPIO Electrical Data and Timing
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO
pins are configured as inputs. For specific inputs, the user can also select the number of input qualification
cycles to filter unwanted noise glitches.
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed
to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an
Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs,
eCAPs, ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28004x
Piccolo Microcontrollers Technical Reference Manual.
5.8.6.1
GPIO – Output Timing
Table 5-30 lists the general-purpose output switching characteristics. Figure 5-21 shows the generalpurpose output timing.
Table 5-30. General-Purpose Output Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
tr(GPIO)
Rise time, GPIO switching low to high
All GPIOs except
GPIO23_VSW
tf(GPIO)
Fall time, GPIO switching high to low
All GPIOs except
GPIO23_VSW
fGPIO
Toggling frequency, all GPIOs except GPIO23_VSW
(1)
MAX
UNIT
8
(1)
ns
8 (1)
ns
25
MHz
Rise time and fall time vary with load. These values assume a 40-pF load.
GPIO
tf(GPIO)
tr(GPIO)
Figure 5-21. General-Purpose Output Timing
86
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.6.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
GPIO – Input Timing
Table 5-31 lists the general-purpose input timing requirements. Figure 5-22 shows the sampling mode.
Table 5-31. General-Purpose Input Timing Requirements
MIN
tw(SP)
Sampling period
tw(IQSW)
Input qualifier sampling window
tw(GPI)
(1)
(2)
(2)
QUALPRD = 0
1tc(SYSCLK)
QUALPRD ≠ 0
2tc(SYSCLK) * QUALPRD
MAX
UNIT
cycles
tw(SP) * (n (1) – 1)
Synchronous mode
Pulse duration, GPIO low/high
cycles
2tc(SYSCLK)
With input qualifier
cycles
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
"n" represents the number of qualification samples as defined by GPxQSELn register.
For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.
(A)
GPIO Signal
GPxQSELn = 1,0 (6 samples)
1
1
0
0
0
0
0
0
0
1
tw(SP)
0
0
0
1
1
1
1
Sampling Window
1
1
1
1
Sampling Period determined
by GPxCTRL[QUALPRD]
tw(IQSW)
1
(SYSCLK cycle * 2 * QUALPRD) * 5
(B)
(C)
SYSCLK
QUALPRD = 1
(SYSCLK/2)
(D)
Output From
Qualifier
A.
B.
C.
D.
This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n",
the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be
sampled).
The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.
The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is
used.
In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or
greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure
5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide
pulse ensures reliable recognition.
Figure 5-22. Sampling Mode
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
87
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.6.3
www.ti.com
Sampling Window Width for Input Signals
The following section summarizes the sampling window width for input signals for various input qualifier
configurations.
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0
Sampling frequency = SYSCLK, if QUALPRD = 0
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.
Sampling period = SYSCLK cycle, if QUALPRD = 0
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of
the signal. This is determined by the value written to GPxQSELn register.
Case 1:
Qualification using 3 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0
Case 2:
Qualification using 6 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0
Figure 5-23 shows the general-purpose input timing.
SYSCLK
GPIOxn
tw(GPI)
Figure 5-23. General-Purpose Input Timing
88
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.7
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Interrupts
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected
directly to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt
signals through the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to
sixteen peripheral interrupts into each CPU interrupt line. It also expands the vector table to allow each
interrupt to have its own ISR. This allows the CPU to support a large number of peripherals.
An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its
own enable and flag registers. This system allows the CPU to handle one interrupt while others are
pending, implement and prioritize nested interrupts in software, and disable interrupts during certain
critical tasks.
Figure 5-24 shows the interrupt architecture for this device.
TIMER0
LPMINT
LPM Logic
TINT0
W AKEINT
NMI
NMI module
WD
W DINT
CPU
GPIO0
GPIO1
...
...
GPIOx
INPUTXBAR4
Input
X-BAR
INPUTXBAR5
INPUTXBAR6
INPUTXBAR13
INPUTXBAR14
XINT1 Control
XINT2 Control
XINT3 Control
XINT4 Control
XINT5 Control
INT1
to
INT12
ePIE
TIMER1
TIMER2
TINT1
TINT2
INT13
INT14
Peripherals
See ePIE Table.
Figure 5-24. Device Interrupt Architecture
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
89
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.7.1
www.ti.com
External Interrupt (XINT) Electrical Data and Timing
Table 5-32 lists the external interrupt timing requirements. Table 5-33 lists the external interrupt switching
characteristics. Figure 5-25 shows the external interrupt timing.
Table 5-32. External Interrupt Timing Requirements (1)
MIN
tw(INT)
(1)
Pulse duration, INT input low/high
Synchronous
2tc(SYSCLK)
With qualifier
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
MAX
UNIT
cycles
For an explanation of the input qualifier parameters, see Table 5-31.
Table 5-33. External Interrupt Switching Characteristics (1)
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(INT) Delay time, INT low/high to interrupt-vector fetch (2)
(1)
(2)
MIN
MAX
UNIT
tw(IQSW) + 14tc(SYSCLK)
tw(IQSW) + tw(SP) + 14tc(SYSCLK)
cycles
For an explanation of the input qualifier parameters, see Table 5-31.
This assumes that the ISR is in a single-cycle memory.
tw(INT)
XINT1, XINT2, XINT3,
XINT4, XINT5
td(INT)
Address bus
(internal)
Interrupt Vector
Figure 5-25. External Interrupt Timing
90
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.8.8
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Low-Power Modes
This device has HALT and IDLE as two clock-gating low-power modes. STANDBY mode is not supported
on this device. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for more details.
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the
Low Power Modes section of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
5.8.8.1
Clock-Gating Low-Power Modes
IDLE and HALT modes on this device are similar to those on other C28x devices. Table 5-34 describes
the effect on the system when any of the clock-gating low-power modes are entered.
Table 5-34. Effect of Clock-Gating Low-Power Modes on the Device
MODULES/
CLOCK DOMAIN
IDLE
HALT
SYSCLK
Active
Gated
CPUCLK
Gated
Gated
Clock to modules connected to
PERx.SYSCLK
Active
Gated
WDCLK
Active
Gated if CLKSRCCTL1.WDHALTI = 0
PLL
Powered
Software must power down PLL before entering HALT.
INTOSC1
Powered
Powered down if CLKSRCCTL1.WDHALTI = 0
INTOSC2
Powered
Powered down if CLKSRCCTL1.WDHALTI = 0
Flash (1)
Powered
Powered
XTAL (2)
Powered
Powered
(1)
(2)
The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the application.
For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28004x Piccolo
Microcontrollers Technical Reference Manual.
The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.
This can be done at any time during the application if the XTAL is not required.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
91
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.8.8.2
www.ti.com
Low-Power Mode Wake-up Timing
Table 5-35 lists the IDLE mode timing requirements, Table 5-36 lists the switching characteristics, and
Figure 5-26 shows the timing diagram for IDLE mode.
Table 5-35. IDLE Mode Timing Requirements (1)
MIN
tw(WAKE)
(1)
Pulse duration, external wake-up signal
Without input qualifier
With input qualifier
MAX
2tc(SYSCLK)
UNIT
cycles
2tc(SYSCLK) + tw(IQSW)
For an explanation of the input qualifier parameters, see Table 5-31.
Table 5-36. IDLE Mode Switching Characteristics (1)
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Delay time, external wake signal to program execution resume
td(WAKE-IDLE)
MIN
MAX
•
Wake up from flash
– Flash module in active state
Without input qualifier
•
Wake up from flash
– Flash module in sleep state
Without input qualifier
40tc(SYSCLK)
With input qualifier
With input qualifier
40tc(SYSCLK) + tw(WAKE)
6700tc(SYSCLK) (3)
(1)
(2)
(3)
Wake up from RAM
cycles
6700tc(SYSCLK) (3) + tw(WAKE)
Without input qualifier
•
UNIT
(2)
25tc(SYSCLK)
With input qualifier
25tc(SYSCLK) + tw(WAKE)
For an explanation of the input qualifier parameters, see Table 5-31.
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x
Piccolo Microcontrollers Technical Reference Manual.
td(WAKE-IDLE)
Address/Data
(internal)
XCLKOUT
tw(WAKE)
WAKE
A.
(A)
WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK
cycles (minimum) is needed before the wake-up signal could be asserted.
Figure 5-26. IDLE Entry and Exit Timing Diagram
92
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-37 lists the HALT mode timing requirements, Table 5-38 lists the switching characteristics, and
Figure 5-27 shows the timing diagram for HALT mode.
Table 5-37. HALT Mode Timing Requirements
MIN
MAX
UNIT
tw(WAKE-GPIO)
Pulse duration, GPIO wake-up signal (1)
toscst + 2tc(OSCCLK)
cycles
tw(WAKE-XRS)
Pulse duration, XRSn wake-up signal (1)
toscst + 8tc(OSCCLK)
cycles
(1)
For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on
circuit/layout external to the device. See Table 5-22 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK,
see Section 5.8.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is
powered externally to the device.
Table 5-38. HALT Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOS)
Delay time, IDLE instruction executed to XCLKOUT stop
MIN
MAX
UNIT
16tc(INTOSC1)
cycles
Delay time, external wake signal end to CPU program
execution resume
•
Wake up from flash
– Flash module in active state
•
Wake up from flash
– Flash module in sleep state
•
Wake up from RAM
td(WAKE-HALT)
(1)
75tc(OSCCLK)
cycles
17500tc(OSCCLK)
(1)
75tc(OSCCLK)
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x
Piccolo Microcontrollers Technical Reference Manual.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
93
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
(C)
(A)
(B)
Device
Status
(F)
(D)(E)
HALT
(G)
HALT
Flushing Pipeline
Normal
Execution
GPIOn
td(WAKE-HALT)
tw(WAKE-GPIO)
OSCCLK
Oscillator Start-up Time
XCLKOUT
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
H.
IDLE instruction is executed to put the device into HALT mode.
The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being
turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.
Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very
little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in
HALT MODE. This is done by writing 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of
five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator
wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This
enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin
asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment before
entering and during HALT mode.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.
When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The
HALT mode is now exited.
Normal operation resumes.
The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.
Figure 5-27. HALT Entry and Exit Timing Diagram
94
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Analog Peripherals
The analog subsystem module is described in this section.
The analog modules on this device include the ADC, PGA, temperature sensor, buffered DAC, and
CMPSS.
The analog subsystem has the following features:
• Flexible voltage references
– The ADCs are referenced to VREFHIx and VREFLOx pins.
• VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap
voltage reference.
• The internal voltage reference range can be selected to be 0 V to 3.3 V or 0 V to 2.5 V.
• The buffered DACs are referenced to VREFHIx and VREFLOx.
– Alternately, these DACs can be referenced to the VDAC pin and VSSA.
• The comparator DACs are referenced to VDDA and VSSA.
– Alternately, these DACs can be referenced to the VDAC pin and VSSA.
• Flexible pin usage
– Buffered DAC outputs, comparator subsystem inputs, PGA functions, and digital inputs are
multiplexed with ADC inputs
– Internal connection to VREFLO on all ADCs for offset self-calibration
Figure 5-28 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP.
Figure 5-29 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP.
Figure 5-30 shows the Analog Subsystem Block Diagram for the 56-pin RSH VQFN.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
95
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
VREFHIA
VREFHIB
VREFLOA
VREFLOB
CMP1_HP
CMP1_HN
VREFHI
VDAC
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
CTRIP1H
CTRIPOUT1H
DAC12
A0/B15/C15/DACA_OUT
A1/DACB_OUT
DACREFSEL
Misc. Analog
Temp
Sensor
AIO
AIO
AIO
Analog Group 1
A3
A2/B6/PGA1_OF
C0
PGA1_IN
PGA1_GND
12-bit
Buffered
DAC-A
DACA_OUT
PGA1
Vref
CMPSS1
Input MUX
Input MUX
ADC Inputs
A0 to A15
CMPSS3
Input MUX
AIO
AIO
AIO
PGA2
CMPSS2
Input MUX
C3/PGA4_IN
12-bits
CTRIP3H
CTRIPOUT3H
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
CTRIP4H
CTRIPOUT4H
VDDA or VDAC
DAC12
DACREFSEL
DAC12
12-bit
Buffered
DAC-B
DACB_OUT
ANAREFBSEL
REFLO
CTRIP5H
CTRIPOUT5H
DAC12
DAC12
Digital
Filter
CTRIP5L
CTRIPOUT5L
Comparator Subsystem 6
Digital
Filter
CTRIP6H
CTRIPOUT6H
VDDA or VDAC
REFHI
Input MUX
DAC12
ADC-B
12-bits
Comparator Subsystem 5
Digital
Filter
CMP5_LN
CMP5_LP
CMP6_HP
CMP6_HN
ADC Inputs
B0 to B15
CTRIP4L
CTRIPOUT4L
VDDA or VDAC
Reference Circuit B
Vref
Digital
Filter
CMP4_LN
CMP4_LP
CMP5_HP
CMP5_HN
Analog Group 6
C5/PGA6_IN
Comparator Subsystem 3
Digital
Filter
VDDA or VDAC
DAC12
VDAC
AIO
AIO
AIO
A9
A8/PGA6_OF
CTRIP2L
CTRIPOUT2L
CMP3_LN
CMP3_LP
CMP4_HP
CMP4_HN
PGA4
CMPSS4
Input MUX
Digital
Filter
DAC12
ADC-A
VREFHI
Analog Group 4
B4/C8/PGA4_OF
DAC12
CMP2_LN
CMP2_LP
REFLO
Analog Interconnect
Analog Group 2
A5
A4/B8/PGA2_OF
C1
PGA2_IN
PGA2_GND/
PGA4_GND/
PGA6_GND/
CTRIP2H
CTRIPOUT2H
REFHI
PGA3
CMPSS5
Input MUX
Comparator Subsystem 2
Digital
Filter
VDDA or VDAC
DAC12
CMP3_HP
CMP3_HN
AIO
AIO
AIO
PGA5
CTRIP1L
CTRIPOUT1L
REFLO
Analog Group 5
A6/PGA5_OF
C4
PGA5_IN
PGA5_GND
CMP2_HP
CMP2_HN
ANAREFASEL
AIO
AIO
AIO
AIO
AIO
AIO
Digital
Filter
Reference Circuit A
Analog Group 3
B3/VDAC
B2/C6/PGA3_OF
C2
PGA3_IN
PGA3_GND
DAC12
CMP1_LN
CMP1_LP
DAC12
Digital
Filter
CTRIP6L
CTRIPOUT6L
Comparator Subsystem 7
Digital
Filter
CTRIP7H
CTRIPOUT7H
CMP6_LN
CMP6_LP
REFLO
AIO
AIO
AIO
CMP7_HP
CMP7_HN
PGA6
CMPSS6
Input MUX
VDDA or VDAC
DAC12
DAC12
CMP7_LN
CMP7_LP
Analog Group 7
CTRIP7L
CTRIPOUT7L
AIO
AIO
AIO
PGA7
CMPSS7
Input MUX
REFHI
ADC Inputs
C0 to C15
CMPSS
Inputs
Input MUX
B0
A10/B1/C10/PGA7_OF
C14
PGA7_IN
PGA7_GND
Digital
Filter
ADC-C
12-bits
REFLO
Copyright © 2017, Texas Instruments Incorporated
Figure 5-28. Analog Subsystem Block Diagram (100-Pin PZ LQFP)
96
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
VREFHIA
VREFLOA
CMP1_HP
CMP1_HN
VREFHI
VDAC
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
CTRIP1H
CTRIPOUT1H
DAC12
A0/B15/C15/DACA_OUT
A1/DACB_OUT
DACREFSEL
Misc. Analog
Temp
Sensor
AIO
AIO
AIO
DACA_OUT
Analog Group 1
Vref
CMPSS1
Input MUX
ADC Inputs
A0 to A15
CMPSS3
Input MUX
CMPSS5
Input MUX
Analog Group 2
AIO
AIO
AIO
A4/B8/PGA2_OF
C1/PGA2_IN
PGA2_GND/
PGA4_GND/
PGA6_GND/
PGA2
CMPSS2
Input MUX
DAC12
Digital
Filter
CTRIP2L
CTRIPOUT2L
Comparator Subsystem 3
Digital
Filter
VDDA or VDAC
CTRIP3H
CTRIPOUT3H
12-bits
DAC12
CMP4_HP
CMP4_HN
VREFHI
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
VDAC
DAC12
DACREFSEL
DAC12
12-bit
Buffered
DAC-B
DACB_OUT
Digital
Filter
CTRIP4L
CTRIPOUT4L
Comparator Subsystem 5
Digital
Filter
CTRIP5H
CTRIPOUT5H
CMP4_LN
CMP4_LP
CMP5_HP
CMP5_HN
VDDA or VDAC
DAC12
DAC12
Digital
Filter
CTRIP5L
CTRIPOUT5L
Comparator Subsystem 7
Digital
Filter
CTRIP7H
CTRIPOUT7H
CMP5_LN
CMP5_LP
Analog Group 4
AIO
AIO
AIO
B4/C8/PGA4_OF
C3/PGA4_IN
DAC12
REFLO
Analog Interconnect
C4/PGA5_IN
CTRIP2H
CTRIPOUT2H
DAC12
ADC-A
Analog Group 5
PGA5
Comparator Subsystem 2
Digital
Filter
VDDA or VDAC
REFHI
PGA3
AIO
AIO
AIO
CTRIP1L
CTRIPOUT1L
CMP2_LN
CMP2_LP
CMP3_HP
CMP3_HN
AIO
AIO
AIO
A6/PGA5_OF
Digital
Filter
REFLO
Analog Group 3
Input MUX
C2/PGA3_IN
CMP2_HP
CMP2_HN
ANAREFASEL
PGA1
B3/VDAC
B2/C6/PGA3_OF
DAC12
Reference Circuit A
AIO
AIO
AIO
A2/B6/PGA1_OF
C0/PGA1_IN
PGA1_GND/
PGA3_GND/
PGA5_GND/
12-bit
Buffered
DAC-A
CMP1_LN
CMP1_LP
PGA4
REFHI
ADC Inputs
B0 to B15
Input MUX
CMPSS4
Input MUX
ADC-B
12-bits
REFLO
CMP7_HP
PGA6(A)
VDDA or VDAC
DAC12
DAC12
CMP7_LP
Analog Group 7
A10/B1/C10
Digital
Filter
CTRIP7L
CTRIPOUT7L
AIO
AIO
AIO
REFHI
ADC Inputs
C0 to C15
CMPSS
Inputs
Input MUX
CMPSS7
Input MUX
ADC-C
12-bits
REFLO
Copyright © 2017, Texas Instruments Incorporated
A.
This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as
other PGAs with a shared PGA ground.
Figure 5-29. Analog Subsystem Block Diagram (64-Pin PM LQFP)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
97
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
VREFHIA
VREFLOA
CMP1_HP
CMP1_HN
VREFHI
VDAC
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
CTRIP1H
CTRIPOUT1H
DAC12
A0/B15/C15/DACA_OUT
A1/DACB_OUT
DACREFSEL
Misc. Analog
Temp
Sensor
AIO
AIO
AIO
DACA_OUT
Analog Group 1
Vref
CMPSS1
Input MUX
ADC Inputs
A0 to A15
CMPSS3
Input MUX
DAC12
CMPSS2
Input MUX
CTRIP2L
CTRIPOUT2L
Comparator Subsystem 3
Digital
Filter
VDDA or VDAC
CTRIP3H
CTRIPOUT3H
12-bits
DAC12
VREFHI
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
VDAC
DAC12
DACREFSEL
DAC12
12-bit
Buffered
DAC-B
DACB_OUT
Digital
Filter
CTRIP4L
CTRIPOUT4L
Comparator Subsystem 7
Digital
Filter
CTRIP7H
CTRIPOUT7H
CMP4_LN
CMP4_LP
Analog Group 4
AIO
AIO
AIO
B4/C8/PGA4_OF
C3/PGA4_IN
Analog Interconnect
AIO
AIO
AIO
PGA2
Digital
Filter
DAC12
ADC-A
CMP4_HP
CMP4_HN
C1/PGA2_IN
PGA2_GND/
PGA4_GND/
PGA6_GND/
CTRIP2H
CTRIPOUT2H
DAC12
REFLO
Analog Group 2
Comparator Subsystem 2
Digital
Filter
VDDA or VDAC
REFHI
PGA3
A4/B8/PGA2_OF
CTRIP1L
CTRIPOUT1L
CMP2_LN
CMP2_LP
CMP3_HP
CMP3_HN
AIO
AIO
AIO
PGA5(A)
Digital
Filter
REFLO
Analog Group 3
Input MUX
C2/PGA3_IN
CMP2_HP
CMP2_HN
ANAREFASEL
PGA1
B3/VDAC
B2/C6/PGA3_OF
DAC12
Reference Circuit A
AIO
AIO
AIO
A2/B6/PGA1_OF
C0/PGA1_IN
PGA1_GND/
PGA3_GND/
PGA5_GND/
12-bit
Buffered
DAC-A
CMP1_LN
CMP1_LP
PGA4
REFHI
ADC Inputs
B0 to B15
Input MUX
CMPSS4
Input MUX
ADC-B
12-bits
REFLO
CMP7_HP
PGA6(A)
VDDA or VDAC
DAC12
DAC12
CMP7_LP
Analog Group 7
A10/B1/C10
Digital
Filter
CTRIP7L
CTRIPOUT7L
AIO
AIO
AIO
REFHI
ADC Inputs
C0 to C15
CMPSS
Inputs
Input MUX
CMPSS7
Input MUX
ADC-C
12-bits
REFLO
Copyright © 2017, Texas Instruments Incorporated
A.
This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as
other PGAs with a shared PGA ground.
Figure 5-30. Analog Subsystem Block Diagram (56-Pin RSH VQFN)
98
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Figure 5-31 shows the analog group connections. See Table 5-39 for the specific connections for each
group for each package. Table 5-40 provides descriptions of the analog signals.
CMPSSx Input MUX
CMPxHPMX
PGAx_OF
CMPx_HP0
Gx_ADCC
CMPx_HP1
PGAx_IN
CMPx_HP2
Gx_ADCAB
CMPx_HP3
CMPx_HP4
0
1
CMPx_HP
2
3
4
CMPx_HN0
0
Gx_ADCC
CMPx_HN1
1
Gx_ADCAB
CMPx_LN0
0
Gx_ADCC
CMPx_LN1
1
PGAx_OF
CMPx_LP0
Gx_ADCC
CMPx_LP1
PGAx_IN
CMPx_LP2
Gx_ADCAB
CMPx_LP3
CMPx_HN
CMPxLNMX
CMPx_LN
To CMPSSx
CMPxHNMX
Gx_ADCAB
CMPxLPMX
CMPx_LP4
0
1
2
CMPx_LP
3
4
Gx_ADCAB
Gx_ADCAB
(B)
AIO
PGAx_OF
PGAx_OF
AIO(B)
Gx_ADCC
PGACTL[FILTRESSEL]
(A)
(B)
AIO
RFILTER
(C)
To ADCs
To Device Pins
Gx_ADCC
VDDA
PGAx_IN
+
PGACTL[PGAEN]
PGAx
PGAx_OUT
±
VSSA
RGND
ROUT
PGAx_GND
PGACTL[GAIN]
A.
B.
C.
On lower pin-count packages, the input to Gx_ADCC will share a pin with the PGA input. If the PGA input is unused,
then the ADCC input can allow the pin to be used as an ADC input, a negative comparator input, or a digital input.
AIOs support digital input mode only.
The PGA RFILTER path is not available on some device revisions. See the TMS320F28004x Piccolo™
Microcontrollers Silicon Errata for more information.
Figure 5-31. Analog Group Connections
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
99
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-39. Analog Pins and Internal Connections
PACKAGE
PIN NAME
ALWAYS CONNECTED (NO MUX)
COMPARATOR SUBSYSTEM (MUX)
GROUP NAME
100 PZ
VREFHIA
-
VREFHIB
-
VREFHIC
-
VREFLOA
-
VREFLOB
-
VREFLOC
-
64 PM
56 RSH
16
14
17
15
ADCA
ADCB
ADCC
PGA
DAC
HIGH POSITIVE
HIGH
NEGATIVE
LOW POSITIVE
HPMXSEL = 3
HNMXSEL = 0
LPMXSEL = 3
LOW
NEGATIVE
AIO INPUT
LNMXSEL = 0
AIO233
25
24
27
A13
B13
26
C13
Analog Group 1
A3
G1_ADCAB
10
A2/B6/PGA1_OF
PGA1_OF
9
C0
G1_ADCC
19
PGA1_IN
PGA1_IN
18
PGA1_GND
PGA1_GND
14
-
PGA1_OUT (1)
CMP1
A3
9
8
A2
B6
PGA1_OF
HPMXSEL = 0
C0
12
HPMXSEL = 1
HNMXSEL = 1
LPMXSEL = 1
9
HPMXSEL = 2
LPMXSEL = 2
B7
PGA1_OUT
HPMXSEL = 4
LPMXSEL = 4
Analog Group 2
G2_ADCAB
35
A4/B8/PGA2_OF
PGA2_OF
36
C1
G2_ADCC
29
PGA2_IN
PGA2_IN
30
PGA2_GND
PGA2_GND
32
-
PGA2_OUT (1)
21
A4
HPMXSEL = 3
B8
PGA2_OF
HPMXSEL = 1
LPMXSEL = 3
18
HNMXSEL = 1
LPMXSEL = 1
HPMXSEL = 2
LPMXSEL = 2
B9
PGA2_OUT
HPMXSEL = 4
LPMXSEL = 4
Analog Group 3
G3_ADCAB
8
8
7
B3
B2/C6/PGA3_OF
PGA3_OF
7
7
6
B2
C2
G3_ADCC
21
PGA3_IN
PGA3_IN
20
PGA3_GND
PGA3_GND
15
-
PGA3_OUT (1)
VDAC
C6
PGA3_OF
C2
HPMXSEL = 3
HNMXSEL = 0
HPMXSEL = 0
HPMXSEL = 1
LPMXSEL = 3
G4_ADCAB
B4/C8/PGA4_OF
PGA4_OF
PGA3_IN
9
HNMXSEL = 1
LPMXSEL = 1
C3
G4_ADCC
PGA4_IN
PGA4_IN
PGA3_OUT
HPMXSEL = 2
LPMXSEL = 2
HPMXSEL = 4
LPMXSEL = 4
PGA4_GND
PGA4_GND
-
PGA4_OUT (1)
(1)
100
19
22
B4
C8
PGA4_OF
20
HNMXSEL = 0
HPMXSEL = 0
HPMXSEL = 1
LPMXSEL = 3
LNMXSEL = 0
AIO243
LPMXSEL = 0
HNMXSEL = 1
LPMXSEL = 1
AIO227
LNMXSEL = 1
AIO245
17
PGA4_IN
32
AIO244
CMP4
HPMXSEL = 3
C3
31
AIO226
LNMXSEL = 1
PGA3_GND
C7
B5
24
AIO242
11
B10
39
LNMXSEL = 0
LPMXSEL = 0
Analog Group 4
B5
AIO238
CMP3
B3/VDAC
10
AIO225
LNMXSEL = 1
PGA2_GND
A12
13
AIO234
LPMXSEL = 0
16
PGA2_IN
20
HNMXSEL = 0
HPMXSEL = 0
C1
18
LNMXSEL = 0
CMP2
A5
23
AIO237
PGA1_GND
A11
A5
AIO224
LNMXSEL = 1
10
PGA1_IN
10
LPMXSEL = 0
18
HPMXSEL = 2
LPMXSEL = 2
HPMXSEL = 4
LPMXSEL = 4
PGA4_GND
B11
C9
PGA4_OUT
Internal connection only; does not come to a device pin.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-39. Analog Pins and Internal Connections (continued)
PACKAGE
PIN NAME
ALWAYS CONNECTED (NO MUX)
COMPARATOR SUBSYSTEM (MUX)
GROUP NAME
100 PZ
64 PM
56 RSH
ADCA
ADCB
ADCC
PGA
DAC
HIGH POSITIVE
HIGH
NEGATIVE
LOW POSITIVE
HPMXSEL = 3
HNMXSEL = 0
LPMXSEL = 3
Analog Group 5
A7
G5_ADCAB
A6/PGA5_OF
PGA5_OF
6
C4
G5_ADCC
17
PGA5_IN
PGA5_IN
16
PGA5_GND
PGA5_GND
13
-
PGA5_OUT (1)
AIO INPUT
LNMXSEL = 0
AIO235
CMP5
A7
6
LOW
NEGATIVE
A6
PGA5_OF
HPMXSEL = 0
C4
HPMXSEL = 1
LPMXSEL = 0
HNMXSEL = 1
LPMXSEL = 1
AIO228
LNMXSEL = 1
AIO239
LNMXSEL = 0
AIO236
11
PGA5_IN
10
9
HPMXSEL = 2
LPMXSEL = 2
HPMXSEL = 4
LPMXSEL = 4
PGA5_GND
A14
PGA5_OUT
Analog Group 6
CMP6
A9
G6_ADCAB
38
A9
A8/PGA6_OF
PGA6_OF
37
A8
C5
G6_ADCC
PGA6_IN
PGA6_IN
PGA6_GND
PGA6_GND
-
PGA6_OUT (1)
HPMXSEL = 3
PGA6_OF
HNMXSEL = 0
HPMXSEL = 0
C5
HPMXSEL = 1
LPMXSEL = 3
LPMXSEL = 0
HNMXSEL = 1
LPMXSEL = 1
AIO229
LNMXSEL = 1
AIO240
LNMXSEL = 0
AIO241
28
PGA6_IN
32
20
18
HPMXSEL = 2
LPMXSEL = 2
HPMXSEL = 4
LPMXSEL = 4
PGA6_GND
A15
PGA6_OUT
Analog Group 7
B0
G7_ADCAB
41
A10/B1/C10/PGA7_OF
PGA7_OF (2)
40
C14
G7_ADCC
44
PGA7_IN
PGA7_IN
43
PGA7_GND
PGA7_GND
42
-
PGA7_OUT (1)
CMP7
B0
25
23
A10
B1
HPMXSEL = 3
C10
PGA7_OF
HNMXSEL = 0
HPMXSEL = 0
C14
HPMXSEL = 1
PGA7_IN
LPMXSEL = 3
LPMXSEL = 0
HNMXSEL = 1
LPMXSEL = 1
HPMXSEL = 2
LPMXSEL = 2
HPMXSEL = 4
LPMXSEL = 4
AIO230
LNMXSEL = 1
AIO246
PGA7_GND
B12
C11
PGA7_OUT
Other Analog
A0/B15/C15/DACA_OUT
23
15
13
A0
A1/DACB_OUT
22
14
12
A1
B15
C12
-
(2)
C15
DACA_OUT
AIO231
DACB_OUT
AIO232
C12
TempSensor (1)
AIO247
B14
PGA functionality not available on 64-pin and 56-pin packages.
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Specifications
101
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-40. Analog Signal Descriptions
SIGNAL NAME
DESCRIPTION
AIOx
Digital input on ADC pin
Ax
ADC A Input
Bx
ADC B Input
Cx
ADC C Input
CMPx_DACH
Comparator subsystem high DAC output
CMPx_DACL
Comparator subsystem low DAC output
CMPx_HNy
Comparator subsystem high comparator negative input
CMPx_HPy
Comparator subsystem high comparator positive input
CMPx_LNy
Comparator subsystem low comparator negative input
CMPx_LPy
Comparator subsystem low comparator positive input
DACx_OUT
Buffered DAC Output
PGAx_GND
PGA Ground
PGAx_IN
PGA Input
PGAx_OF
PGA Output for filter
PGAx_OUT
PGA Output to internal ADC
TempSensor
Internal temperature sensor
VDAC
Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to VSSA on this pin whether
used for ADC input or DAC reference which cannot be disabled. If this pin is used as a reference for the onchip DACs, place at least a 1-µF capacitor on this pin.
102
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9.1
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Analog-to-Digital Converter (ADC)
The ADC module described here is a successive approximation (SAR) style ADC with resolution of
12 bits. This section refers to the analog circuits of the converter as the “core,” and includes the channelselect MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference
circuits, and other analog support circuits. The digital circuits of the converter are referred to as the
“wrapper” and include logic for programmable conversions, result registers, interfaces to analog circuits,
interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules.
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of
multiple ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation
section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28004x Piccolo Microcontrollers
Technical Reference Manual).
Each ADC has the following features:
• Resolution of 12 bits
• Ratiometric external reference set by VREFHI/VREFLO
• Selectable internal reference of 2.5 V or 3.3 V
• Single-ended signaling
• Input multiplexer with up to 16 channels
• 16 configurable SOCs
• 16 individually addressable result registers
• Multiple trigger sources
– S/W: software immediate start
– All ePWMs: ADCSOC A or B
– GPIO XINT2
– CPU Timers 0/1/2
– ADCINT1/2
• Four flexible PIE interrupts
• Burst-mode triggering option
• Four post-processing blocks, each with:
– Saturating offset calibration
– Error from setpoint calculation
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability
– Trigger-to-sample delay capture
NOTE
Not every channel may be pinned out from all ADCs. See Section 4 to determine which
channels are available.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
103
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
The block diagram for the ADC core and ADC wrapper are shown in Figure 5-32.
Analog-to-Digital Core
Analog-to-Digital Wrapper Logic
SOC Arbitration
& Control
ADCSOC
[15:0]
ACQPS
u
DOUT1
xV
2
IN-
SOCxSTART[15:0]
xV
1
IN+
EOCx[15:0]
[15:0]
CHSEL
ADCCOUNTER
TRIGGER[15:0]
SOC Delay
Timestamp
Converter
S/H Circuit
...
RESULT
Trigger
Timestamp
-
+
ADCRESULT
0±15 Regs
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
...
ADCIN0
ADCIN1
ADCIN2
ADCIN3
ADCIN4
ADCIN5
ADCIN6
ADCIN7
ADCIN8
ADCIN9
ADCIN10
ADCIN11
ADCIN12
ADCIN13
ADCIN14
ADCIN15
TRIGSEL
SOCx (0-15)
[15:0]
Triggers
Input Circuit
CHSEL
ADCPPBxOFFCAL
saturate
ADCPPBxOFFREF
+
ADCPPBxRESULT
ADCEVT
VREFHI
CONFIG
Bandgap
Reference Circuit
1.65-V Output
(3.3-V Range)
or
2.5-V Output
(2.5-V Range)
1
Event
Logic
ADCEVTINT
Post Processing Block (1-4)
0
Interrupt Block (1-4)
ADCINT1-4
VREFLO
Analog System Control
ANAREFSEL
ANAREFx2PSSEL
Reference Voltage Levels
Figure 5-32. ADC Module Block Diagram
104
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9.1.1
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
ADC Configurability
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per
ADC module. Table 5-41 summarizes the basic ADC options and their level of configurability.
Table 5-41. ADC Options and Configuration Levels
OPTIONS
CONFIGURABILITY
Clock
Per module (1)
Resolution
Not configurable (12-bit resolution only)
Signal mode
Not configurable (single-ended signal mode only)
Reference voltage source
Per module
Trigger source
Per SOC (1)
Converted channel
Per SOC
Acquisition window duration
Per SOC (1)
EOC location
Per module
Burst mode
Per module (1)
(1)
Writing these values differently to different ADC modules could cause the ADCs to operate
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see
the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
5.9.1.1.1 Signal Mode
The ADC supports single-ended signaling. In single-ended mode, the input voltage to the converter is
sampled through a single pin (ADCINx), referenced to VREFLO. Figure 5-33 shows the single-ended
signaling mode.
VREFHI
Pin Voltage
VREFHI
ADCINx
ADCINx
ADC
VREFHI/2
VREFLO
VREFLO
(VSSA)
2n - 1
Digital Output
ADC Vin
0
Figure 5-33. Single-ended Signaling Mode
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
105
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.1.2
www.ti.com
ADC Electrical Data and Timing
Table 5-42 lists the ADC operating conditions. Table 5-43 lists the ADC electrical characteristics.
Table 5-42. ADC Operating Conditions
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ADCCLK (derived from PERx.SYSCLK)
TYP
5
Sample rate
100-MHz SYSCLK
Sample window duration (set by ACQPS and
PERx.SYSCLK) (1)
With 50 Ω or less Rs
VREFHI
VREFLO
VREFHI - VREFLO
Conversion range
Internal reference = 3.3 V
Conversion range
Internal reference = 2.5 V
Conversion range
External reference
(1)
MIN
MAX
UNIT
50
MHz
3.45
75
MSPS
ns
2.4
2.5 or 3.0
VDDA
V
VSSA
2.4
VSSA
VSSA
V
3.3
VDDA
V
3.3
V
0
2.5
V
VREFLO
VREFHI
V
0
The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.
NOTE
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input
exceeds this level, the VREF internal to the device may be disturbed, which can impact results
for other ADC or DAC inputs using the same VREF.
106
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-43. ADC Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
General
ADCCLK Conversion Cycles
Power Up Time
VREFHI input current
100-MHz SYSCLK
10.1
11 ADCCLKs
External Reference mode
500
µs
Internal Reference mode
5000
µs
Internal Reference mode, when switching between
2.5-V range and 3.3-V range.
5000
µs
(1)
130
µA
Internal Reference Capacitor
Value (2)
2.2
µF
External Reference Capacitor
Value (2)
2.2
µF
DC Characteristics
Gain Error
Internal reference
–45
External reference
–5
±3
5
–5
±2
5
Offset Error
45
LSB
LSB
Channel-to-Channel Gain Error
±2
LSB
Channel-to-Channel Offset Error
±2
LSB
±4
LSB
ADC-to-ADC Gain Error
Identical VREFHI and VREFLO for all ADCs
ADC-to-ADC Offset Error
Identical VREFHI and VREFLO for all ADCs
±2
LSB
DNL Error
>–1
±0.5
1
LSB
INL Error
–2
±1.0
2
LSB
ADC-to-ADC Isolation
VREFHI = 2.5 V, synchronous ADCs
VREFHI = 2.5 V, asynchronous ADCs
–1
1
Not Supported
LSBs
AC Characteristics
SNR (3)
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1
68.8
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from
INTOSC
60.1
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1,
VDD supplied from internal DC-DC regulator (4)
67.5
dB
THD (3)
VREFHI = 2.5 V, fin = 100 kHz
–80.6
dB
SFDR (3)
VREFHI = 2.5 V, fin = 100 kHz
79.2
dB
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1
68.5
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from
INTOSC
60.0
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from
X1, Single ADC
11.0
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from
X1, synchronous ADCs
11.0
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from
X1, asynchronous ADCs
Not
Supported
SINAD (3)
ENOB (3)
(1)
(2)
(3)
(4)
dB
bits
Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.
A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.
IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and
crosstalk.
Noise impact from the DCDC regulator to the ADC will be strongly dependent on PCB layout.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
107
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-43. ADC Characteristics (continued)
over operating free-air temperature range (unless otherwise noted)
PARAMETER
PSRR
108
Specifications
TEST CONDITIONS
MIN
TYP
VDD = 1.2-V DC + 100mV
DC up to Sine at 1 kHz
60
VDD = 1.2-V DC + 100 mV
DC up to Sine at 300 kHz
57
MAX
UNIT
dB
VDDA = 3.3-V DC + 200 mV
DC up to Sine at 1 kHz
60
VDDA = 3.3-V DC + 200 mV
Sine at 900 kHz
57
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.1.2.1 ADC Input Model
The ADC input characteristics are given by Table 5-44 and Figure 5-34.
Table 5-44. Input Model Parameters
DESCRIPTION
REFERENCE MODE
VALUE
Cp
Parasitic input capacitance
All
Ron
Sampling switch resistance
External Reference, 2.5-V Internal
Reference
500 Ω
3.3-V Internal Reference
860 Ω
Ch
Sampling capacitor
Rs
Nominal source impedance
See Table 5-45
External Reference, 2.5-V Internal
Reference
12.5 pF
3.3-V Internal Reference
7.5 pF
50 Ω
All
ADC
Rs
ADCINx
Switch
AC
Cp
Ron
Ch
VREFLO
Figure 5-34. Input Model
This input model should be used with actual signal source impedance to determine the acquisition window
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analogto-Digital Converter (ADC) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference
Manual.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
109
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-45 lists the parasitic capacitance on each channel.
Table 5-45. Per-Channel Parasitic Capacitance
ADC CHANNEL
(1)
110
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
ADCINA0
12.7
15.2
ADCINA1
13.7
16.2
ADCINA2
9.2
11.7
ADCINA3
6.9
9.4
ADCINA4
9.2
11.7
ADCINA5
7.5
10
ADCINA6
8.0
10.5
ADCINA7
7.0
9.5
ADCINA8
10.0
12.5
ADCINA9
8.1
10.6
ADCINA10
9.3
11.8
ADCINB0
7.1
9.6
ADCINB1
9.3
11.8
ADCINB2
9.6
12.1
ADCINB3 (1)
125.6
128.1
ADCINB4
8.8
11.3
ADCINB5
7.1
9.6
ADCINB6
9.2
11.7
ADCINB8
9.2
11.7
ADCINB15
12.7
15.2
ADCINC0
6.4
8.9
ADCINC1
6.1
8.6
ADCINC2
5.24
7.74
ADCINC3
5.5
8
ADCINC4
6.2
8.7
ADCINC5
5.6
8.1
ADCINC6
9.6
12.1
ADCINC8
8.8
11.3
ADCINC10
9.3
11.8
ADCINC12
4.1
6.6
ADCINC14
4.5
7
ADCINC15
12.7
15.2
This pin is also used to supply reference voltage for COMPDAC and GPDAC, and includes an internal
decoupling capacitor.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.1.2.2 ADC Timing Diagrams
Figure 5-35 shows the ADC conversion timings for two SOCs given the following assumptions:
• SOC0 and SOC1 are configured to use the same trigger.
• No other SOCs are converting or pending when the trigger occurs.
• The round-robin pointer is in a state that causes SOC0 to convert first.
• ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE
module).
Table 5-46 lists the descriptions of the ADC timing parameters. Table 5-47 lists the ADC timings.
Sample n
Input on SOC0.CHSEL
Input on SOC1.CHSEL
Sample n+1
ADC S+H
SOC0
SOC1
SYSCLK
ADCCLK
ADCTRIG
ADCSOCFLG.SOC0
ADCSOCFLG.SOC1
ADCRESULT0
(old data)
ADCRESULT1
(old data)
Sample n
Sample n+1
ADCINTFLG.ADCINTx
tSH
tLAT
tEOC
tINT
Figure 5-35. ADC Timings
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
111
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-46. ADC Timing Parameters
PARAMETER
DESCRIPTION
The duration of the S+H window.
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each
SOC, so tSH will not necessarily be the same for different SOCs.
tSH
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window
regardless of device clock settings.
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.
tLAT
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The
subsequent sample can start before the conversion results are latched.
tEOC
The time from the end of the S+H window until an ADCINT flag is set (if configured).
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being
latched into the result register.
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).
tINT
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a
delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or
trigger the DMA at exactly the time the sample is ready.
Table 5-47. ADC Timings
ADCCLK PRESCALE
SYSCLK CYCLES
ADCCLK CYCLES
ADCCTL2 [PRESCALE]
RATIO
ADCCLK:SYSCLK
tEOC
tLAT
0
1
11
13
1
11
11
2
2
21
23
1
21
10.5
4
3
31
34
1
31
10.3
6
4
41
44
1
41
10.3
8
5
51
55
1
51
10.2
10
6
61
65
1
61
10.2
12
7
71
76
1
71
10.1
14
8
81
86
1
81
10.1
(1)
112
tINT(EARLY)
(1)
tINT(LATE)
tEOC
By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET
field in the ADCINTCYCLE register.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9.2
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Programmable Gain Amplifier (PGA)
The Programmable Gain Amplifier (PGA) is used to amplify an input voltage for the purpose of increasing
the effective resolution of the downstream ADC and CMPSS modules.
The integrated PGA helps to reduce cost and design effort for many control applications that traditionally
require external, stand-alone amplifiers. On-chip integration ensures that the PGA is compatible with the
downstream ADC and CMPSS modules. Software-selectable gain and filter settings make the PGA
adaptable to various performance needs.
The PGA has the following features:
• Four programmable gain modes: 3x, 6x, 12x, 24x
• Internally powered by VDDA and VSSA
• Support for Kelvin ground connections using PGA_GND pin
• Embedded series resistors for RC filtering
The active component in the PGA is an embedded operational amplifier (op amp) that is configured as a
noninverting amplifier with internal feedback resistors. These internal feedback resistor values are paired
to produce software selectable voltage gains.
Three PGA signals are available at the device pins:
• PGA_IN is the positive input to the PGA op amp. The signal applied to this pin will be amplified by the
PGA.
• PGA_GND is the Kelvin ground reference for the PGA_IN signal. Ideally, the PGA_GND reference is
equal to VSSA; however, the PGA can tolerate small voltage offsets from VSSA.
• PGA_OF supports op amp output filtering with RC components. The filtered signal is available for
sampling and monitoring by internal ADC and CMPSS modules. The PGA RFILTER path is not
available on some device revisions. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata
for more information.
PGA_OUT is an internal signal at the op amp output. It is available for sampling and monitoring by the
internal ADC and CMPSS modules. Figure 5-36 shows the PGA block diagram.
VDDA
+
PGA_IN
PGACTL[PGAEN]
PGA_OUT
Op Amp
To ADC and CMPSS
RFILTER
±
To ADC and CMPSS
VSSA
RGND
PGACTL[FILTRESSEL]
ROUT
PGA_GND
PGACTL[GAIN]
PGA_OF
Figure 5-36. PGA Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
113
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.2.1
www.ti.com
PGA Electrical Data and Timing
Table 5-48 lists the PGA operating conditions. Table 5-49 lists the PGA characteristics.
Table 5-48. PGA Operating Conditions
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
PGA Output Range (1)
MIN
TYP
MAX
VSSA + 0.35
VDDA – 0.35
–50
200
PGA GND Range
UNIT
V
mV
Min ADC S+H
(No Filter; Gain = 3, 6, 12)
Settling within ±1 ADC LSB
Accuracy
160
ns
Min ADC S+H
(No Filter; Gain = 24)
Settling within ±2 ADC LSB
Accuracy
200
ns
(1)
This is the linear output range of the PGA. The PGA can output voltages outside this range, but the voltages will not be linear.
Table 5-49. PGA Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
General
Gain Settings
3, 6, 12, 24
Input Bias Current
Short Circuit Current
Full Scale Step Response
(No Filter)
Settling within ±2 ADC LSB
Accuracy
Settling Time
Gain Switching
Slew Rate
RGND
Filter Resistor Targets
nA
mA
450
ns
10
µs
Gain = 3
15
20
V/µs
Gain = 6
31
37
V/µs
Gain = 12
61
73
V/µs
Gain = 24
78
98
V/µs
9
kΩ
Gain = 6
4.5
kΩ
Gain = 12
2.25
kΩ
Gain = 24
1.125
kΩ
Gain = 3
18
kΩ
Gain = 6
22.5
kΩ
Gain = 12
24.75
kΩ
Gain = 24
25.875
kΩ
Gain = 3
ROUT
2
35
RFILT = 200 Ω
145
190
234
Ω
RFILT = 160 Ω
117
153
188
Ω
RFILT = 130 Ω
95
125
154
Ω
RFILT = 100 Ω
71
96
120
Ω
RFILT = 80 Ω
55
77
98
Ω
RFILT = 50 Ω
31
49
66
Ω
500
µs
Power Up Time
DC Characteristics
Gain = 3, 6, 12
–0.5
0.5
%
Gain = 24
–0.8
0.8
%
Offset Error (2)
Input Referred
–1.5
Offset Temp Coefficient
Input Referred
Gain Error (1)
Gain Temp Coefficient
(1)
(2)
114
±0.004
%/C
1.5
±5.5
mV
µV/C
Includes ADC gain error.
Includes ADC offset error.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-49. PGA Characteristics (continued)
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
DC Code Spread
2.5
MAX
UNIT
12b LSB
AC Characteristics
Bandwidth (3)
THD (4)
CMRR
PSRR (4)
Noise PSD
(4)
Integrated Noise
(Input Referred) (4)
(3)
(4)
All Gain Modes
7
MHz
DC
–78
dB
Up to 100 kHz
–70
dB
DC
–60
dB
Up to 100 kHz
–50
dB
DC
–75
dB
Up to 100 kHz
–50
dB
1 kHz
200
nV/sqrt(Hz)
3 Hz to 30 MHz
100
µV
3dB bandwidth.
Performance of PGA alone.
5.9.2.1.1 PGA Typical Characteristics Graphs
Figure 5-37 shows the input bias current versus temperature.
NOTE
For Figure 5-37, the following conditions apply (unless otherwise noted):
• TA = 30°C
• VDDA = 3.3 V
• VDD = 1.2 V
INPUT BIAS CURRENT vs TEMPERATURE
300
INPUT BIAS CURRENT (nA)
250
0V INPUT
1.65V INPUT
3.3V INPUT
200
150
100
50
0
-50
-100
-40
-20
0
20
40
60
80 100
TEMPERATURE (C)
120
140
160
DPLO
Figure 5-37. Input Bias Current Versus Temperature
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
115
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.3
www.ti.com
Temperature Sensor
5.9.3.1
Temperature Sensor Electrical Data and Timing
The temperature sensor can be used to measure the device junction temperature. The temperature
sensor is sampled through an internal connection to the ADC and translated into a temperature through
TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in
Table 5-50.
Table 5-50. Temperature Sensor Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
Tacc
Temperature Accuracy
tstartup
Start-up time
(TSNSCTL[ENABLE] to
sampling temperature
sensor)
tacq
ADC acquisition time
116
Specifications
TEST CONDITIONS
MIN
External reference
TYP
MAX
UNIT
±15
°C
500
µs
450
ns
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9.4
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Buffered Digital-to-Analog Converter (DAC)
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an
external load. For driving even higher loads than typical, a trade-off can be made between load size and
output voltage swing. For the load conditions of the buffered DAC, see Section 5.9.4.1. The buffered DAC
is a general-purpose DAC that can be used to generate a DC voltage or AC waveforms such as sine
waves, square waves, triangle waves and so forth. Software writes to the DAC value register can take
effect immediately or can be synchronized with EPWMSYNCO events.
Each buffered DAC has the following features:
• 12-bit resolution
• Selectable reference voltage source
• x1 and x2 gain modes when using internal VREFHI
• Ability to synchronize with EPWMSYNCO
The block diagram for the buffered DAC is shown in Figure 5-38.
DACCTL[DACREFSEL]
ANAREFx2P5
VDAC
Internal
Reference
Circuit
1.65v
0
1
2.5v
1
0
0
DACREF
1
VREFHI
ANAREFxSEL
VDDA
SYSCLK
DACVALS
>
DACCTL[LOADMODE]
D Q
0
DACVALA
D Q
EPWM1SYNCO 0
EPWM2SYNCO 1
EPWM3SYNCO 2
...
Y
EPWMnSYNCO n-1
1
>
12-bit
DAC
DACOUT
Amp
(x1 or x2)
VSSA
VSSA
DACCTL[MODE]
(Select x1 or x2 Gain)
DACCTL[SYNCSEL]
Figure 5-38. DAC Module Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
117
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.4.1
www.ti.com
Buffered DAC Electrical Data and Timing
Table 5-51 lists the buffered DAC operating conditions. Table 5-52 lists the buffered DAC electrical
characteristics.
Table 5-51. Buffered DAC Operating Conditions
over recommended operating conditions (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
RL
Resistive Load (2)
CL
Capacitive Load
VOUT
Valid Output Voltage
Range (3)
(2)
(3)
(4)
TYP
MAX
UNIT
5
Reference Voltage (4)
(1)
MIN
kΩ
100
pF
RL = 5 kΩ
0.3
VDDA – 0.3
V
RL = 1 kΩ
0.6
VDDA – 0.6
V
VDAC or VREFHI
2.4
VDDA
V
2.5 or 3.0
Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.
DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited.
This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear
due to the buffer.
For best PSRR performance, VDAC or VREFHI should be less than VDDA.
Table 5-52. Buffered DAC Electrical Characteristics
over recommended operating conditions (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
General
Resolution
12
Load Regulation
–1
Glitch Energy
1
mV/V
1.5
Voltage Output Settling Time Full-Scale
Voltage Output Settling Time 1/4th Full-Scale
Load Transient Settling Time
Reference Input Resistance
Settling to 2 LSBs after 0.3Vto-3V transition
(2)
Power Up Time
V-ns
2
µs
1.6
µs
4.5
V/µs
5-kΩ Load
328
ns
1-kΩ Load
557
ns
Settling to 2 LSBs after 0.3Vto-0.75V transition
Slew rate from 0.3V-to-3V
transition
Voltage Output Slew Rate
TPU
bits
VDAC or VREFHI
2.8
240
kΩ
External Reference mode
160
200
500
µs
Internal Reference mode
5000
µs
DC Characteristics
Offset
Offset Error
Gain
Gain Error (3)
Midpoint
–10
10
mV
–2.5
2.5
% of FSR
DNL
Differential Non Linearity (4)
Endpoint corrected
–1
±0.4
1
LSB
INL
Integral Non Linearity
Endpoint corrected
–5
±2
5
LSB
AC Characteristics
Output Noise
Integrated noise from 100 Hz
to 100 kHz
600
µVrms
Noise density at 10 kHz
800
nVrms/√Hz
SNR
Signal to Noise Ratio
1 kHz, 200 KSPS
64
dB
THD
Total Harmonic Distortion
1 kHz, 200 KSPS
–64.2
dB
(1)
(2)
(3)
(4)
118
Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.
Per active Buffered DAC module.
Gain error is calculated for linear output range.
The DAC output is monotonic.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-52. Buffered DAC Electrical Characteristics (continued)
over recommended operating conditions (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SFDR
Spurious Free Dynamic
Range
1 kHz, 200 KSPS
66
dB
SINAD
Signal to Noise and
Distortion Ratio
1 kHz, 200 KSPS
61.7
dB
PSRR
Power Supply Rejection
Ratio (5)
DC
70
dB
100 kHz
30
dB
(5)
VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.
NOTE
The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If
the VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of
VDAC may float to 0 V internally, giving improper DAC output.
5.9.4.1.1 Buffered DAC Illustrative Graphs
Figure 5-39 shows the buffered DAC offset. Figure 5-40 shows the buffered DAC gain. Figure 5-41 shows
the buffered DAC linearity.
Offset Error
Code 2048
Figure 5-39. Buffered DAC Offset
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
119
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Actual Gain
Ideal Gain
Code 3722
Code 373
Linear Range
(3.3-V Reference)
Figure 5-40. Buffered DAC Gain
Linearity Error
Code 3722
Code 373
Linear Range
(3.3-V Reference)
Figure 5-41. Buffered DAC Linearity
120
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.4.1.2 Buffered DAC Typical Characteristics Graphs
Figure 5-42 to Figure 5-47 show the typical performance for some buffered DAC parameters. Figure 5-42
shows the DNL. Figure 5-43 shows the INL. Figure 5-44 shows the glitch response (511 to 512 DACVAL)
and Figure 5-45 shows the glitch response (512 to 511 DACVAL). Note that the glitch only happens at
MSB transitions, with 511-to-512 and 512-to-511 transitions being the worst case. Figure 5-46 shows the
1-kΩ load transient. Figure 5-47 shows the 5-kΩ load transient.
NOTE
For Figure 5-42 to Figure 5-47, the following conditions apply (unless otherwise noted):
• TA = 30°C
• VDDA = 3.3 V
• VDD = 1.2 V
DNL at VREFHI = 2.5V
INL at VREFHI = 2.5V
0.6
DACA
DACB
0.4
INL (LSB)
DNL (LSB)
0.2
0
-0.2
-0.4
-0.6
0
500
1000
1500
2000 2500
DACVAL
3000
3500
4000
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
DACA
DACB
0
500
Figure 5-42. DNL
1500
2000 2500
DACVAL
3000
3500
4000
DPLO
Figure 5-43. INL
GLITCH RESPONSE at VDAC = 2.5V
511 to 512 DACVAL
GLITCH RESPONSE at VDAC = 2.5V
512 to 511 DACVAL
0.33
0.329
0.328
0.327
0.326
0.325
0.324
0.323
0.322
0.321
0.32
0.319
0.318
0.317
0.316
0.315
0.325
0.323
0.321
0.319
DACOUT (V)
DACOUT (V)
1000
DPLO
0.317
0.315
0.313
0.311
0.309
0.307
0.305
0
100
200
300
400
TIME (ns)
500
600
Figure 5-44. Glitch Response – 511 to 512 DACVAL
0
DPLO
100
200
300
400
TIME (ns)
500
600
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
DPLO
Figure 5-45. Glitch Response – 512 to 511 DACVAL
121
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5K LOAD TRANSIENT at VDAC = 2.5V
2.4
2.38
2.38
2.36
2.36
2.34
2.34
LOAD CONNECTED
DACOUT (V)
DACOUT (V)
1K LOAD TRANSIENT at VDAC = 2.5V
2.4
2.32
2.3
2.28
2.3
2.28
2.26
2.24
2.24
2.22
2.22
2.2
0
100
200
300
400
500
TIME (ns)
600
Figure 5-46. 1-kΩ Load Transient
122
2.32
2.26
2.2
LOAD CONNECTED
Specifications
700
800
DPLO
0
100
200
300
400
500
TIME (ns)
600
700
800
DPLO
Figure 5-47. 5-kΩ Load Transient
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
5.9.5
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Comparator Subsystem (CMPSS)
Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp
generator. Comparators are denoted "H" or "L" within each module, where “H” and “L” represent high and
low, respectively. Each comparator generates a digital output that indicates whether the voltage on the
positive input is greater than the voltage on the negative input. The positive input of the comparator can
be driven from an external pin or by the PGA. The negative input can be driven by an external pin or by
the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital
filter that can remove spurious trip signals. An unfiltered output is also available if filtering is not required.
A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the high
comparator in the subsystem. There are two outputs from each CMPSS module. These two outputs pass
through the digital filters and crossbar before connecting to the ePWM modules or GPIO pin. Figure 5-48
shows the CMPSS connectivity.
CMP1_HP
CMP1_HN
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
CTRIP1H
CTRIP1H
CTRIPOUT1H
DAC12
CMP1_LN
CMP1_LP
CMP2_HP
CMP2_HN
Digital
Filter
Comparator Subsystem 2
Digital
Filter
VDDA or VDAC
CTRIP1L
CTRIPOUT1L
CMP2_LN
CMP2_LP
CTRIP2L
ePWM X-BAR
ePWMs
Output X-BAR
GPIO Mux
CTRIP2H
CTRIPOUT2H
DAC12
DAC12
CTRIP1L
CTRIP2H
DAC12
CTRIP7H
Digital
Filter
CTRIP2L
CTRIPOUT2L
CTRIP7L
CTRIPOUT1H
CTRIPOUT1L
CTRIPOUT2H
CMP7_HP
CMP7_HN
Comparator Subsystem 7
Digital
Filter
VDDA or VDAC
CTRIP7H
CTRIPOUT7H
CTRIPOUT2L
DAC12
DAC12
CMP7_LN
CMP7_LP
Digital
Filter
CTRIP7L
CTRIPOUT7L
CTRIPOUT7H
CTRIPOUT7L
Figure 5-48. CMPSS Connectivity
NOTE
Not all packages have all CMPSS pins. See Table 5-39.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
123
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.9.5.1
www.ti.com
CMPSS Electrical Data and Timing
Table 5-53 lists the comparator electrical characteristics. Figure 5-49 shows the CMPSS comparator input
referred offset. Figure 5-50 shows the CMPSS comparator hysteresis.
Table 5-53. Comparator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TPU
TEST CONDITIONS
MIN
TYP
Power-up time
Comparator input (CMPINxx) range
Input referred offset error
Hysteresis (1)
PSRR
CMRR
Common Mode Rejection
Ratio
(1)
UNIT
500
µs
0
VDDA
–20
20
1x
12
2x
24
3x
36
4x
48
Step response
21
Response time (delay from CMPINx input
change to output on ePWM X-BAR or Output Ramp response (1.65V/µs)
X-BAR)
Ramp response (8.25mV/µs)
Power Supply Rejection
Ratio
MAX
LSB
60
26
Up to 250 kHz
V
mV
ns
30
ns
46
dB
40
dB
The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS
DAC reference voltage. Hysteresis is available for all comparator input source configurations.
NOTE
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation.
If a CMPSS input exceeds this level, an internal blocking circuit isolates the internal
comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V.
During this time, the internal comparator input is floating and can decay below VDDA within
approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result
depending on the value of the other comparator input.
Input Referred Offset
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
CMPINxN or
DACxVAL
COMPINxP
Voltage
Figure 5-49. CMPSS Comparator Input Referred Offset
124
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Hysteresis
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
CMPINxN or
DACxVAL
COMPINxP
Voltage
Figure 5-50. CMPSS Comparator Hysteresis
Table 5-54 lists the CMPSS DAC static electrical characteristics.
Table 5-54. CMPSS DAC Static Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Internal reference
0
VDDA
External reference
0
VDAC (1)
Static offset error (2)
–25
25
mV
Static gain error (2)
–2
2
% of FSR
CMPSS DAC output range
V
Static DNL
Endpoint corrected
>–1
4
LSB
Static INL
Endpoint corrected
–16
16
LSB
Settling time
Settling to 1LSB after full-scale output
change
1
µs
Resolution
12
CMPSS DAC output disturbance (3)
Error induced by comparator trip or
CMPSS DAC code change within the
same CMPSS module
–100
CMPSS DAC disturbance time (3)
bits
100
LSB
200
ns
VDAC reference voltage
When VDAC is reference
2.4
2.5 or 3.0
VDDA
V
VDAC load (4)
When VDAC is reference
6
8
10
kΩ
(1)
(2)
(3)
(4)
The maximum output voltage is VDDA when VDAC > VDDA.
Includes comparator input referred errors.
Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.
Per active CMPSS module.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
125
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.9.5.1.1 CMPSS Illustrative Graphs
Figure 5-51 shows the CMPSS DAC static offset. Figure 5-52 shows the CMPSS DAC static gain.
Figure 5-53 shows the CMPSS DAC static linearity.
Offset Error
Figure 5-51. CMPSS DAC Static Offset
Ideal Gain
Actual Gain
Actual Linear Range
Figure 5-52. CMPSS DAC Static Gain
126
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Linearity Error
Figure 5-53. CMPSS DAC Static Linearity
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
127
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10 Control Peripherals
5.10.1 Enhanced Capture (eCAP)
The Type 1 enhanced capture (eCAP) module is used in systems where accurate timing of external
events is important.
Applications for the eCAP module include:
• Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall
sensors)
• Elapsed time measurements between position sensor pulses
• Period and duty cycle measurements of pulse train signals
• Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
The eCAP module includes the following features:
• 4-event time-stamp registers (each 32 bits)
• Edge polarity selection for up to four sequenced time-stamp capture events
• CPU interrupt on any one of the four events
• Independent DMA trigger
• Single-shot capture of up to four event timestamps
• Continuous mode capture of timestamps in a 4-deep circular buffer
• Absolute time-stamp capture
• Difference (Delta) mode time-stamp capture
• 128:1 input multiplexer
• Event Prescaler
• When not used in capture mode, the eCAP module can be configured as a single channel PWM
output.
The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added
features:
• Event filter reset bit
– Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any
pending interrupts flags. This is useful for initialization and debug.
• Modulo counter status bits
– The modulo counter (ECCTL2[MODCTRSTS]) indicates which capture register will be loaded next.
In the Type-0 eCAP, it was not possible to know the current state of modulo counter.
• DMA trigger source
– eCAPxDMA was added as a DMA trigger. CEVT[1–4] can be configured as the source for
eCAPxDMA.
• Input multiplexer
– ECCTL0[INPUTSEL] selects one of 128 input signals.
• EALLOW protection
– EALLOW protection was added to critical registers.
The Input X-BAR must be used to connect the device input pins to the module. The Output X-BAR must
be used to connect output signals to the OUTPUTXBARx output locations. See Section 4.4.3 and
Section 4.4.4.
Figure 5-54 shows the eCAP block diagram.
128
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]
ECCTL2[CAP/APWM]
SYNC
CTRPHS
(phase register−32 bit)
ECAPxSYNCIN
APWM Mode
OVF
TSCTR
(counter−32 bit)
ECAPxSYNCOUT
RST
CTR_OVF
CTR [0−31]
Delta−Mode
PRD [0−31]
PWM
Compare
Logic
Output
X-Bar
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
PRD [0−31]
ECCTL1 [ CAPLDEN, CTRRSTx]
HRCTRL[HRE]
32
32
APRD
shadow
HRCTRL[HRE]
LD1
CAP1
(APRD Active)
Polarity
Select
LD
32
CMP [0−31]
32
HRCTRL[HRE]
32
32
CAP2
(ACMP Active)
32
Polarity
Select
LD2
LD
Other
Sources
[127:16]
Event
qualifier
ACMP
shadow
HRCTRL[HRE]
Event
Prescale
16
ECCTL1[PRESCALE]
[15:0]
Input
X-Bar
32
32
Polarity
Select
LD3
CAP3
(APRD Shadow)
LD
CAP4
(ACMP Shadow)
LD
HRCTRL[HRE]
32
32
LD4
Polarity
Select
4
Capture Events
Edge Polarity Select
ECCTL1[CAPxPOL]
4
CEVT[1:4]
ECAPxDMA_INT
ECCTL2[CTRFILTRESET]
ECCTL2[DMAEVTSEL]
ECAPx
(to ePIE)
Interrupt
Trigger
and
Flag
Control
Continuous /
Oneshot
Capture Control
CTR_OVF
MODCNTRSTS
CTR=PRD
CTR=CMP
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]
Registers: ECEINT, ECFLG, ECCLR, ECFRC
Capture Pulse
SYSCLK
HRCLK
HR Submodule
(A)
HR Input
ECAPx_HRCAL
(to ePIE)
Copyright © 2018, Texas Instruments Incorporated
A.
The HRCAP submodule is available on all eCAP modules; in this case, the high-resolution muxes and hardware are
not implemented.
Figure 5-54. eCAP Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
129
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.1.1 eCAP Electrical Data and Timing
Table 5-55 lists the eCAP timing requirements. Table 5-56 lists the eCAP switching characteristics.
Table 5-55. eCAP Timing Requirements
MIN
Asynchronous
tw(CAP)
Capture input pulse width
Synchronous
With input qualifier
NOM
MAX
UNIT
2tc(SCO)
2tc(SCO)
ns
1tc(SCO) + tw_(QSW)
Table 5-56. eCAP Switching Charcteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(APWM)
130
Pulse duration, APWMx output high/low
Specifications
MIN
TYP
MAX
UNIT
20
ns
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.2 High-Resolution Capture Submodule (HRCAP6–HRCAP7)
The device contains up to two high-resolution capture (HRCAP) submodules. The HRCAP submodule
measures the difference, in time, between pulses asynchronously to the system clock. This submodule is
new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP module.
Applications for the HRCAP include:
• Capacitive touch applications
• High-resolution period and duty-cycle measurements of pulse train cycles
• Instantaneous speed measurements
• Instantaneous frequency measurements
• Voltage measurements across an isolation boundary
• Distance/sonar measurement and scanning
• Flow measurements
The HRCAP submodule includes the following features:
• Pulse-width capture in either non-high-resolution or high-resolution modes
• Absolute mode pulse-width capture
• Continuous or "one-shot" capture
• Capture on either falling or rising edge
• Continuous mode capture of pulse widths in 4-deep buffer
• Hardware calibration logic for precision high-resolution capture
• All of the resources in this list are available on any pin using the Input X-BAR.
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block.
The calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no
“down time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the
HRCAP is used, the corresponding eCAP will be unavailable.
Each high-resolution-capable channel has the following independent key resources.
• All hardware of the respective eCAP
• High-resolution calibration logic
• Dedicated calibration interrupt
Figure 5-55 shows the HRCAP block diagram.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
131
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]
ECCTL2[CAP/APWM]
SYNC
CTRPHS
(phase register−32 bit)
ECAPxSYNCIN
APWM Mode
OVF
TSCTR
(counter−32 bit)
ECAPxSYNCOUT
RST
CTR_OVF
CTR [0−31]
Delta−Mode
PRD [0−31]
PWM
Compare
Logic
Output
X-Bar
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
PRD [0−31]
ECCTL1 [ CAPLDEN, CTRRSTx]
HRCTRL[HRE]
32
32
APRD
shadow
HRCTRL[HRE]
LD1
CAP1
(APRD Active)
Polarity
Select
LD
32
CMP [0−31]
32
HRCTRL[HRE]
32
32
CAP2
(ACMP Active)
32
Polarity
Select
LD2
LD
Other
Sources
[127:16]
Event
qualifier
ACMP
shadow
HRCTRL[HRE]
Event
Prescale
16
ECCTL1[PRESCALE]
[15:0]
Input
X-Bar
32
32
Polarity
Select
LD3
CAP3
(APRD Shadow)
LD
CAP4
(ACMP Shadow)
LD
HRCTRL[HRE]
32
32
LD4
Polarity
Select
4
Capture Events
4
Edge Polarity Select
ECCTL1[CAPxPOL]
CEVT[1:4]
ECAPxDMA_INT
ECCTL2[CTRFILTRESET]
ECCTL2[DMAEVTSEL]
ECAPx
(to ePIE)
Interrupt
Trigger
and
Flag
Control
Continuous /
Oneshot
Capture Control
CTR_OVF
MODCNTRSTS
CTR=PRD
CTR=CMP
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]
Registers: ECEINT, ECFLG, ECCLR, ECFRC
Capture Pulse
SYSCLK
HRCLK
HR Submodule
(A)
HR Input
ECAPx_HRCAL
(to ePIE)
Copyright © 2018, Texas Instruments Incorporated
A.
The HRCAP submodule is available on all eCAP modules; in this case, the high-resolution muxes and hardware are
not implemented.
Figure 5-55. HRCAP Block Diagram
132
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.2.1 HRCAP Electrical Data and Timing
Table 5-57 lists the HRCAP switching characteristics. Figure 5-56 shows the HRCAP accuracy precision
and resolution. Figure 5-57 shows the HRCAP standard deviation characteristics.
Table 5-57. HRCAP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Input pulse width
MIN
TYP
Accuracy (1) (2) (3) (4)
ns
±390
540
ps
Measurement length > 5 µs
±450
1450
ps
See Figure 5-57
Resolution
(4)
UNIT
Measurement length ≤ 5 µs
Standard deviation
(1)
(2)
(3)
MAX
110
300
ps
Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.
Measurement is completed using rising-rising or falling-falling edges
Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the
signal’s slew rate.
Accuracy only applies to time-converted measurements.
HRCAP’s Mean
HRCAP Result
Probability
Accuracy
Resolution
(Step Size)
Actual
Input Signal
A.
Precision
(Standard Deviation)
The HRCAP has some variation in performance, this results in a probability distribution which is described using the
following terms:
•
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.
•
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.
•
Resolution: The minimum measurable increment.
Figure 5-56. HRCAP Accuracy Precision and Resolution
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
133
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
2
7.4
1.8
6.66
1.6
5.92
1.4
5.18
1.2
4.44
1
3.7
0.8
2.96
0.6
2.22
0.4
1.48
0.2
0
A.
B.
C.
1000
2000
3000
4000
5000
6000
Time Between Edges(nS)
7000
8000
9000
Standard Deviation (Steps)
Standard Deviation (nS)
Typical Core Conditions
Noisy Core Supply
0.74
10000
Typical core conditions: All peripheral clocks are enabled.
Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. This
resulted in the 1.2-V rail experiencing a 18.5-mA swing during the measurement.
Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should
be taken to ensure that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock
trees, have been minimized while using the HRCAP.
Figure 5-57. HRCAP Standard Deviation Characteristics
134
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.3 Enhanced Pulse Width Modulator (ePWM)
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both
commercial and industrial equipment. The ePWM type-4 module generates complex pulse width
waveforms with minimal CPU overhead. Some of the highlights of the ePWM type-4 module include
complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced tripzone functionality, and global register reload capabilities.
Figure 5-58 shows the signal interconnections with the ePWM. Figure 5-59 shows the ePWM trip input
connectivity.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
135
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
TBCTL2[SYNCOSELX]
Time-Base (TB)
Disable
CTR=CPMC
CTR=CPMD
Rsvd
TBPRD Shadow (24)
TBPRDHR (8)
TBPRD Active (24)
8
CTR=PRD
00
01
10
11
CTR=ZERO
CTR=CMPB
TBCTL[SWFSYNC]
Sync
Out
Select
EPWMxSYNCO
EPWMxSYNCI
TBCTL[PHSEN]
TBCTL[SYNCOSEL]
Counter
Up/Down
(16 Bit)
(A)
DCAEVT1.sync
(A)
DCBEVT1.sync
CTR=ZERO
TBCTR
Active (16)
CTR_Dir
CTR=PRD
TBPHSHR (8)
16
8
TBPHS Active (24)
EPWMxINT
CTR=ZERO
CTR=PRD or ZERO
Phase
Control
CTR=CMPA
CTR=CMPB
CTR=CMPC
CTR=CMPD
Counter Compare (CC)
CTR=CMPA
Event
Trigger
and
Interrupt
(ET)
EPWMxSOCA
EPWMxSOCB
ADCSOCOUTSEL
CTR_Dir
Action
Qualifier
(AQ)
DCAEVT1.soc
DCBEVT1.soc
CMPAHR (8)
Select and pulse stretch
for external ADC
(A)
(A)
ADCSOCAO
ADCSOCBO
16
CMPA Active (24)
CMPA Shadow (24)
EPWMA
ePWMxA
Dead
Band
(DB)
CMPBHR (8)
16
HiRes PWM (HRPWM)
CMPAHR (8)
CTR=CMPB
On-chip
ADC
PWM
Chopper
(PC)
Trip
Zone
(TZ)
ePWMxB
EPWMB
CMPB Active (24)
CMPB Shadow (24)
CMPBHR (8)
EPWMxTZINT
TBCNT(16)
CTR=CMPC
CMPC[15-0]
16
CMPC Active (16)
CMPC Shadow (16)
TZ1 to TZ3
CTR=ZERO
DCAEVT1.inter
DCBEVT1.inter
DCAEVT2.inter
DCBEVT2.inter
EMUSTOP
CLOCKFAIL
EQEPxERR
DCAEVT1.force
DCAEVT2.force
DCBEVT1.force
DCBEVT2.force
TBCNT(16)
(A)
(A)
(A)
(A)
CTR=CMPD
CMPD[15-0]
16
CMPD Active (16)
CMPD Shadow (16)
Copyright © 2017, Texas Instruments Incorporated
A.
These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.
Figure 5-58. ePWM Submodules and Critical Internal Signal Interconnects
136
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
GPIO0
Async/
Sync/
Sync+Filter
GPIOx
Input X-Bar
INPUT7
INPUT8
INPUT9
INPUT10
INPUT11
INPUT12
INPUT13
INPUT14
INPUT15
INPUT16
INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6
Other Sources
16:127
7
eCAPx
INPUT[1:16]
0:15
XINT1
XINT2
ADC
XINT3
Wrapper(s)
ePWM
eCAP
Sync Chain
XINT4
XINT5
EXTSYNCIN1
EXTSYNCIN2
INPUT[1:14]
CMPSSx.TRIPH
CMPSSx.TRIPHORL
CMPSSx.TRIPL
ADCx.EVT1-4
ECAPx.OUT
SD1.FLTx.COMPx
SD1.FLTx.DRINTx
EXTSYNCOUT
ADCSOCx
CLAHALT
ePWM
X-Bar
TZ1
TZ2
TZ3
TRIP1
TRIP2
TRIP3
TRIP6
TRIP4
TRIP5
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
PIE,
CLA
EPWMINT
TZINT
EPWMx.EPWMCLK
PCLKCR2[EPWMx]
TBCLKSYNC
PCLKCR0[TBCLKSYNC]
SDFM
All
ePWM
Modules
FLT1
FLT2
FLT3
FLT4
ADCSOCAO Select
ADCSOCBO Select
Reserved
ECCERR
PIEVECTERROR
EQEPERR
CLKFAIL
EMUSTOP
TRIP13
TRIP14
TRIP15
TZ4
TZ5
TZ6
SOCA
SOCB
PWMSYNC
ADC
Wrapper(s)
CMPSS
Copyright © 2017, Texas Instruments Incorporated
Figure 5-59. ePWM Trip Input Connectivity
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
137
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.3.1 Control Peripherals Synchronization
The ePWM and eCAP Synchronization Chain allows synchronization between multiple modules for the
system. Figure 5-60 shows the Synchronization Chain Architecture.
EXTSYNCIN1
EXTSYNCIN2
EPWM1
EPWM1SYNCOUT
EPWM2
EPWM4
EPWM3
EXTSYNCOUT
EPWM4SYNCOUT
Pulse-Stretched
(8 PLLSYSCLK
Cycles)
EPWM5
SYNCSEL.EPWM4SYNCIN
EPWM6
EPWM7
EPWM7SYNCOUT
EPWM8
ECAP1SYNCOUT
SYNCSEL.EPWM7SYNCIN
ECAP1
ECAP4SYNCOUT
SYNCSEL.SYNCOUT
SYNCSEL.ECAP1SYNCIN
ECAP2
ECAP3
ECAP4
SYNCSEL.ECAP4SYNCIN
ECAP5
ECAP6
ECAP7
SYNCSEL.ECAP6SYNCIN
Figure 5-60. Synchronization Chain Architecture
138
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.3.2 ePWM Electrical Data and Timing
Table 5-58 lists the ePWM timing requirements and Table 5-59 lists the ePWM switching characteristics.
Table 5-58. ePWM Timing Requirements (1)
MIN
Asynchronous
tw(SYNCIN)
Sync input pulse width
Synchronous
2tc(EPWMCLK)
With input qualifier
(1)
MAX
UNIT
2tc(EPWMCLK)
cycles
1tc(EPWMCLK) + tw(IQSW)
For an explanation of the input qualifier parameters, see Table 5-31.
Table 5-59. ePWM Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(TZ-PWM)
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
Delay time, trip input active to PWM Hi-Z
MIN
MAX
UNIT
20
ns
8tc(SYSCLK)
cycles
25
ns
5.10.3.2.1 Trip-Zone Input Timing
Table 5-60 lists the trip-zone input timing requirements. Figure 5-61 shows the PWM Hi-Z characteristics.
Table 5-60. Trip-Zone Input Timing Requirements (1)
MIN
tw(TZ)
Pulse duration, TZx input low
Asynchronous
1tc(EPWMCLK)
Synchronous
2tc(EPWMCLK)
With input qualifier
(1)
MAX
UNIT
cycles
1tc(EPWMCLK) + tw(IQSW)
For an explanation of the input qualifier parameters, see Table 5-31.
EPWMCLK
tw(TZ)
(A)
TZ
td(TZ-PWM)
(B)
PWM
A.
B.
TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 5-61. PWM Hi-Z Characteristics
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
139
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.3.3 External ADC Start-of-Conversion Electrical Data and Timing
Table 5-61 lists the external ADC start-of-conversion switching characteristics. Figure 5-62 shows the
ADCSOCAO or ADCSOCBO timing.
Table 5-61. External ADC Start-of-Conversion Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(ADCSOCL)
MIN
Pulse duration, ADCSOCxO low
MAX
32tc(SYSCLK)
UNIT
cycles
tw(ADCSOCL)
ADCSOCAO
or
ADCSOCBO
Figure 5-62. ADCSOCAO or ADCSOCBO Timing
140
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.4 High-Resolution Pulse Width Modulator (HRPWM)
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using
a dedicated calibration delay line. For each ePWM module, there are two HR outputs:
• HR Duty and Deadband control on Channel A
• HR Duty and Deadband control on Channel B
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:
• Significantly extends the time resolution capabilities of conventionally derived digital PWM
• This capability can be used in both single edge (duty cycle and phase-shift control) as well as dualedge control for frequency/period modulation.
• Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,
phase, period, and deadband registers of the ePWM module.
NOTE
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.
5.10.4.1 HRPWM Electrical Data and Timing
Table 5-62 lists the high-resolution PWM switching characteristics.
Table 5-62. High-Resolution PWM Characteristics
PARAMETER
Micro Edge Positioning (MEP) step size (1)
(1)
MIN
TYP
MAX
UNIT
150
310
ps
The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher
temperature and lower voltage and decrease with lower temperature and higher voltage.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLK period dynamically while the HRPWM is in operation.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
141
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.5 Enhanced Quadrature Encoder Pulse (eQEP)
The Type-1 eQEP peripheral contains the following major functional units (see Figure 5-63):
• Programmable input qualification for each pin (part of the GPIO MUX)
• Quadrature decoder unit (QDU)
• Position counter and control unit for position measurement (PCCU)
• Quadrature edge-capture unit for low-speed measurement (QCAP)
• Unit time base for speed/frequency measurement (UTIME)
• Watchdog timer for detecting stalls (QWDOG)
System
control registers
To CPU
EQEPxENCLK
Data bus
SYSCLK
QCPRD
QCTMR
QCAPCTL
16
Enhanced QEP (eQEP) peripheral
16
16
Quadrature
capture unit
(QCAP)
QCTMRLAT
QCPRDLAT
QUTMR
QUPRD
Registers
used by
multiple units
QWDTMR
QWDPRD
32
QEPCTL
QEPSTS
QFLG
UTIME
16
UTOUT
QDECCTL
16
QWDOG
WDTOUT
PIE
QCLK
QDIR
QI
QS
PHE
EQEPxINT
32
Position counter/
control unit
(PCCU)
QPOSLAT
QPOSSLAT
QPOSILAT
QMA
Quadrature
decoder
(QDU)
32
32
QPOSCMP
EQEPx_A
EQEPxBIN
EQEPx_B
EQEPxIIN
EQEPxIOUT
EQEPxIOE
EQEPxSIN
EQEPxSOUT
EQEPxSOE
PCSOUT
QPOSCNT
QPOSINIT
QPOSMAX
EQEPxAIN
16
GPIO
MUX
EQEPx_INDEX
EQEPx_STROBE
QEINT
QFRC
QCLR
QPOSCTL
Copyright © 2017, Texas Instruments Incorporated
Figure 5-63. eQEP Block Diagram
142
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.10.5.1 eQEP Electrical Data and Timing
Table 5-63 lists the eQEP timing requirements and Table 5-64 lists the eQEP switching characteristics.
Table 5-63. eQEP Timing Requirements (1)
MIN
Asynchronous (2)/Synchronous
tw(QEPP)
QEP input period
tw(INDEXH)
QEP Index Input High time
tw(INDEXL)
QEP Index Input Low time
tw(STROBH)
QEP Strobe High time
tw(STROBL)
QEP Strobe Input Low time
(1)
(2)
With input qualifier
2tc(SYSCLK)
With input qualifier
2tc(SYSCLK)
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
Asynchronous (2)/Synchronous
With input qualifier
cycles
2tc(SYSCLK) + tw(IQSW)
Asynchronous (2)/Synchronous
With input qualifier
cycles
2tc(SYSCLK) + tw(IQSW)
Asynchronous (2)/Synchronous
UNIT
cycles
2[1tc(SYSCLK) + tw(IQSW)]
Asynchronous (2)/Synchronous
With input qualifier
MAX
2tc(SYSCLK)
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
For an explanation of the input qualifier parameters, see Table 5-31.
See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for limitations in the asynchronous mode.
Table 5-64. eQEP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
5tc(SYSCLK)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
7tc(SYSCLK)
cycles
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
143
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.6 Sigma-Delta Filter Module (SDFM)
The SDFM is a 4-channel digital filter designed specifically for current measurement and resolver position
decoding in motor control applications. Each channel can receive an independent sigma-delta (ΣΔ)
modulated bit stream. The bit streams are processed by four individually programmable digital decimation
filters. The filter set includes a fast comparator for immediate digital threshold comparisons for overcurrent
and undercurrent monitoring.
The SDFM features include:
• 8 external pins per SDFM module
– 4 sigma-delta data input pins per SDFM module (SDx_D1-4)
– 4 sigma-delta clock input pins per SDFM module (SDx_C1-4)
• 4 different configurable modulator clock modes:
– Mode 0: Modulator clock rate equals modulator data rate
– Mode 1: Modulator clock rate running at half the modulator data rate
– Mode 2: Modulator data is Manchester encoded. Modulator clock not required.
– Mode 3: Modulator clock rate is double that of modulator data rate
• 4 independent configurable secondary filter (comparator) units per SDFM module:
– 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
– Ability to detect over-value, under-value, and zero-crossing conditions
– OSR value for comparator filter unit (COSR) programmable from 1 to 32
• 4 independent configurable primary filter (data filter) units per SDFM module:
– 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
– OSR value for data filter unit (DOSR) programmable from 1 to 256
– Ability to enable individual filter modules
– Ability to synchronize all the 4 independent filters of an SDFM module using Master Filter Enable
(MFE) bit or using PWM signals
• Data filter unit has programmable FIFO to reduce interrupt overhead. FIFO has the following features:
– Primary filter (data filter) has 16 deep × 32-bit FIFO
– FIFO can interrupt CPU after programmable number of data ready events
– FIFO Wait-for-Sync feature: Ability to ignore data ready events until PWM synchronization signal
(SDSYNC) is received. Once SDSYNC event is received, FIFO is populated on every data ready
event
– Data filter output can be represented in either 16 bits or 32 bits
• PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on per data filter channel basis
• PWMs can be used to generate a modulator clock for sigma delta modulators
Figure 5-64 shows the SDFM block diagram.
144
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
SDFM- Sigma Delta Filter Module
SDyFLTx.DRINT
G4
Streams
Input
Ctrl
SDx_C1
PWMx.SOCA / SOCB
SDSYNC
SDx_D2
Secondary
(Comparator)
Filter
R
Interrupt
Unit
Primary (Data) R
Filter
SDy_ERR
Peripheral Frame 1
SDx_D1
GPIO
MUX
DMA
Filter Module 1
FIFO
Filter Module 2
SDx_C2
PWMx.SOCA / SOCB
SDSYNC
SDx_D3
SDyFLTx.DRINT
CLA
SDy_ERR
SDyFLTx.DRINT
ePIE
Filter Module 3
SDx_C3
PWMx.SOCA / SOCB
SDyFLTx.COMPL
SDSYNC
SDx_D4
Register
Map
Filter Module 4
SDyFLTx.COMPHA
Output / PWM
XBAR
SDx_C4
PWMx.SOCA / SOCB
SDSYNC
SDyFLTx.COMPL
SDyFLTx.COMPHA
ECAP
SDyFLTx.COMPHB
LEGEND
Interrupt / trigger sources from Primary Filter
Internal secondary filter signals
Figure 5-64. SDFM Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
145
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.10.6.1 SDFM Electrical Data and Timing
Table 5-65 lists the SDFM timing requirements. Figure 5-65, Figure 5-66, Figure 5-67, and Figure 5-68
show the SDFM timing diagrams.
Table 5-65. SDFM Timing Requirements
MIN
MAX
UNIT
Mode 0
tc(SDC)M0
Cycle time, SDx_Cy
40
256 * SYSCLK period
ns
tw(SDCH)M0
Pulse duration, SDx_Cy high
10
tc(SDC)M0 – 10
ns
tsu(SDDV-SDCH)M0
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCH-SDD)M0
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 1
tc(SDC)M1
Cycle time, SDx_Cy
80
256 * SYSCLK period
ns
tw(SDCH)M1
Pulse duration, SDx_Cy high
10
tc(SDC)M1 – 10
ns
tsu(SDDV-SDCL)M1
Setup time, SDx_Dy valid before SDx_Cy goes low
5
ns
tsu(SDDV-SDCH)M1
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCL-SDD)M1
Hold time, SDx_Dy wait after SDx_Cy goes low
5
ns
th(SDCH-SDD)M1
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 2
tc(SDD)M2
Cycle time, SDx_Dy
tw(SDDH)M2
Pulse duration, SDx_Dy high
8 * tc(SYSCLK)
20 * tc(SYSCLK)
10
ns
ns
Mode 3
tc(SDC)M3
Cycle time, SDx_Cy
40
256 * SYSCLK period
ns
tw(SDCH)M3
Pulse duration, SDx_Cy high
10
tc(SDC)M3 – 5
ns
tsu(SDDV-SDCH)M3
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCH-SDD)M3
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 0
tw(SDCH)M0
tc(SDC)M0
SDx_Cy
tsu(SDDV-SDCH)M0
th(SDCH-SDD)M0
SDx_Dy
Figure 5-65. SDFM Timing Diagram – Mode 0
Mode 1
tw(SDCH)M1
tc(SDC)M1
SDx_Cy
tsu(SDDV-SDCL)M1
tsu(SDDV-SDCH)M1
SDx_Dy
th(SDCL-SDD)M1
th(SDCH-SDD)M1
Figure 5-66. SDFM Timing Diagram – Mode 1
146
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Mode 2
(Manchester-encoded bit stream)
tc(SDD)M2
Modulator
internal clock
tw(SDDH)M2
Modulator
internal data
1
0
1
1
1
0
0
1
1
SDx-Dy
Figure 5-67. SDFM Timing Diagram – Mode 2
Mode 3
(CLKx is driven externally)
tc(SDC)M3
tw(SDCH)M3
SDx_Cy
tsu(SDDV-SDCH)M3
th(SDCH-SDD)M3
SDx_Dy
Figure 5-68. SDFM Timing Diagram – Mode 3
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
147
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11 Communications Peripherals
5.11.1 Controller Area Network (CAN)
NOTE
The CAN module uses the IP known as DCAN. This document uses the names CAN and
DCAN interchangeably to reference this peripheral.
The CAN module implements the following features:
• Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)
• Bit rates up to 1 Mbps
• Multiple clock sources
• 32 message objects (mailboxes), each with the following properties:
– Configurable as receive or transmit
– Configurable with standard (11-bit) or extended (29-bit) identifier
– Supports programmable identifier receive mask
– Supports data and remote frames
– Holds 0 to 8 bytes of data
– Parity-checked configuration and data RAM
• Individual identifier mask for each message object
• Programmable FIFO mode for message objects
• Programmable loopback modes for self-test operation
• Suspend mode for debug support
• Software module reset
• Automatic bus on after bus-off state by a programmable 32-bit timer
• Two interrupt lines
• DMA support
NOTE
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps.
NOTE
The accuracy of the on-chip zero-pin oscillator is in Table 5-23. Depending on parameters
such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy
of this oscillator may not meet the requirements of the CAN protocol. In this situation, an
external clock source must be used.
Figure 5-69 shows the CAN block diagram.
148
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
CAN_TX
CAN_RX
CAN
CAN Core
Message RAM
Message Handler
Message
RAM
Interface
Registers and Message
Object Access (IFx)
32
Message
Objects
(Mailboxes)
Test Modes
Only
Module Interface
to ePIE
DMA
CPU Bus
Figure 5-69. CAN Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
149
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.2 Inter-Integrated Circuit (I2C)
The I2C module has the following features:
• Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):
– Support for 8-bit format transfers
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers
– Support for multiple slave-transmitters and master-receivers
– Combined master transmit/receive and receive/transmit mode
– Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)
• One 16-byte receive FIFO and one 16-byte transmit FIFO
• Supports two ePIE interrupts
– I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt:
• Transmit Ready
• Receive Ready
• Register-Access Ready
• No-Acknowledgment
• Arbitration-Lost
• Stop Condition Detected
• Addressed-as-Slave
– I2Cx_FIFO interrupts:
• Transmit FIFO interrupt
• Receive FIFO interrupt
• Module enable and disable capability
• Free data format mode
Figure 5-70 shows how the I2C peripheral module interfaces within the device.
150
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
I2C module
I2CXSR
I2CDXR
TX FIFO
SDA
FIFO Interrupt
to CPU/PIE
RX FIFO
Peripheral bus
I2CRSR
SCL
Clock
synchronizer
I2CDRR
Control/status
registers
CPU
Prescaler
Noise filters
I2C INT
Interrupt to
CPU/PIE
Arbitrator
Figure 5-70. I2C Peripheral Module Interfaces
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
151
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.2.1 I2C Electrical Data and Timing
Table 5-66 lists the I2C timing requirements. Table 5-67 lists the I2C switching characteristics.
Table 5-66. I2C Timing Requirements
MIN
MAX
UNIT
th(SDA-SCL)START
Hold time, START condition, SCL fall delay after SDA fall
0.6
µs
tsu(SCL-SDA)START
Setup time, Repeated START, SCL rise before SDA fall
delay
0.6
µs
th(SCL-DAT)
Hold time, data after SCL fall
0
µs
tsu(DAT-SCL)
Setup time, data before SCL rise
100
ns
tr(SDA)
Rise time, SDA
20
300
ns
tr(SCL)
Rise time, SCL
20
300
ns
tf(SDA)
Fall time, SDA
11.4
300
ns
tf(SCL)
Fall time, SCL
11.4
300
ns
tsu(SCL-SDA)STOP
Setup time, STOP condition, SCL rise before SDA rise
delay
0.6
µs
Table 5-67. I2C Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
0
400
kHz
fSCL
SCL clock frequency
tw(SCLL)
Pulse duration, SCL clock low
1.3
µs
tw(SCLH)
Pulse duration, SCL clock high
0.6
µs
tw(SP)
Pulse duration of spikes that will be
suppressed by the input filter
tBUF
Bus free time between STOP and START
conditions
tv(SCL-DAT)
Valid time, data after SCL fall
0.9
µs
tv(SCL-ACK)
Valid time, Acknowledge after SCL fall
0.9
µs
VIL
Valid low-level input voltage
–0.3
0.3 * VDDIO
V
VIH
Valid high-level input voltage
0.7 * VDDIO
VDDIO + 0.3
V
VOL
Low-level output voltage
Sinking 3 mA
0
0.4
V
II
Input current on pins
0.1 Vbus < Vi < 0.9 Vbus
–10
10
µA
0
50
1.3
ns
µs
NOTE
To meet all of the I2C protocol timing specifications, the I2C module clock must be
configured in the range from 7 MHz to 12 MHz.
152
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.3 Power Management Bus (PMBus) Interface
The PMBus module has the following features:
• Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)
• Support for master and slave modes
• Support for I2C mode
• Support for three speeds:
– Standard Mode: Up to 100 kHz
– Fast Mode: 400 kHz
– Fast Mode+: 1000 kHz. This mode applies only to the PMBus module operating in I2C mode, with
an input clock frequency of 20 MHz.
• Packet error checking
• CONTROL and ALERT signals
• Clock high and low time-outs
• Four-byte transmit and receive buffers
• One maskable interrupt, which can be generated by several conditions:
– Receive data ready
– Transmit buffer empty
– Slave address received
– End of message
– ALERT input asserted
– Clock low time-out
– Clock high time-out
– Bus free
Figure 5-71 shows the PMBus block diagram.
PCLKCR20
SYSCLK
Div
PMBCTRL
ALERT
DMA
Bit clock
Other registers
CTL
GPIO Mux
CPU
PMBTXBUF
SCL
Shift register
PMBRXBUF
SDA
PMBUSA_INT
PIE
PMBus Module
Figure 5-71. PMBus Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
153
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.3.1 PMBus Electrical Data and Timing
Table 5-68 lists the PMBus electrical characteristics. Table 5-69 lists the PMBUS fast mode switching
characteristics. Table 5-70 lists the PMBUS standard mode switching characteristics.
Table 5-68. PMBus Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIL
Valid low-level input voltage
VIH
Valid high-level input voltage
VOL
Low-level output voltage
At Ipullup = 4 mA
IOL
Low-level output current
VOL ≤ 0.4 V
tSP
Pulse width of spikes that must be
suppressed by the input filter
Ii
Input leakage current on each pin
Ci
Capacitance on each pin
MIN
TYP
2.1
0.1 Vbus < Vi < 0.9 Vbus
MAX
UNIT
0.8
V
VDDIO
V
0.4
4
V
mA
0
50
ns
–10
10
µA
10
pF
Table 5-69. PMBus Fast Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
400
kHz
fSCL
SCL clock frequency
10
tBUF
Bus free time between STOP and
START conditions
1.3
µs
tHD;STA
START condition hold time -- SDA fall
to SCL fall delay
0.6
µs
tSU;STA
Repeated START setup time -- SCL
rise to SDA fall delay
0.6
µs
tSU;STO
STOP condition setup time -- SCL rise
to SDA rise delay
0.6
µs
tHD;DAT
Data hold time after SCL fall
300
ns
tSU;DAT
Data setup time before SCL rise
100
tTimeout
Clock low time-out
25
tLOW
Low period of the SCL clock
1.3
tHIGH
High period of the SCL clock
0.6
tLOW;SEXT
Cumulative clock low extend time
(slave device)
tLOW;MEXT
ns
35
ms
µs
50
µs
From START to STOP
25
ms
Cumulative clock low extend time
(master device)
Within each byte
10
ms
tr
Rise time of SDA and SCL
5% to 95%
20
300
ns
tf
Fall time of SDA and SCL
95% to 5%
20
300
ns
154
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-70. PMBus Standard Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
100
kHz
fSCL
SCL clock frequency
10
tBUF
Bus free time between STOP and
START conditions
4.7
µs
tHD;STA
START condition hold time -- SDA fall
to SCL fall delay
4
µs
tSU;STA
Repeated START setup time -- SCL
rise to SDA fall delay
4.7
µs
tSU;STO
STOP condition setup time -- SCL rise
to SDA rise delay
4
µs
tHD;DAT
Data hold time after SCL fall
300
ns
tSU;DAT
Data setup time before SCL rise
250
tTimeout
Clock low time-out
25
tLOW
Low period of the SCL clock
4.7
tHIGH
High period of the SCL clock
4
tLOW;SEXT
Cumulative clock low extend time
(slave device)
tLOW;MEXT
Cumulative clock low extend time
(master device)
tr
tf
ns
35
ms
µs
50
µs
From START to STOP
25
ms
Within each byte
10
ms
Rise time of SDA and SCL
1000
ns
Fall time of SDA and SCL
300
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
155
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.4 Serial Communications Interface (SCI)
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports
digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and
each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex
communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks
received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to
different speeds through a 16-bit baud-select register.
Features of the SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
NOTE: Both pins can be used as GPIO if not used for SCI.
– Baud rate programmable to 64K different rates
• Data-word format
– 1 start bit
– Data-word length programmable from 1 to 8 bits
– Optional even/odd/no parity bit
– 1 or 2 stop bits
• Four error-detection flags: parity, overrun, framing, and break detection
• Two wake-up multiprocessor modes: idle-line and address bit
• Half- or full-duplex operation
• Double-buffered receive and transmit functions
• Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms
with status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX
EMPTY flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
• Separate enable bits for transmitter and receiver interrupts (except BRKDT)
• NRZ format
• Auto baud-detect hardware logic
• 16-level transmit and receive FIFO
NOTE
All registers in this module are 8-bit registers. When a register is accessed, the register data
is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the
upper byte has no effect.
Figure 5-72 shows the SCI block diagram.
156
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
SCICTL1.1
Frame Format and Mode
Parity
Even/Odd
SCITXD
TXSHF
Register
TXENA
Enable
SCICCR.6 SCICCR.5
TX EMPTY
SCICTL2.6
8
TXRDY
Transmitter-Data
Buffer Register
TX INT ENA
SCICTL2.7
SCICTL2.0
TXWAKE
SCICTL1.3
8
TX FIFO _0
1
SCITXD
TX FIFO Interrupt
TX FIFO _1
−−−−−
TX Interrupt
Logic
TXINT
To CPU
TX FIFO _15
WUT
SCI TX Interrupt select logic
SCITXBUF.7−0
TX FIFO registers
SCIFFENA
Auto baud detect logic
SCIFFTX.14
SCIHBAUD. 15 − 8
Baud Rate
MSbyte
Register
SCIRXD
RXSHF
SCIRXD
Register
RXWAKE
LSPCLK
SCIRXST.1
SCILBAUD. 7 − 0
Baud Rate
LSbyte
Register
RXENA
8
SCICTL1.0
SCICTL2.1
Receive Data
Buffer register
RXRDY
RX/BK INT ENA
SCIRXST.6
SCIRXBUF.7−0
8
RX FIFO _15
−−−−−
BRKDT
SCIRXST.5
RX FIFO_1
RX FIFO _0
SCIRXBUF.7−0
RX FIFO Interrupt
RX Interrupt
Logic
RXINT
To CPU
RX FIFO registers
SCIRXST.7
SCIRXST.4 – 2
RXFFOVF
SCIFFRX.15
RX Error
FE OE PE
RX Error
RX ERR INT ENA
SCICTL1.6
SCI RX Interrupt select logic
Figure 5-72. SCI Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
157
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.5 Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that
allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a
programmed bit-transfer rate. The SPI is normally used for communications between the MCU controller
and external peripherals or another controller. Typical applications include external I/O or peripheral
expansion through devices such as shift registers, display drivers, and analog-to-digital converters
(ADCs). Multidevice communications are supported by the master or slave operation of the SPI. The port
supports a 16-level, receive and transmit FIFO for reducing CPU servicing overhead.
The SPI module features include:
• SPISOMI: SPI slave-output/master-input pin
• SPISIMO: SPI slave-input/master-output pin
• SPISTE: SPI slave transmit-enable pin
• SPICLK: SPI serial-clock pin
NOTE
All four pins can be used as GPIO, if the SPI module is not used.
•
•
•
•
•
•
•
•
•
•
•
•
Two operational modes: Master and Slave
Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited
by the maximum speed of the I/O buffers used on the SPI pins.
Data word length: 1 to 16 data bits
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
Simultaneous receive and transmit operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithm
16-level transmit/receive FIFO
DMA support
High-speed mode
Delayed transmit control
3-wire SPI mode
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
Figure 5-73 shows the SPI CPU interfaces.
158
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
PCLKCR8
LSPCLK
Low-Speed
Prescaler
SYSCLK
CPU
Bit Clock
Peripheral Bus
SYSRS
SPISIMO
SPISOMI
SPI
GPIO MUX
SPICLK
SPIINT
SPITXINT
PIE
SPISTE
SPIRXDMA
SPITXDMA
DMA
Figure 5-73. SPI CPU Interface
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
159
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.5.1 SPI Electrical Data and Timing
The following sections contain the SPI External Timings in Non-High-Speed Mode:
Section 5.11.5.1.1
Non-High-Speed Master Mode Timings
Section 5.11.5.1.2
Non-High-Speed Slave Mode Timings
The following sections contain the SPI External Timings in High-Speed Mode:
Section 5.11.5.1.3
High-Speed Master Mode Timings
Section 5.11.5.1.4
High-Speed Slave Mode Timings
NOTE
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on
SPICLK, SPISIMO, and SPISOMI.
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter
of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
160
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.5.1.1 Non-High-Speed Master Mode Timings
Table 5-71 lists the SPI master mode switching characteristics where the clock phase = 0. Figure 5-74
shows the SPI master mode external timing where the clock phase = 0.
Table 5-72 lists the SPI master mode switching characteristics where the clock phase = 1. Figure 5-75
shows the SPI master mode external timing where the clock phase = 1.
Table 5-73 lists the SPI master mode timing requirements.
Table 5-71. SPI Master Mode Switching Characteristics (Clock Phase = 0)
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second
pulse
4
td(SIMO)M
Delay time, SPICLK to SPISIMO
valid
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
23
td(SPC)M
Delay time, SPISTE valid to SPICLK
24
td(STE)M
Delay time, SPICLK to SPISTE
invalid
(BRR + 1)
CONDITION (1)
MIN
MAX
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M +
0.5tc(LSPCLK) – 3
0.5tc(SPC)M +
0.5tc(LSPCLK) + 3
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
0.5tc(SPC)M –
0.5tc(LSPCLK) + 3
ns
5
ns
Even
Odd
Even
Odd
Even, Odd
Even
Odd
Even
(1)
Odd
Even
Odd
UNIT
ns
ns
0.5tc(SPC)M – 6
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
ns
0.5tc(SPC)M – 6
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
ns
0.5tc(SPC)M – 6
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
ns
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
161
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 5-72. SPI Master Mode Switching Characteristics (Clock Phase = 1)
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second
pulse
4
td(SIMO)M
Delay time, SPISIMO valid to
SPICLK
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
23
td(SPC)M
Delay time, SPISTE valid to SPICLK
(BRR + 1)
CONDITION (1)
MIN
MAX
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
0.5tc(SPC)M –
0.5tc(LSPCLK) + 3
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M +
0.5tc(LSPCLK) – 3
0.5tc(SPC)M +
0.5tc(LSPCLK) + 3
Even
24
(1)
td(STE)M
Delay time, SPICLK to
SPISTE invalid
Odd
Even
Odd
Even
Odd
Even
Odd
Even, Odd
Even
Odd
UNIT
ns
ns
ns
0.5tc(SPC)M – 4
ns
0.5tc(SPC)M +
0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 6
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
ns
tc(SPC)M – 3
ns
0.5tc(SPC)M – 6
ns
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Table 5-73. SPI Master Mode Timing Requirements
(BRR + 1)
CONDITION (1)
NO.
MIN
MAX
UNIT
8
tsu(SOMI)M
Setup time, SPISOMI valid before
SPICLK
Even, Odd
20
ns
9
th(SOMI)M
Hold time, SPISOMI valid after
SPICLK
Even, Odd
0
ns
(1)
162
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
24
23
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-74. SPI Master Mode External Timing (Clock Phase = 0)
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
Master Out Data Is Valid
SPISIMO
8
9
Master In Data Must
Be Valid
SPISOMI
(A)
23
24
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-75. SPI Master Mode External Timing (Clock Phase = 1)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
163
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.5.1.2 Non-High-Speed Slave Mode Timings
Table 5-74 lists the SPI slave mode switching characteristics. Table 5-75 lists the SPI slave mode timing
requirements.
Figure 5-76 shows the SPI slave mode external timing where the clock phase = 0. Figure 5-77 shows the
SPI slave mode external timing where the clock phase = 1.
Table 5-74. SPI Slave Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
MIN
15
td(SOMI)S
Delay time, SPICLK to SPISOMI valid
16
tv(SOMI)S
Valid time, SPISOMI valid after SPICLK
MAX
16
0
UNIT
ns
ns
Table 5-75. SPI Slave Mode Timing Requirements
NO.
MIN
MAX
UNIT
12
tc(SPC)S
Cycle time, SPICLK
4tc(SYSCLK)
ns
13
tw(SPC1)S
Pulse duration, SPICLK, first pulse
2tc(SYSCLK) – 1
ns
14
tw(SPC2)S
Pulse duration, SPICLK, second pulse
2tc(SYSCLK) – 1
ns
19
tsu(SIMO)S
Setup time, SPISIMO valid before SPICLK
1.5tc(SYSCLK)
ns
20
th(SIMO)S
Hold time, SPISIMO valid after SPICLK
1.5tc(SYSCLK)
ns
25
tsu(STE)S
Setup time, SPISTE valid before SPICLK
1.5tc(SYSCLK)
ns
26
th(STE)S
Hold time, SPISTE invalid after SPICLK
1.5tc(SYSCLK)
ns
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
16
SPISOMI Data Is Valid
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-76. SPI Slave Mode External Timing (Clock Phase = 0)
164
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
16
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-77. SPI Slave Mode External Timing (Clock Phase = 1)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
165
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.5.1.3 High-Speed Master Mode Timings
Table 5-76 lists the SPI high-speed master mode switching characteristics where the clock phase = 0.
Figure 5-78 shows the high-speed SPI master mode external timing where the clock phase = 0.
Table 5-77 lists the SPI high-speed master mode switching characteristics where the clock phase = 1.
Figure 5-79 shows the high-speed SPI master mode external timing where the clock phase = 1.
Table 5-78 lists the SPI high-speed master mode timing requirements.
Table 5-76. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 0)
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second
pulse
4
td(SIMO)M
Delay time, SPICLK to SPISIMO
valid
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
23
td(SPC)M
Delay time, SPISTE valid to SPICLK
24
td(STE)M
Delay time, SPICLK to SPISTE
invalid
(BRR + 1)
CONDITION (1)
MIN
MAX
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M +
0.5tc(LSPCLK) – 1
0.5tc(SPC)M +
0.5tc(LSPCLK) + 1
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
0.5tc(SPC)M –
0.5tc(LSPCLK) + 1
ns
3
ns
Even
Odd
Even
Odd
Even, Odd
Even
Odd
Even
(1)
166
Odd
Even
Odd
UNIT
ns
ns
0.5tc(SPC)M – 4
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
ns
0.5tc(SPC)M – 4
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
ns
0.5tc(SPC)M – 4
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
ns
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 5-77. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 1)
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPCH)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second
pulse
4
td(SIMO)M
Delay time, SPISIMO valid to
SPICLK
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
23
td(SPC)M
Delay time, SPISTE valid to SPICLK
(BRR + 1)
CONDITION (1)
MIN
MAX
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M –
0.5tc(LSPCLK) – 3
0.5tc(SPC)M –
0.5tc(LSPCLK) + 3
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M +
0.5tc(LSPCLK) – 3
0.5tc(SPC)M +
0.5tc(LSPCLK) + 3
Even
24
(1)
td(STE)M
Delay time, SPICLK to SPISTE
invalid
Odd
Even
Odd
Even
Odd
Even
Odd
Even, Odd
Even
Odd
UNIT
ns
ns
ns
0.5tc(SPC)M – 4
ns
0.5tc(SPC)M +
0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 6
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
ns
tc(SPC)M – 3
ns
0.5tc(SPC)M – 6
ns
0.5tc(SPC)M –
0.5tc(LSPCLK) – 1
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Table 5-78. SPI High-Speed Master Mode Timing Requirements
(BRR + 1)
CONDITION (1)
NO.
(1)
MIN
MAX
UNIT
8
tsu(SOMI)M
Setup time, SPISOMI valid before
SPICLK
Even, Odd
2
ns
9
th(SOMI)M
Hold time, SPISOMI valid after
SPICLK
Even, Odd
11
ns
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
167
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
24
23
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-78. High-Speed SPI Master Mode External Timing (Clock Phase = 0)
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
Master Out Data Is Valid
SPISIMO
8
9
Master In Data Must
Be Valid
SPISOMI
23
(A)
24
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-79. High-Speed SPI Master Mode External Timing (Clock Phase = 1)
168
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.5.1.4 High-Speed Slave Mode Timings
Table 5-79 lists the SPI high-speed slave mode switching characteristics. Table 5-80 lists the SPI highspeed slave mode timing requirements.
Figure 5-80 shows the high-speed SPI slave mode external timing where the clock phase = 0. Figure 5-81
shows the high-speed SPI slave mode external timing where the clock phase = 1.
Table 5-79. SPI High-Speed Slave Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
MIN
15
td(SOMI)S
Delay time, SPICLK to SPISOMI valid
16
tv(SOMI)S
Valid time, SPISOMI valid after SPICLK
MAX
14
0
UNIT
ns
ns
Table 5-80. SPI High-Speed Slave Mode Timing Requirements
NO.
MIN
MAX
UNIT
12
tc(SPC)S
Cycle time, SPICLK
4tc(SYSCLK)
ns
13
tw(SPC1)S
Pulse duration, SPICLK, first pulse
2tc(SYSCLK) – 1
ns
14
tw(SPC2)S
Pulse duration, SPICLK, second pulse
2tc(SYSCLK) – 1
ns
19
tsu(SIMO)S
Setup time, SPISIMO valid before SPICLK
1.5tc(SYSCLK)
ns
20
th(SIMO)S
Hold time, SPISIMO valid after SPICLK
1.5tc(SYSCLK)
ns
25
tsu(STE)S
Setup time, SPISTE valid before SPICLK
1.5tc(SYSCLK)
ns
26
th(STE)S
Hold time, SPISTE invalid after SPICLK
1.5tc(SYSCLK)
ns
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
16
SPISOMI Data Is Valid
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-80. High-Speed SPI Slave Mode External Timing (Clock Phase = 0)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
169
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
16
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-81. High-Speed SPI Slave Mode External Timing (Clock Phase = 1)
170
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.6 Local Interconnect Network (LIN)
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN
2.1 standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial
interface designed for applications where the CAN protocol may be too expensive to implement, such as
small subnetworks for cabin comfort functions like interior lighting or window control in an automotive
application.
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is
single-master and multiple-slave with a message identification for multicast transmission between any
network nodes.
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an
SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a
universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero
format.
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the
register/bit usage in different modes. Because of this, code written for this module cannot be directly
ported to the stand-alone SCI module and vice versa.
The LIN module has the following features:
• Compatibility with LIN 1.3, 2.0 and 2.1 protocols
• Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)
• Two external pins: LINRX and LINTX
• Multibuffered receive and transmit units
• Identification masks for message filtering
• Automatic master header generation
– Programmable synchronization break field
– Synchronization field
– Identifier field
• Slave automatic synchronization
– Synchronization break detection
– Optional baud rate update
– Synchronization validation
• 231 programmable transmission rates with 7 fractional bits
• Wakeup on LINRX dominant level from transceiver
• Automatic wakeup support
– Wakeup signal generation
– Expiration times on wakeup signals
• Automatic bus idle detection
• Error detection
– Bit error
– Bus error
– No-response error
– Checksum error
– Synchronization field error
– Parity error
• Capability to use direct memory access (DMA) for transmit and receive data
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
171
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
•
•
•
•
•
•
www.ti.com
Two interrupt lines with priority encoding for:
– Receive
– Transmit
– ID, error, and status
Support for LIN 2.0 checksum
Enhanced synchronizer finite state machine (FSM) support for frame processing
Enhanced handling of extended frames
Enhanced baud rate generator
Update wakeup/go to sleep
Figure 5-82 shows the LIN block diagram.
READ DATA BUS
WRITE DATA BUS
ADDRESS BUS
CHECKSUM
CALCULATOR
INTERFACE
ID PARTY
CHECKER
BIT
MONITOR
TXRX ERROR
DETECTOR (TED)
TIME-OUT
CONTROL
COUNTER
LINRX/
SCIRX
COMPARE
LINTX/
SCITX
FSM
MASK
FILTER
SYNCHRONIZER
8 RECEIVE
BUFFERS
DMA
CONTROL
8 TRANSMIT
BUFFERS
Figure 5-82. LIN Block Diagram
172
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.7 Fast Serial Interface (FSI)
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust
high-speed communications. The FSI is designed to ensure data robustness across many system
conditions such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity
checks such as CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before
transmit and then verified after receipt using without additional CPU interaction. Line breaks can be
detected using periodic transmissions, all managed and monitored by hardware. The FSI is also tightly
integrated with other control peripherals on the device. To ensure that the latest sensor data or control
parameters are available, frames can be transmitted on every control loop period. An integrated skewcompensation block has been added on the receiver to handle skew that may occur between the clock
and data signals due to a variety of factors, including trace-length mismatch and skews induced by an
isolation chip. With embedded data robustness checks, data-link integrity checks, skew compensation,
and integration with control peripherals, the FSI can enable high-speed, robust communication in any
system. These and many other features of the FSI follow.
The FSI module includes the following features:
• Independent transmitter and receiver cores
• Source-synchronous transmission
• Dual data rate (DDR)
• One or two data lines
• Programmable data length
• Skew adjustment block to compensate for board and system delay mismatches
• Frame error detection
• Programmable frame tagging for message filtering
• Hardware ping to detect line breaks during communication (ping watchdog)
• Two interrupts per FSI core
• Externally triggered frame generation
• Hardware- or software-calculated CRC
• Embedded ECC computation module
• Register write protection
• DMA support
• CLA task triggering
• SPI compatibility mode (limited features available)
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX
cores are configured and operated independently. The features available on the FSITX and FSIRX are
described in Section 5.11.7.1 and Section 5.11.7.2, respectively.
5.11.7.1 FSI Transmitter
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK,
TXD0, and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and
configured through programmable control registers. The transmitter control registers let the CPU (or the
CLA) program, control, and monitor the operation of the FSI transmitter. The transmit data buffer is
accessible by the CPU, CLA, and the DMA.
The transmitter has the following features:
• Automated ping frame generation
• Externally triggered ping frames
• Externally triggered data frames
• Software-configurable frame lengths
• 16-word data buffer
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
173
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
•
•
•
•
•
www.ti.com
Data buffer underrun and overrun detection
Hardware-generated CRC on data bits
Software ECC calculation on select data
DMA support
CLA task triggering
Figure 5-83 shows the FSITX CPU interface. Figure 5-84 shows the high-level block diagram of the
FSITX. Not all data paths and internal connections are shown. This diagram provides a high-level
overview of the internal modules present in the FSITX.
PLLRAWCLK
PCLKCR18
SYSCLK
SYSRSN
C28x
ePIE
FSITXyINT1
FSITXyINT2
FSITXyCLK
FSITX
FSITXyD1
FSITXyDMA
A.
Trigger Muxes(A)
32
FSITXyD0
GPIO MUX
DMA
Registers
Register Interface
CLA
The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast
Serial Interface (FSI) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
Figure 5-83. FSITX CPU Interface
174
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
PLLRAWCLK
FSITX
SYSRSN
SYSCLK
Transmit Clock
Generator
TXCLK
Register Interface
Core Reset
FSITXINT1
FSITXINT2
Control Registers,
Interrupt Management
TXCLK
Ping Time-out Counter
FSITX_DMA_EVT
Transmitter Core
External Frame Triggers
TXD0
TXD1
Transmit Data
Buffer
ECC Logic
Figure 5-84. FSITX Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
175
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.7.1.1 FSITX Electrical Data and Timing
FSITX signals must be used in sets as shown in Table 5-81. For example, GPIO10 (CLK), GPIO9 (D0),
and GPIO8 (D1) from SET 2 must all be used together to ensure the timings from Table 5-82 are met.
Table 5-81. FSITX GPIO Mux Groups
FSI SIGNAL
GPIO MUX SET
SET 1
SET 2
SET 3
SET 4
FSITXA_CLK
GPIO7
GPIO10
GPIO27
GPIO44
FSITXA_D0
GPIO6
GPIO9
GPIO26
GPIO45
FSITXA_D1
GPIO5
GPIO8
GPIO25
GPIO46
Table 5-82 lists the FSITX switching characteristics. Figure 5-85 shows the FSITX timings.
Table 5-82. FSITX Switching Characteristics
over operating free-air temperature range (unless otherwise noted)
NO.
PARAMETER
1
tc(TXCLK)
Cycle time, TXCLK
2
tw(TXCLK)
Pulse width, TXCLK low or TXCLK high
td(TXCLKL–TXD)
Delay time, Data valid after TXCLK rising or
falling
3
MIN
MAX
20
UNIT
ns
(0.5tc(TXCLK)) – 1
(0.5tc(TXCLK)) + 1
ns
(0.25tc(TXCLK)) – 3.2
(0.25tc(TXCLK)) + 4.7
ns
1
2
FSITXCLK
FSITXD0
FSITXD1
3
Figure 5-85. FSITX Timings
176
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.7.2 FSI Receiver
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they
pass through an optional programmable delay line. The receiver core handles the data framing, CRC
computation, and frame-related error checking. The receiver bit clock and state machine are run by the
RXCLK input, which is asynchronous to the device system clock.
The receiver control registers let the CPU (or the CLA) program, control, and monitor the operation of the
FSIRX. The receive data buffer is accessible by the CPU, CLA, and the DMA.
The receiver core has the following features:
• 16-word data buffer
• Multiple supported frame types
• Ping frame watchdog
• Frame watchdog
• CRC calculation and comparison in hardware
• ECC detection
• Programmable delay line control on incoming signals
• DMA support
• CLA task triggering
• SPI compatibility mode
Figure 5-86 shows the FSIRX CPU interface. Figure 5-87 provides a high-level overview of the internal
modules present in the FSIRX. Not all data paths and internal connections are shown.
PCLKCR18
SYSCLK
SYSRSN
C28x
ePIE
FSIRXyINT1
FSIRXyINT2
FSIRXyCLK
FSIRX
FSIRXyD0
FSIRXyD1
GPIO MUX
Registers
DMA
Register Interface
CLA
FSIRXyDMA
Figure 5-86. FSIRX CPU Interface
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
177
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
FSIRX
SYSRSN
SYSCLK
Frame Watchdog
Register Interface
Core Reset
FSITXINT1
FSITXINT2
Control Registers,
Interrupt Management
RXCLK
Ping Watchdog
FSITX_DMA_EVT
Receiver Core
Skew
Control
RXD0
RXD1
Receive Data
Buffer
ECC Check
Logic
Figure 5-87. FSIRX Block Diagram
178
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
5.11.7.2.1 FSIRX Electrical Data and Timing
Table 5-83 lists the FSIRX timing requirements. Figure 5-88 shows the FSIRX timings.
Table 5-83. FSIRX Timing Requirements
NO.
MIN
MAX
20
UNIT
1
tc(RXCLK)
Cycle time, RXCLK
2
tw(RXCLK)
Pulse width, RXCLK low or RXCLK high
3
tsu(RXCLK–RXD)
Setup time with respect to RXCLK, applies
to both edges of the clock
1.7
ns
4
th(RXCLK–RXD)
Hold time with respect to RXCLK, applies to
both edges of the clock
3.8
ns
(0.5tc(RXCLK)) – 1
ns
(0.5tc(RXCLK)) + 1
ns
1
FSIRXCLK
2
FSIRXD0
FSIRXD1
3
4
Figure 5-88. FSIRX Timings
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
179
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
5.11.7.3 FSI SPI Compatibility Mode
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In
this mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode.
While the FSI is able to physically interface with a SPI in this mode, the external device must be able to
encode and decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI
frame phases with the exception of the preamble and postamble. The FSI provides the same data
validation and frame checking as if it was in standard FSI mode, allowing for more robust communication
without consuming CPU cycles. The external SPI is required to send all relevant information and can
access standard FSI features such as the ping frame watchdog on the FSIRX, frame tagging, or custom
CRC values. The list of features of SPI compatibility mode follows:
• Data will transmit on rising edge and receive on falling edge of the clock.
• Only 16-bit word size is supported.
• TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the
full frame transmission.
• No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every
active clock edge.
• No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame
phase is finished.
• It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an
external clock source.
5.11.7.3.1 FSITX SPI Mode Electrical Data and Timing
Table 5-84 lists the FSITX SPI mode switching characteristics. Figure 5-89 shows the FSITX SPI mode
timings. Special timings are not required for the FSIRX in SPI mode. FSIRX timings listed in Table 5-83
are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling edge of
FSIRXCLK because this is the active edge in SPI mode.
Table 5-84. FSITX SPI Mode Switching Characteristics
over operating free-air temperature range (unless otherwise noted)
NO.
PARAMETER
MIN
MAX
20
UNIT
1
tc(TXCLK)
Cycle time, TXCLK
2
tw(TXCLK)
Pulse width, TXCLK low or TXCLK high
3
td(TXCLKH–TXD0)
Delay time, Data valid after TXCLK high
4
td(TXD1-TXCLK)
Delay time, TXCLK high after TXD1 low
tw(TXCLK) – 1
ns
5
td(TXCLK-TXD1)
Delay time, TXD1 high after TXCLK low
tw(TXCLK) – 1
ns
(0.5tc(TXCLK)) – 1
ns
(0.5tc(TXCLK)) + 1
ns
3
ns
1
2
FSITXCLK
3
FSITXD0
5
4
FSITXD1
Figure 5-89. FSITX SPI Mode Timings
180
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6 Detailed Description
6.1
Overview
The Piccolo™ TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU)
that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory
on a single device.
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal
processing performance. The C28x CPU is further boosted by the new TMU extended instruction set,
which enables fast execution of algorithms with trigonometric operations commonly found in transforms
and torque loop calculations; and the VCU-I extended instruction set, which reduces the latency for
complex math operations commonly found in encoded applications.
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an
independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the
CLA has its own dedicated memory resources and it can directly access the key peripherals that are
required in a typical control system. Support of a subset of ANSI C is standard, as are key features like
hardware breakpoints and hardware task-switching.
The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks,
which enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also
available in blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM
ECC/parity, and dual-zone security are also supported.
High-performance analog blocks are integrated on the F28004x MCU to further enable system
consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog
signals, which ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip
voltage scaling before conversion. Seven analog comparator modules provide continuous monitoring of
input voltage levels for trip conditions.
The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel
SDFM allows for seamless integration of an oversampling sigma-delta modulator across an isolation
barrier.
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,
LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications.
New to the C2000™ platform is the fully compliant PMBus. Additionally, in an industry first, the FSI
enables high-speed, robust communication to complement the rich set of peripherals that are embedded
in the device.
A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block
(CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to
enable InstaSPIN-FOC™. See Device Comparison for more information.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
181
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.2
www.ti.com
Functional Block Diagram
Figure 6-1 shows the CPU system and associated peripherals.
C28x RAM - ECC
M0 - 1KW (2KB)
M1 - 1KW (2KB)
C28x
TMU+FPU+VCU-I
CPU Timer0
CPU Timer1
CPU Timer2
C28x ROM
Boot - 64KW (128KB)
Secure - 32KW (64KB)
10 MHz INTOSC1, INTOSC2
10–20 MHz Crystal Oscillator
PLL
Missing Clock Detect
PF1
8x ePWM
7x eCAP
(2 HRCAP Channels)
2x eQEP
(CW/CCW Support)
CLA to CPU - 128W
CLA
CPU to CLA - 128W
(Type 2)
Flash - ECC
Flash BANK0 - 16 Sectors
64KW (128KB)
Flash BANK1 - 16 Sectors
64KW (128KB)
DCSM OTP
ePIE
(16 Hi-Res Channels)
CLA MSG RAM - Parity
PF3
Result
7x CMPSS
Config.
3x 12-Bit ADC
2x Buffered DAC
7x PGA
CLA ROM
Data
4KW (8KB)
Program
48KW (96KB)
Local Shared RAM - Parity
16KW (32KB)
LS0–LS7
8x (2KW [4KB])
Global Shared RAM - Parity
32KW (64KB)
DMA
GS0–GS3
4x (8KW [16KB])
PF4
(6 Channels)
PF2
PF7
PF8
PF9
Data Config.
GPIO
1x PMBUS
2x CAN
1x LIN
2x SCI
XBAR
1x FSI RX
2x SPI
1x FSI TX
4x SD Filters
1x I2C
NMI
Watchdog
Windowed
Watchdog
Copyright © 2017, Texas Instruments Incorporated
Figure 6-1. Functional Block Diagram
182
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.3
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Memory
6.3.1
C28x Memory Map
Table 6-1 describes the C28x memory map. Memories accessible by the CLA or DMA (direct memory
access) are also noted. See the Memory Controller Module section of the System Control chapter in the
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
Table 6-1. C28x Memory Map
MEMORY
ACCESS
PROTECTION
SECURE
Yes
Yes
Yes
Yes
Yes
Yes
Configurable
Yes
Yes
Yes
0x0000 9FFF
Configurable
Yes
Yes
Yes
0x0000 A000
0x0000 A7FF
Configurable
Yes
Yes
Yes
2K × 16
0x0000 A800
0x0000 AFFF
Configurable
Yes
Yes
Yes
LS6 RAM
2K × 16
0x0000 B000
0x0000 B7FF
Configurable
Yes
Yes
Yes
LS7 RAM
2K × 16
0x0000 B800
0x0000 BFFF
Configurable
Yes
Yes
Yes
GS0 RAM
8K × 16
0x0000 C000
0x0000 DFFF
Yes
Yes
Yes
GS1 RAM
8K × 16
0x0000 E000
0x0000 FFFF
Yes
Yes
Yes
GS2 RAM
8K × 16
0x0001 0000
0x0001 1FFF
Yes
Yes
Yes
GS3 RAM
8K × 16
0x0001 2000
0x0001 3FFF
Yes
Yes
Yes
CAN A Message RAM
2K × 16
0x0004 9000
0x0004 97FF
Yes
CAN B Message RAM
2K × 16
0x0004 B000
0x0004 B7FF
Yes
Flash Bank 0
64K × 16
0x0008 0000
0x0008 FFFF
Yes
N/A
Yes
Flash Bank 1
64K × 16
0x0009 0000
0x0009 FFFF
Yes
N/A
Yes
Secure ROM
32K × 16
0x003E 8000
0x003E FFFF
Boot ROM
64K × 16
0x003F 0000
0x003F FFBF
Vectors
64 × 16
0x003F FFC0
0x003F FFFF
CLA Data ROM
4K × 16
0x0100 1000
0x0100 1FFF
Read
CLA Program ROM
48K × 16
0x0102 0000
0x0102 BFFF
Read
SIZE
START
ADDRESS
END
ADDRESS
M0 RAM
1K × 16
0x0000 0000
0x0000 03FF
Yes
M1 RAM
1K × 16
0x0000 0400
0x0000 07FF
Yes
PieVectTable
512 × 16
0x0000 0D00
0x0000 0EFF
CLA-to-CPU MSGRAM
128 × 16
0x0000 1480
0x0000 14FF
Read/Write
Yes
CPU-to-CLA MSGRAM
128 × 16
0x0000 1500
0x0000 157F
Read
Yes
LS0 RAM
2K × 16
0x0000 8000
0x0000 87FF
Configurable
LS1 RAM
2K × 16
0x0000 8800
0x0000 8FFF
Configurable
LS2 RAM
2K × 16
0x0000 9000
0x0000 97FF
LS3 RAM
2K × 16
0x0000 9800
LS4 RAM
2K × 16
LS5 RAM
MEMORY
CLA ACCESS DMA ACCESS
ECCCAPABLE
PARITY
Yes
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
Yes
183
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.3.2
www.ti.com
Flash Memory Map
On the F28004x devices, up to two flash banks (each 128KB [64KW]) are available. The flash banks are
controlled by a single FMC (flash module controller). On the devices in which there is only one flash bank
(F280041 and F280040), the code to program the flash should be executed out of RAM. On the devices in
which there are two flash banks (F280049, F280048, and F280045), only one bank at a time can be
programmed or erased. In the dual-bank devices, the code to program the flash can be executed from one
flash bank to erase or program the other flash bank, or the code can be executed from RAM. There
should not be any kind of access to the flash bank on which an erase/program operation is in progress.
Table 6-2 lists the addresses of flash sectors for F280049, F280048, and F280045. Table 6-3 lists the
addresses of flash sectors for F280041 and F280040.
Table 6-2. Addresses of Flash Sectors for F280049, F280048, and F280045
SECTOR
SIZE
START ADDRESS
END ADDRESS
OTP SECTORS
TI OTP Bank 0
1K × 16
0x0007 0000
0x0007 03FF
User-configurable DCSM OTP Bank 0
1K × 16
0x0007 8000
0x0007 83FF
TI OTP Bank 1
1K × 16
0x0007 0400
0x0007 07FF
User-configurable DCSM OTP Bank 1
1K × 16
0x0007 8400
0x0007 87FF
Sector 0
4K × 16
0x0008 0000
0x0008 0FFF
Sector 1
4K × 16
0x0008 1000
0x0008 1FFF
Sector 2
4K × 16
0x0008 2000
0x0008 2FFF
Sector 3
4K × 16
0x0008 3000
0x0008 3FFF
Sector 4
4K × 16
0x0008 4000
0x0008 4FFF
Sector 5
4K × 16
0x0008 5000
0x0008 5FFF
Sector 6
4K × 16
0x0008 6000
0x0008 6FFF
Sector 7
4K × 16
0x0008 7000
0x0008 7FFF
Sector 8
4K × 16
0x0008 8000
0x0008 8FFF
BANK 0 SECTORS
Sector 9
4K × 16
0x0008 9000
0x0008 9FFF
Sector 10
4K × 16
0x0008 A000
0x0008 AFFF
Sector 11
4K × 16
0x0008 B000
0x0008 BFFF
Sector 12
4K × 16
0x0008 C000
0x0008 CFFF
Sector 13
4K × 16
0x0008 D000
0x0008 DFFF
Sector 14
4K × 16
0x0008 E000
0x0008 EFFF
Sector 15
4K × 16
0x0008 F000
0x0008 FFFF
Sector 0
4K × 16
0x0009 0000
0x0009 0FFF
Sector 1
4K × 16
0x0009 1000
0x0009 1FFF
Sector 2
4K × 16
0x0009 2000
0x0009 2FFF
Sector 3
4K × 16
0x0009 3000
0x0009 3FFF
Sector 4
4K × 16
0x0009 4000
0x0009 4FFF
Sector 5
4K × 16
0x0009 5000
0x0009 5FFF
Sector 6
4K × 16
0x0009 6000
0x0009 6FFF
Sector 7
4K × 16
0x0009 7000
0x0009 7FFF
Sector 8
4K × 16
0x0009 8000
0x0009 8FFF
BANK 1 SECTORS
184
Sector 9
4K × 16
0x0009 9000
0x0009 9FFF
Sector 10
4K × 16
0x0009 A000
0x0009 AFFF
Sector 11
4K × 16
0x0009 B000
0x0009 BFFF
Sector 12
4K × 16
0x0009 C000
0x0009 CFFF
Sector 13
4K × 16
0x0009 D000
0x0009 DFFF
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 6-2. Addresses of Flash Sectors for F280049, F280048, and F280045 (continued)
SECTOR
SIZE
START ADDRESS
END ADDRESS
Sector 14
4K × 16
0x0009 E000
0x0009 EFFF
4K × 16
0x0009 F000
0x0009 FFFF
Sector 15
FLASH ECC LOCATIONS
TI OTP ECC Bank 0
128 × 16
0x0107 0000
0x0107 007F
0x0107 00FF
TI OTP ECC Bank 1
128 × 16
0x0107 0080
User-configurable DCSM OTP ECC Bank 0
128 × 16
0x0107 1000
0x0107 107F
User-configurable DCSM OTP ECC Bank 1
128 × 16
0x0107 1080
0x0107 10FF
Flash ECC Bank 0
8K × 16
0x0108 0000
0x0108 1FFF
Flash ECC Bank 1
8K × 16
0x0108 2000
0x0108 3FFF
Table 6-3. Addresses of Flash Sectors for F280041 and F280040
SECTOR
SIZE
START ADDRESS
END ADDRESS
OTP SECTORS
TI OTP Bank 0
1K × 16
0x0007 0000
0x0007 03FF
User-configurable DCSM OTP Bank 0
1K × 16
0x0007 8000
0x0007 83FF
BANK 0 SECTORS
Sector 0
4K × 16
0x0008 0000
0x0008 0FFF
Sector 1
4K × 16
0x0008 1000
0x0008 1FFF
Sector 2
4K × 16
0x0008 2000
0x0008 2FFF
Sector 3
4K × 16
0x0008 3000
0x0008 3FFF
Sector 4
4K × 16
0x0008 4000
0x0008 4FFF
Sector 5
4K × 16
0x0008 5000
0x0008 5FFF
Sector 6
4K × 16
0x0008 6000
0x0008 6FFF
Sector 7
4K × 16
0x0008 7000
0x0008 7FFF
Sector 8
4K × 16
0x0008 8000
0x0008 8FFF
Sector 9
4K × 16
0x0008 9000
0x0008 9FFF
Sector 10
4K × 16
0x0008 A000
0x0008 AFFF
Sector 11
4K × 16
0x0008 B000
0x0008 BFFF
Sector 12
4K × 16
0x0008 C000
0x0008 CFFF
Sector 13
4K × 16
0x0008 D000
0x0008 DFFF
Sector 14
4K × 16
0x0008 E000
0x0008 EFFF
4K × 16
0x0008 F000
0x0008 FFFF
Sector 15
FLASH ECC LOCATIONS
TI OTP ECC Bank 0
128 × 16
0x0107 0000
0x0107 007F
User-configurable DCSM OTP ECC Bank 0
128 × 16
0x0107 1000
0x0107 107F
Flash ECC Bank 0
8K × 16
0x0108 0000
0x0108 1FFF
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
185
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.3.3
www.ti.com
Peripheral Registers Memory Map
Table 6-4 lists the peripheral registers.
Table 6-4. Peripheral Registers Memory Map
REGISTER
STRUCTURE NAME
START ADDRESS
AdcaResultRegs (2)
ADC_RESULT_REGS
0x0000 0B00
AdcbResultRegs (2)
ADC_RESULT_REGS
0x0000 0B20
AdccResultRegs (2)
ADC_RESULT_REGS
0x0000 0B40
CLA
ACCESS
DMA
ACCESS
0x0000 0B1F
Yes
Yes
0x0000 0B3F
Yes
Yes
0x0000 0B5F
Yes
Yes
0x0000 0CFF
Yes - CLA
only no CPU
access
END ADDRESS
PIPELINE
PROTECTION (1)
Peripheral Frame 0
Cla1OnlyRegs
CLA_ONLY_REGS
0x0000 0C00
CpuTimer0Regs
CPUTIMER_REGS
0x0000 0C00
0x0000 0C07
CpuTimer1Regs
CPUTIMER_REGS
0x0000 0C08
0x0000 0C0F
CpuTimer2Regs
CPUTIMER_REGS
0x0000 0C10
0x0000 0C17
PieCtrlRegs
PIE_CTRL_REGS
0x0000 0CE0
0x0000 0CFF
Cla1SoftIntRegs
CLA_SOFTINT_REGS
0x0000 0CE0
0x0000 0CFF
DmaRegs
DMA_REGS
0x0000 1000
0x0000 11FF
Cla1Regs
CLA_REGS
0x0000 1400
0x0000 147F
Yes
Yes - CLA
only no CPU
access
Peripheral Frame 1
(1)
(2)
186
EPwm1Regs
EPWM_REGS
0x0000 4000
0x0000 40FF
Yes
Yes
Yes
EPwm2Regs
EPWM_REGS
0x0000 4100
0x0000 41FF
Yes
Yes
Yes
EPwm3Regs
EPWM_REGS
0x0000 4200
0x0000 42FF
Yes
Yes
Yes
EPwm4Regs
EPWM_REGS
0x0000 4300
0x0000 43FF
Yes
Yes
Yes
EPwm5Regs
EPWM_REGS
0x0000 4400
0x0000 44FF
Yes
Yes
Yes
EPwm6Regs
EPWM_REGS
0x0000 4500
0x0000 45FF
Yes
Yes
Yes
EPwm7Regs
EPWM_REGS
0x0000 4600
0x0000 46FF
Yes
Yes
Yes
EPwm8Regs
EPWM_REGS
0x0000 4700
0x0000 47FF
Yes
Yes
Yes
EQep1Regs
EQEP_REGS
0x0000 5100
0x0000 513F
Yes
Yes
Yes
EQep2Regs
EQEP_REGS
0x0000 5140
0x0000 517F
Yes
Yes
Yes
ECap1Regs
ECAP_REGS
0x0000 5200
0x0000 521F
Yes
Yes
Yes
ECap2Regs
ECAP_REGS
0x0000 5240
0x0000 525F
Yes
Yes
Yes
ECap3Regs
ECAP_REGS
0x0000 5280
0x0000 529F
Yes
Yes
Yes
ECap4Regs
ECAP_REGS
0x0000 52C0
0x0000 52DF
Yes
Yes
Yes
ECap5Regs
ECAP_REGS
0x0000 5300
0x0000 531F
Yes
Yes
Yes
ECap6Regs
ECAP_REGS
0x0000 5340
0x0000 535F
Yes
Yes
Yes
Hrcap6Regs
HRCAP_REGS
0x0000 5360
0x0000 537F
Yes
Yes
Yes
ECap7Regs
ECAP_REGS
0x0000 5380
0x0000 539F
Yes
Yes
Yes
Hrcap7Regs
HRCAP_REGS
0x0000 53A0
0x0000 53BF
Yes
Yes
Yes
Pga1Regs
PGA_REGS
0x0000 5B00
0x0000 5B0F
Yes
Yes
Yes
Pga2Regs
PGA_REGS
0x0000 5B10
0x0000 5B1F
Yes
Yes
Yes
Pga3Regs
PGA_REGS
0x0000 5B20
0x0000 5B2F
Yes
Yes
Yes
Pga4Regs
PGA_REGS
0x0000 5B30
0x0000 5B3F
Yes
Yes
Yes
Pga5Regs
PGA_REGS
0x0000 5B40
0x0000 5B4F
Yes
Yes
Yes
Pga6Regs
PGA_REGS
0x0000 5B50
0x0000 5B5F
Yes
Yes
Yes
Pga7Regs
PGA_REGS
0x0000 5B60
0x0000 5B6F
Yes
Yes
Yes
DacaRegs
DAC_REGS
0x0000 5C00
0x0000 5C0F
Yes
Yes
Yes
DacbRegs
DAC_REGS
0x0000 5C10
0x0000 5C1F
Yes
Yes
Yes
Cmpss1Regs
CMPSS_REGS
0x0000 5C80
0x0000 5C9F
Yes
Yes
Yes
Cmpss2Regs
CMPSS_REGS
0x0000 5CA0
0x0000 5CBF
Yes
Yes
Yes
Cmpss3Regs
CMPSS_REGS
0x0000 5CC0
0x0000 5CDF
Yes
Yes
Yes
Cmpss4Regs
CMPSS_REGS
0x0000 5CE0
0x0000 5CFF
Yes
Yes
Yes
The CPU (not applicable for CLA or DMA) contains a write-followed-by-read protection mode to ensure that any read operation that
follows a write operation within a protected address range is executed as written by delaying the read operation until the write is
initiated.
ADC result register has no arbitration. Each master can access any ADC result register without any arbitration.
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 6-4. Peripheral Registers Memory Map (continued)
REGISTER
STRUCTURE NAME
START ADDRESS
END ADDRESS
PIPELINE
PROTECTION (1)
CLA
ACCESS
DMA
ACCESS
Cmpss5Regs
CMPSS_REGS
0x0000 5D00
0x0000 5D1F
Yes
Yes
Yes
Cmpss6Regs
CMPSS_REGS
0x0000 5D20
0x0000 5D3F
Yes
Yes
Yes
Cmpss7Regs
CMPSS_REGS
0x0000 5D40
0x0000 5D5F
Yes
Yes
Yes
Sdfm1Regs
SDFM_REGS
0x0000 5E00
0x0000 5E7F
Yes
Yes
Yes
Peripheral Frame 2
SpiaRegs (3)
SPI_REGS
0x0000 6100
0x0000 610F
Yes
Yes
Yes
SpibRegs (3)
SPI_REGS
0x0000 6110
0x0000 611F
Yes
Yes
Yes
PmbusaRegs
PMBUS_REGS
0x0000 6400
0x0000 641F
Yes
Yes
Yes
FsiTxaRegs
FSI_TX_REGS
0x0000 6600
0x0000 667F
Yes
Yes
Yes
FsiRxaRegs
FSI_RX_REGS
0x0000 6680
0x0000 66FF
Yes
Yes
Yes
Peripheral Frame 3
AdcaRegs
ADC_REGS
0x0000 7400
0x0000 747F
Yes
Yes
AdcbRegs
ADC_REGS
0x0000 7480
0x0000 74FF
Yes
Yes
AdccRegs
ADC_REGS
0x0000 7500
0x0000 757F
Yes
Yes
Peripheral Frame 4
InputXbarRegs
INPUT_XBAR_REGS
0x0000 7900
0x0000 791F
Yes
XbarRegs
XBAR_REGS
0x0000 7920
0x0000 793F
Yes
SyncSocRegs
SYNC_SOC_REGS
0x0000 7940
0x0000 794F
Yes
DmaClaSrcSelRegs
DMA_CLA_SRC_SEL_REGS
0x0000 7980
0x0000 79BF
Yes
EPwmXbarRegs
EPWM_XBAR_REGS
0x0000 7A00
0x0000 7A3F
Yes
OutputXbarRegs
OUTPUT_XBAR_REGS
0x0000 7A80
0x0000 7ABF
Yes
GpioCtrlRegs
GPIO_CTRL_REGS
0x0000 7C00
0x0000 7EFF
Yes
GpioDataRegs (4)
GPIO_DATA_REGS
0x0000 7F00
0x0000 7FFF
Yes
Yes
Peripheral Frame 5
DevCfgRegs
DEV_CFG_REGS
0x0005 D000
0x0005 D17F
Yes
ClkCfgRegs
CLK_CFG_REGS
0x0005 D200
0x0005 D2FF
Yes
CpuSysRegs
CPU_SYS_REGS
0x0005 D300
0x0005 D3FF
Yes
PeriphAcRegs
PERIPH_AC_REGS
0x0005 D500
0x0005 D6FF
Yes
AnalogSubsysRegs
ANALOG_SUBSYS_REGS
0x0005 D700
0x0005 D7FF
Yes
Peripheral Frame 6
EnhancedDebugGlobalRegs
ERAD_GLOBAL_REGS
0x0005 E800
EnhancedDebugHWBP1Regs
ERAD_HWBP_REGS
0x0005 E900
0x0005 E907
EnhancedDebugHWBP2Regs
ERAD_HWBP_REGS
0x0005 E908
0x0005 E90F
EnhancedDebugHWBP3Regs
ERAD_HWBP_REGS
0x0005 E910
0x0005 E917
EnhancedDebugHWBP4Regs
ERAD_HWBP_REGS
0x0005 E918
0x0005 E91F
EnhancedDebugHWBP5Regs
ERAD_HWBP_REGS
0x0005 E920
0x0005 E927
EnhancedDebugHWBP6Regs
ERAD_HWBP_REGS
0x0005 E928
0x0005 E92F
EnhancedDebugHWBP7Regs
ERAD_HWBP_REGS
0x0005 E930
0x0005 E937
EnhancedDebugHWBP8Regs
ERAD_HWBP_REGS
0x0005 E938
0x0005 E93F
EnhancedDebugCounter1Regs
ERAD_COUNTER_REGS
0x0005 E980
0x0005 E98F
EnhancedDebugCounter2Regs
ERAD_COUNTER_REGS
0x0005 E990
0x0005 E99F
EnhancedDebugCounter3Regs
ERAD_COUNTER_REGS
0x0005 E9A0
0x0005 E9AF
EnhancedDebugCounter4Regs
ERAD_COUNTER_REGS
0x0005 E9B0
0x0005 E9BF
DcsmBank0Z1Regs
DCSM_BANK0_Z1_REGS
0x0005 F000
0x0005 F022
Yes
DcsmBank0Z2Regs
DCSM_BANK0_Z2_REGS
0x0005 F040
0x0005 F062
Yes
DcsmBank1Z1Regs
DCSM_BANK1_Z1_REGS
0x0005 F100
0x0005 F122
Yes
DcsmBank1Z2Regs
DCSM_BANK1_Z2_REGS
0x0005 F140
0x0005 F162
Yes
DcsmCommonRegs
DCSM_COMMON_REGS
0x0005 F070
0x0005 F07F
Yes
DcsmCommon2Regs
DCSM_COMMON_REGS
0x0005 F080
0x0005 F087
Yes
MemCfgRegs
MEM_CFG_REGS
0x0005 F400
0x0005 F47F
Yes
AccessProtectionRegs
ACCESS_PROTECTION_REGS
0x0005 F4C0
0x0005 F4FF
Yes
MemoryErrorRegs
MEMORY_ERROR_REGS
0x0005 F500
0x0005 F53F
Yes
(3)
(4)
0x0005 E80A
Registers with 16-bit access only.
Both CPU and CLA have their own copy of GPIO_DATA_REGS, and hence, no arbitration is required between CPU and CLA. For more
details, see the General-Purpose Input/Output (GPIO) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference
Manual.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
187
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 6-4. Peripheral Registers Memory Map (continued)
START ADDRESS
END ADDRESS
PIPELINE
PROTECTION (1)
FLASH_CTRL_REGS
0x0005 F800
0x0005 FAFF
Yes
FLASH_ECC_REGS
0x0005 FB00
0x0005 FB3F
Yes
REGISTER
STRUCTURE NAME
Flash0CtrlRegs
Flash0EccRegs
CLA
ACCESS
DMA
ACCESS
Peripheral Frame 7
CanaRegs
CAN_REGS
0x0004 8000
0x0004 87FF
Yes
Yes
CanbRegs
CAN_REGS
0x0004 A000
0x0004 A7FF
Yes
Yes
RomPrefetchRegs
ROM_PREFETCH_REGS
0x0005 E608
0x0005 E609
Yes
DccRegs
DCC_REGS
0x0005 E700
0x0005 E73F
Yes
0x0000 6AFF
Yes
Peripheral Frame 8
LinaRegs
LIN_REGS
0x0000 6A00
Yes
Yes
Peripheral Frame 9
188
WdRegs (3)
WD_REGS
0x0000 7000
0x0000 703F
Yes
NmiIntruptRegs (3)
NMI_INTRUPT_REGS
0x0000 7060
0x0000 706F
Yes
XintRegs (3)
XINT_REGS
0x0000 7070
0x0000 707F
Yes
SciaRegs (3)
SCI_REGS
0x0000 7200
0x0000 720F
Yes
ScibRegs (3)
SCI_REGS
0x0000 7210
0x0000 721F
Yes
I2caRegs (3)
I2C_REGS
0x0000 7300
0x0000 733F
Yes
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.3.4
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Memory Types
6.3.4.1
Dedicated RAM (Mx RAM)
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are
small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).
6.3.4.2
Local Shared RAM (LSx RAM)
RAM blocks which are dedicated to each subsystem and are accessible only to its CPU and CLA, are
called local shared RAMs (LSx RAMs).
All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU
write/CPU fetch) feature.
By default, these memories are dedicated only to the CPU, and the user could choose to share these
memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately
(see Table 6-5).
Table 6-5. Master Access for LSx RAM
(With Assumption That all Other Access Protections are Disabled)
MSEL_LSx
CLAPGM_LSx
CPU ALLOWED
ACCESS
CLA1 ALLOWED
ACCESS
COMMENT
00
X
All
–
LSx memory is configured
as CPU dedicated RAM.
01
0
All
Data Read
Data Write
Emulation Data Read
Emulation Data Write
LSx memory is shared
between CPU and CLA1.
01
1
Emulation Read
Emulation Write
Fetch Only
Emulation Program Read
Emulation Program Write
6.3.4.3
LSx memory is CLA1
program memory.
Global Shared RAM (GSx RAM)
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx
RAMs). Both the CPU and DMA have full read and write access to these memories. Table 6-6 shows the
features of the GSx RAM.
Table 6-6. Global Shared RAM
CPU (FETCH)
CPU (READ)
CPU (WRITE)
CPU.DMA (READ)
CPU.DMA (WRITE)
Yes
Yes
Yes
Yes
Yes
All GSx RAM blocks have parity.
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).
6.3.4.4
CLA Message RAM (CLA MSGRAM)
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write
access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA
MSGRAM." The CPU and CLA both have read access to both MSGRAMs.
This RAM has parity.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
189
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.4
www.ti.com
Identification
Table 6-7 lists the Device Identification Registers. Additional information on device identification can be
found in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. See the register
descriptions of PARTIDH and PARTIDL for identification of production status (TMX or TMS); availability of
InstaSPIN-FOC™; and other device information.
Table 6-7. Device Identification Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
Device part identification number
PARTIDH
0x0005 D00A
2
TMS320F280049
0x01FF 0500
TMS320F280049C
0x01FF 0500
TMS320F280048
0x01FE 0500
TMS320F280048C
0x01FE 0500
TMS320F280045
0x01FB 0500
TMS320F280041
0x01F7 0500
TMS320F280041C
0x01F7 0500
TMS320F280040
0x01F6 0500
TMS320F280040C
0x01F6 0500
Silicon revision number
REVID
0x0005 D00C
UID_UNIQUE
190
Detailed Description
0x0007 03CC
2
2
Revision 0
0x0000 0000
Revision A
0x0000 0001
Revision B
0x0000 0002
Unique identification number. This number is different on each
individual device with the same PARTIDH. This unique number
can be used as a serial number in the application. This number
is present only on TMS Revision B devices.
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.5
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Bus Architecture – Peripheral Connectivity
Table 6-8 lists a broad view of the peripheral and configuration register accessibility from each bus
master.
Table 6-8. Bus Master Peripheral Access
PERIPHERALS
DMA
CLA
CPU
SYSTEM PERIPHERALS
CPU Timers
Y
System Configuration (WD, NMIWD, LPM, Peripheral Clock Gating)
Y
Device Capability, Peripheral Reset
Y
Clock and PLL Configuration
Y
Flash Configuration
Y
Reset Configuration
Y
GPIO Pin Mapping and Configuration
Y
GPIO Data (1)
Y
DMA and CLA Trigger Source Select
Y
Y
CONTROL PERIPHERALS
ePWM/HRPWM
Y
Y
Y
eCAP/HRCAP
Y
Y
Y
eQEP (2)
Y
Y
Y
SDFM
Y
Y
Y
ANALOG PERIPHERALS
Analog System Control
Y
ADC Configuration
ADC Result (3)
CMPSS
(2)
Y
Y
Y
Y
Y
Y
Y
Y
DAC (2)
Y
Y
Y
PGA (2)
Y
Y
Y
COMMUNICATION PERIPHERALS
CAN
Y
SPI
Y
Y
Y
Y
Y
Y
Y
I2C
Y
PMBus
SCI
(2)
(3)
Y
Y
LIN
(1)
Y
Y
The GPIO Data Registers are unique for the CPU and CLA. When the GPIO Pin Mapping Register is configured to assign a GPIO to a
particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO) chapter of the
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual for more details.
These modules are accessible from DMA but cannot trigger a DMA transfer.
ADC result registers are duplicated for each master. This allows them to be read with 0-wait states with no arbitration from any or all
masters.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
191
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.6
www.ti.com
C28x Processor
The CPU is a 32-bit fixed-point processor which draws from the best features of digital signal processing;
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.
The features include:
• CPU – modified Harvard architecture and circular addressing. The modified Harvard architecture of the
CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions
and data while it writes data simultaneously to maintain the single-cycle instruction operation across
the pipeline. The CPU does this over six separate address and data buses.
• RISC – single-cycle instruction execution, register-to-register operations, and modified Harvard
architecture.
• Microcontroller – ease of use through an intuitive instruction set, byte packing and unpacking, and bit
manipulation.
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction
Set Reference Guide. For more information on the C28x Floating-Point Unit (FPU), see the TMS320C28x
Extended Instruction Sets Technical Reference Guide. All of the features of the C28x documented in the
TMS320C28x DSP CPU and Instruction Set Reference Guide apply to the C28x+VCU. All features
documented in the TMS320C28x Floating Point Unit and Instruction Set Reference Guide apply to the
C28x+FPU+VCU. A brief overview of the FPU, TMU, and VCU-Type 0 is provided here.
An overview of the VCU-I instructions can be found in the TMS320C28x Extended Instruction Sets
Technical Reference Manual.
6.6.1
Embedded Real-Time Analysis and Diagnostic (ERAD)
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and
system-analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD
module consists of the Enhanced Bus Comparator units and the Benchmark System Event Counter units.
The Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points,
and other output events. The Benchmark System Event Counter units are used to analyze and profile the
system. The ERAD module is accessible by the debugger and by the application software, which
significantly increases the debug capabilities of many real-time systems, especially in situations where
debuggers are not connected. In the TMS320F28004x devices, the ERAD module contains eight
Enhanced Bus Comparator units and four Benchmark System Event Counter units.
6.6.2
Floating-Point Unit (FPU)
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU
by adding registers and instructions to support IEEE single-precision floating-point operations.
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point
unit registers. The additional floating-point unit registers are the following:
• Eight floating-point result registers, RnH (where n = 0–7)
• Floating-point Status Register (STF)
• Repeat Block Register (RB)
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in highpriority interrupts for fast context save and restore of the floating-point registers.
192
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.6.3
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Trigonometric Math Unit (TMU)
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU
instructions to speed up the execution of common trigonometric and arithmetic operations listed in
Table 6-9.
Table 6-9. TMU Supported Instructions
INSTRUCTIONS
C EQUIVALENT OPERATION
PIPELINE CYCLES
MPY2PIF32 RaH,RbH
a = b * 2pi
2/3
DIV2PIF32 RaH,RbH
a = b / 2pi
2/3
DIVF32 RaH,RbH,RcH
a = b/c
5
SQRTF32 RaH,RbH
a = sqrt(b)
5
SINPUF32 RaH,RbH
a = sin(b*2pi)
4
COSPUF32 RaH,RbH
a = cos(b*2pi)
4
ATANPUF32 RaH,RbH
a = atan(b)/2pi
4
QUADF32 RaH,RbH,RcH,RdH
Operation to assist in calculating ATANPU2
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU
instructions use the existing FPU register set (R0H to R7H) to carry out their operations.
6.6.4
Viterbi, Complex Math and CRC Unit (VCU-I)
The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floatingpoint CPU by adding registers and instructions to support the following algorithm types:
• Viterbi decoding
Viterbi decoding is commonly used in baseband communications applications. The viterbi decode
algorithm consists of three main parts: branch metric calculations, compare-select (viterbi butterfly),
and a traceback operation. Table 6-10 lists a summary of the VCU-I performance for each of these
operations.
Table 6-10. Viterbi Decode Performance
VITERBI OPERATION
VCU CYCLES
Branch Metric Calculation (code rate = 1/2)
Branch Metric Calculation (code rate = 1/3)
1
2p
Viterbi Butterfly (add-compare-select)
2
(1)
Traceback per Stage
3
(2)
(1)
(2)
C28x CPU takes 15 cycles per butterfly.
C28x CPU takes 22 cycles per stage.
•
•
Cyclic redundancy check (CRC)
CRC algorithms provide a straightforward method for verifying data integrity over large data blocks,
communication packets, or code sections. The C28x+VCU can perform 8-, 16-, and 32-bit CRCs. For example,
the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register contains the
current CRC which is updated whenever a CRC instruction is executed.
Complex math
Complex math is used in many applications; a few of which are:
– Fast fourier transform (FFT)
The complex FFT is used in spread spectrum communications, as well as many signal processing algorithms.
– Complex filters
Complex filters improve data reliability, transmission distance, and power efficiency. The C28x+VCU can
perform a complex I and Q multiply with coefficients (four multiplies) in a single cycle. In addition, the
C28x+VCU can read/write the real and imaginary parts of 16-bit complex data to memory in a single cycle.
Table 6-11 lists a summary of a few complex math operations enabled by the VCU.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
193
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
Table 6-11. Complex Math Performance
COMPLEX MATH OPERATION
Add or Subtract
VCU CYCLES
NOTES
1
32 ± 32 = 32-bit (Useful for filters)
Add or Subtract
1
16 ± 32 = 15-bit (Useful for FFT)
Multiply
2p
16 × 16 = 32-bit
2p
32 + 32 = 32-bit, 16 × 16 = 32-bit
Multiply and Accumulate (MAC)
RPT MAC
194
2p+N
Detailed Description
Repeat MAC. Single cycle after the first operation.
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.7
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Control Law Accelerator (CLA)
The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings
concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read
ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster
system response and higher MHz control loops. By using the CLA to service time-critical control loops, the
main CPU is free to perform other system tasks such as communications and diagnostics.
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Timecritical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA
enables faster system response and higher frequency control loops. Using the CLA for time-critical tasks
frees up the main CPU to perform other system and communication functions concurrently.
The following is a list of major features of the CLA:
• Clocked at the same rate as the main CPU (SYSCLKOUT).
• An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.
– Complete bus architecture:
• Program Address Bus (PAB) and Program Data Bus (PDB)
• Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus
(DWAB), and Data Write Data Bus (DWDB)
– Independent 8-stage pipeline.
– 16-bit program counter (MPC)
– Four 32-bit result registers (MR0 to MR3)
– Two 16-bit auxiliary registers (MAR0, MAR1)
– Status register (MSTF)
• Instruction set includes:
– IEEE single-precision (32-bit) floating-point math operations
– Floating-point math with parallel load or store
– Floating-point multiply with parallel add or subtract
– 1/X and 1/sqrt(X) estimations
– Data type conversions
– Conditional branch and call
– Data load/store operations
• The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks
and a main background task.
– The start address of each task is specified by the MVECT registers.
– No limit on task size as long as the tasks fit within the configurable CLA program memory space.
– One task is serviced at a time until its completion. There is no nesting of tasks.
– Upon task completion a task-specific interrupt is flagged within the PIE.
– When a task finishes the next highest-priority pending task is automatically started.
– The Type-2 CLA can have a main task that runs continuously in the background, while other highpriority events trigger a foreground task.
• Task trigger mechanisms:
– C28x CPU through the IACK instruction
– Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus
on which the CLA assumes secondary ownership.
– Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
195
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
•
www.ti.com
Memory and Shared Peripherals:
– Two dedicated message RAMs for communication between the CLA and the main CPU.
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
– The CLA, on reset, is the secondary master for all peripherals which can have either the CLA or
DMA as their secondary master.
Figure 6-2 shows the CLA block diagram.
CLA Control
Register Set
MIFR(16)
MPERINT1
to
MPERINT8
From Shared
Peripherals
CLA_INT1
to
CLA_INT8
MIOVF(16)
MICLR(16)
MICLROVF(16)
PIE
MIFRC(16)
INT11
C28x
CPU
INT12
MIER(16)
MIRUN(16)
MCTLBGRND(16)
MSTSBGRND(16)
CLA1SOFTINTEN(16)
CLA1INTFRC(16)
LVF
LUF
SYSCLK
CLA Clock Enable
SYSRS
MVECT1(16)
MVECT2(16)
MVECT3(16)
CPU Read/Write Data Bus
MVECT4(16)
MVECT5(16)
MVECT6(16)
MVECT7(16)
MVECT8(16)
CLA Program
Memory (LSx)
CLA Program Bus
LSxMSEL[MSEL_LSx]
LSxCLAPGM[CLAPGM_LSx]
MVECTBGRND(16)
MVECTBGRNDACTIVE(16)
MPSA1(32)
MPSA2(32)
CLA Data
Memory (LSx)
CLA Data Buses:
DRAB -Data Read Address Bus
DRDB ± Data Read Data Bus
DWAB ± Data Write Address Bus
DWDB ± Data Write Data Bus
CLA Program Buses:
PAB ± Program Address Bus
PDB ± Program Data Bus
CLA Data Bus
MCTL(16)
CLA Execution
Register Set
CPU Data Bus
MPSACTL(16)
CLA Message
RAMs
MPC(16)
MSTF(32)
MR0(32)
MR1(32)
MR2(32)
MR3(32)
MEALLOW
Shared
Peripherals
MAR0(16)
MAR1(16)
CPU Read Data Bus
Copyright © 2017, Texas Instruments Incorporated
Figure 6-2. CLA Block Diagram
196
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.8
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Direct Memory Access (DMA)
The DMA module provides a hardware method of transferring data between peripherals and/or memory
without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally,
the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong”
data between buffers. These features are useful for structuring data into blocks for optimal CPU
processing.
DMA features include:
• Six channels with independent PIE interrupts
• Peripheral interrupt trigger sources
– ADC interrupts and EVT signals
– External Interrupts
– ePWM SOC signals
– CPU timers
– eCAP
– Sigma-Delta Filter Module
– SPI transmit and receive
– CAN transmit and receive
– LIN transmit and receive
• Data sources and destinations:
– GSx RAM
– ADC result registers
– Control peripheral registers (ePWM, eQEP, eCAP, SDFM)
– DAC and PGA registers
– SPI, LIN, CAN, and PMBus registers
• Word Size: 16-bit or 32-bit (SPI limited to 16-bit)
• Throughput: Four cycles per word without arbitration
Figure 6-3 shows a device-level block diagram of the DMA.
LIN
ADC
WRAPPER
ADC
RESULTS
XINT
Global Shared
(GSx) RAMs
TIMER
C28x Bus
DMA Bus
TINT (0-2)
XINT (1-5)
ADCx.INT(1-4), ADCx.EVT
LINATXDMA, LINARXDMA
CANxIF(1-3)
ECAP(1-7)DMA
SD1DRINT (1-4)
EPWM(1-8).SOCA, EPWM(1-8).SOCB
SPITXDMA(A-B), SPIRXDMA(A-B)
DMA Trigger
Source Selection
DMACHSRCSEL1.CHx
DMACHSRCSEL2.CHx
CHx.MODE.PERINTSEL
(x = 1 to 6)
DMA
DMA_CHx (1-6)
CAN
C28x
PIE
FSITXADMA, FSIRXADMA
DMA Trigger Source
eQEP
DAC
CMPSS
PGA
CPU and DMA Data Path
eCAP
SDFM
EPWM
SPI
PMBUS
FSI
Figure 6-3. DMA Block Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
197
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.9
www.ti.com
Boot ROM and Peripheral Booting
The device boot ROM contains bootloading software. The device ROM has an internal bootloader
(programmed by TI) that is executed when the device is powered ON, and each time the device is reset.
The bootloader is used as an initial program to load the application on to device RAM through any of the
bootable peripherals, or it is configured to start the application in flash, if any.
Table 6-12 lists the default boot mode options. Users have the option to customize the boot modes
supported as well as the boot mode select pins.
Table 6-12. Device Default Boot Modes
BOOT MODE
GPIO24
(DEFAULT BOOT MODE SELECT PIN 1)
GPIO32
(DEFAULT BOOT MODE SELECT PIN 0)
Parallel IO
0
0
SCI/Wait boot
0
1
CAN
1
0
Flash
1
1
Table 6-13 lists the possible boot modes supported on the device. The default boot mode pins are
GPIO24 (boot mode pin 1) and GPIO32 (boot mode pin 0). Users may choose to have weak pullups for
boot mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this
device, customers can change the factory default boot mode pins by programming user-configurable Dual
Code Security Module (DCSM) OTP locations.
Table 6-13. All Available Boot Modes
BOOT MODE NUMBER
BOOT MODE
0
Parallel IO
1
SCI/Wait boot
2
CAN
3
Flash
4
Wait
5
RAM
6
SPI Master
7
I2C Master
8
PLC
NOTE
All the peripheral boot modes supported use the first instance of the peripheral module
(SCIA, SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this
section, such as SCI boot, it is actually referring to the first module instance, meaning SCI
boot on the SCIA port. The same applies to the other peripheral boots.
198
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
6.9.1
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Configuring Alternate Boot Mode Pins
This section explains how the boot mode select pins can be customized by the user, by programming the
BOOTPIN_CONFIG location in user-configurable DCSM OTP. The location in user DCSM OTP is Z1OTP-BOOTPIN-CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1OTP-BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing
to OTP. The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed.
Table 6-14. BOOTPIN_CONFIG Bit Fields
BIT
NAME
DESCRIPTION
Write 0x5A to these 8 bits to tell the boot ROM code that the bits in
this register are valid
31-24
Key
23-16
Boot Mode Select Pin 2 (BMSP2)
See BMPS0 description except for BMPS2
15-8
Boot Mode Select Pin 1 (BMSP1)
See BMSP0 description except for BMPS1
Set to the GPIO pin to be used during boot (up to 255).
0x0 = GPIO0; 0x01 = GPIO1 and so on
7-0
Boot Mode Select Pin 0 (BMSP0)
0xFF is invalid and selects the factory default chosen BMSP0, if all
other BMSPs are also set to 0xFF.
If any other BMSPs are not set to 0xFF, then setting a BMSP to 0xFF
will disable that particular BMSP.
NOTE
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot
ROM automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF,
which disables the BMSP).
• GPIO 20 to 23
• GPIO 36
• GPIO 38
• GPIO 60 to 223
Table 6-15. Stand-alone Boot Mode Select Pin Decoding
BOOTPIN_CONFIG
KEY
BMSP0
BMSP1
BMSP2
!= 0x5A
Don’t Care
Don’t Care
Don’t Care
0xFF
0xFF
0xFF
Boot as defined in the boot table for boot mode 0
(All BMSPs disabled)
Valid GPIO
0xFF
0xFF
Boot as defined by the value of BMSP0
(BMSP1 and BMSP2 disabled)
0xFF
Valid GPIO
0xFF
Boot as defined by the value of BMSP1
(BMSP0 and BMSP2 disabled)
0xFF
0xFF
Valid GPIO
Boot as defined by the value of BMSP2
(BMSP0 and BMSP1 disabled)
Valid GPIO
Valid GPIO
0xFF
Boot as defined by the values of BMSP0 and BMSP1
(BMSP2 disabled)
Valid GPIO
0xFF
Valid GPIO
Boot as defined by the values of BMSP0 and BMSP2
(BMSP1 disabled)
0xFF
Valid GPIO
Valid GPIO
Boot as defined by the values of BMSP1 and BMSP2
(BMSP0 disabled)
Valid GPIO
Valid GPIO
Valid GPIO
Boot as defined by the values of BMSP0, BMPS1, and
BMSP2
= 0x5A
REALIZED BOOT MODE
Boot as defined by the factory default BMSPs (GPIO24,
GPIO32)
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
199
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.9.2
www.ti.com
Configuring Alternate Boot Mode Options
This section explains how to configure the boot definition table, BOOTDEF, for the device and the
associated boot options. The 64-bit location is in user-configurable DCSM OTP in the Z1-OTP-BOOTDEFLOW and Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMUBOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEFHIGH, and can be programmed to experiment with different boot mode options without writing to OTP.
The range of customization to the boot definition table depends on how many boot mode select pins are
being used. For examples on how to use the BOOTPIN_CONFIG and BOOTDEF values, see the Boot
Mode Example Use Cases section of the ROM Code and Peripheral Booting chapter in the
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.
Table 6-16. BOOTDEF Bit Fields
BOOTDEF NAME
BYTE POSITION
BIT
NAME
4-0
BOOT_DEF0 mode
DESCRIPTION
Set the boot
Table 6-13.
mode
number
from
An unsupported boot mode will cause
the device to reset.
BOOT_DEF0
7-0
Set the alternative or additional boot
options.
7-5
BOOT_DEF0 options
This can include changing the GPIOs for
a particular boot peripheral or specifying
a different flash entry point.
See GPIO Assignments for boot options.
BOOT_DEF1
15-8
BOOT_DEF1 mode and options
BOOT_DEF2
23-16
BOOT_DEF2 mode and options
BOOT_DEF3
31-24
BOOT_DEF3 mode and options
BOOT_DEF4
39-32
BOOT_DEF4 mode and options
BOOT_DEF5
47-40
BOOT_DEF5 mode and options
BOOT_DEF6
55-48
BOOT_DEF6 mode and options
BOOT_DEF7
63-56
BOOT_DEF7 mode and options
6.9.3
See BOOT_DEF0 descriptions
GPIO Assignments
This section details the GPIOs and boot options used for each boot mode set in BOOT_DEFx at Z1-OTPBOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH. See Configuring Alternate Boot Mode Pins on how to
manipulate BOOT_DEFx.
Table 6-17. SCI Boot Options
OPTION
BOOTDEFx VALUE
SCIATX GPIO
SCIARX GPIO
1
0x01
GPIO29
GPIO28
2
0x21
GPIO16
GPIO17
3
0x41
GPIO8
GPIO9
4
0x61
GPIO48
GPIO49
5
0x81
GPIO24
GPIO25
NOTE
Pullups are enabled on the SCIATX and SCIARX pins.
200
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Table 6-18. CAN Boot Options
OPTION
BOOTDEFx VALUE
CANTXA GPIO
CANRXA GPIO
1
0x02
GPIO32
GPIO33
2
0x22
GPIO4
GPIO5
3
0x42
GPIO31
GPIO30
4
0x62
GPIO37
GPIO35
NOTE
Pullups are enabled on the CANTXA and SCIARX pins.
Table 6-19. Flash Boot Options
OPTION
BOOTDEFx VALUE
FLASH ENTRY POINT
(ADDRESS)
FLASH BANK, SECTOR
1
0x03
Flash – Default Option 1
(0x00080000)
Bank 0, Sector 0
2
0x23
Flash – Option 2
(0x0008EFF0)
Bank 0, Sector 14
3
0x43
Flash – Option 3
(0x00090000)
Bank 1, Sector 0
4
0x63
Flash – Option 4
(0x0009EFF0)
Bank 1, Sector 14
Table 6-20. Wait Boot Options
OPTION
BOOTDEFx VALUE
WATCHDOG STATUS
1
0x04
Enabled
2
0x24
Disabled
Table 6-21. SPI Boot Options
OPTION
BOOTDEFx VALUE
SPIA_SIMO
SPIA_SOMI
SPIA_CLK
SPIA_STE
1
0x26
GPIO8
GPIO10
GPIO9
GPIO11
2
0x46
GPIO54
GPIO55
GPIO56
GPIO57
3
0x66
GPIO16
GPIO17
GPIO56
GPIO57
4
0x86
GPIO8
GPIO17
GPIO9
GPIO11
NOTE
Pullups are enabled on the SPIA_SIMO, SPIA_SOMI, SPIA_CLK, and SPIA_STE pins.
Table 6-22. I2C Boot Options
OPTION
BOOTDEFx VALUE
SDAA GPIO
SCLA GPIO
1
0x02
GPIO32
GPIO33
2
0x42
GPIO26
GPIO27
3
0x62
GPIO42
GPIO43
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
201
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
NOTE
Pullups are enabled on the SDAA and SCLA pins.
Table 6-23. Parallel Boot Options
OPTION
BOOTDEFx VALUE
D0 to D7 GPIO
DSP CONTROL GPIO
HOST CONTROL GPIO
1
0x00
GPIO0 to GPIO7
GPIO16
GPIO11
NOTE
Pullups are enabled on GPIO0 to GPIO7.
202
Detailed Description
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
6.10 Watchdog
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional
lower limit on the time between software resets of the counter. This windowed countdown is disabled by
default, so the watchdog is fully backward-compatible.
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a
selectable frequency divider.
Figure 6-4 shows the various functional blocks within the watchdog module.
WDCR(WDPS(2:0))
WDCR(WDDIS)
WDCNTR(7:0)
WDCLK
(INTOSC1)
Watchdog
Prescaler
/512
SYSRSn
8-bit
Watchdog
Counter
Overflow
1-count
delay
Clear
Count
WDWCR(MIN(7:0))
WDKEY(7:0)
Watchdog
Key Detector
55 + AA
WDRSTn
WDINTn
Good Key
Out of Window
Watchdog
Window
Detector
Bad Key
Generate
512-WDCLK
Output Pulse
Watchdog Time-out
SCSR(WDENINT)
Figure 6-4. Windowed Watchdog
6.11 Configurable Logic Block (CLB)
TI uses the CLB to offer additional interfacing and control features for select C2000 devices. Functions
that would otherwise be accomplished using external logic devices are now provided by on-chip TI
solutions. For example, absolute encoder master protocol interfaces such as EnDat and BiSS are now
provided as Position Manager solutions. In some solutions, the TI-configured CLB is used with other onchip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. In some
cases, external communications transceivers may need to be added.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
203
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
7 Applications, Implementation, and Layout
NOTE
Information in the following Applications section is not part of the TI component specification,
and TI does not warrant its accuracy or completeness. TI's customers are responsible for
determining suitability of components for their purposes. Customers should validate and test
their design implementation to confirm system functionality.
7.1
TI Design or Reference Design
The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded
processor, and connectivity. Created by TI experts to help you jump start your system design, all TI
Designs include schematic or block diagrams, BOMs, and design files to speed your time to market.
Search and download designs at TIDesigns.
204
Applications, Implementation, and Layout
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
8 Device and Documentation Support
8.1
Device and Development Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
TMS320 MCU devices and support tools. Each TMS320™ MCU commercial family member has one of
three prefixes: TMX, TMP, or TMS (for example, TMS320F280049). Texas Instruments recommends two
of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent
evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX
for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools).
TMX
Experimental device that is not necessarily representative of the final device's electrical
specifications
TMP
Final silicon die that conforms to the device's electrical specifications but has not
completed quality and reliability verification
TMS
Fully qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal
qualification testing
TMDS Fully qualified development-support product
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, PZ) and temperature range (for example, S).
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your
TI sales representative.
For additional description of the device nomenclature markings on the die, see the TMS320F28004x
Piccolo™ Microcontrollers Silicon Errata.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
205
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
320
F
280049
(blank)
F
280049
Generic Part Number: TMS
Orderable Part Number:
X
www.ti.com
PZ
S
(A)
PREFIX
TMX (X) = experimental device
TMP (P) = prototype device
TMS (blank) = qualified device
TEMPERATURE RANGE
S = −40°C to 125°C (TJ)
Q = −40°C to 125°C (TA)
(Q refers to AEC Q100 qualification for automotive applications.)
DEVICE FAMILY
320 = TMS320 MCU Family
PACKAGE TYPE
100-Pin PZ Low-Profile Quad Flatpack (LQFP)
64-Pin PM LQFP
56-Pin RSH Very Thin Quad Flatpack No-Lead (VQFN)
TECHNOLOGY
F = Flash
DEVICE
280049
280048
280045
280041
280040
A.
280049C
280048C
280041C
280040C
Prefixes X and P are used in orderable part numbers.
Figure 8-1. Device Nomenclature
8.2
Tools and Software
TI offers an extensive line of development tools. Some of the tools and software to evaluate the
performance of the device, generate code, and develop solutions follow. To view all available tools and
software for C2000™ real-time control MCUs, visit the Tools & software for C2000™ real-time control
MCUs page.
Development Tools
F280049 Experimenter's Kit for C2000 Real-Time Control Development Kits
The F280049 Experimenter's Kit from Texas Instruments is an ideal kit for software development and
evaluation of the TMS320F280049 microcontroller. It is a board-level module that uses the HSEC
controlCARD form factor, which is a common interface used in C2000 kits and can be used in conjunction
with other C2000 application kits. The F280049 controlCARD can also be used in the creation of in-house
system prototypes, test stands, and many other projects that require easy access to high-performance
controllers. The baseboard, to which the controlCARD mates, must only provide a single 5-V power rail for
the controlCARD to be fully functional.
Software Tools
C2000Ware for C2000 MCUs
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation
designed to minimize software development time. From device-specific drivers and libraries to device
peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation of your
product.
Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller
and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop
and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project
build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user
interface taking the user through each step of the application development flow. Familiar tools and
interfaces allow users to get started faster than ever before. Code Composer Studio combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from TI
resulting in a compelling feature-rich development environment for embedded developers.
206
Device and Documentation Support
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Pin Mux Tool
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin
multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.
F021 Flash Application Programming Interface (API)
The F021 Flash Application Programming Interface (API) provides a software library of functions to
program, erase, and verify F021 on-chip Flash memory.
Models
Various models are available for download from the product Tools & Software pages. These models
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language
(BSDL) Models. To view all available models, visit the Models section of the Tools & Software page for
each device, which can be found in Table 8-1.
Training
Technical Introduction to the New C2000 TMS320F28004x Device Family
Discover the newest member to the C2000 MCU family. This presentation will cover the technical details
of the Piccolo TMS320F28004x architecture and highlight the new improvements to various key
peripherals, such as an enhanced Type 2 CLA capable of running a background task, and the inclusion of
a set of high-speed programmable gain amplifiers. Also, a completely new boot mode flow enables
expanded booting options. Where applicable, a comparison to the Piccolo TMS320F2807x MCU device
series will be used, and some knowledge about the previous device architectures will be helpful in
understanding the topics presented in this presentation.
C2000 Multi-Day Workshop
The C2000™ Microcontroller 3-Day Workshop will decrease the learning curve from months to days,
reduce development time, and accelerate product time to market! The workshop is perfect for both the
beginner and advanced users. Based on TI’s latest F28x7x devices, this workshop combines many of the
common features and peripherals found on the Piccolo™ and Delfino™ families, making it ideal for
anyone interested in learning about the C2000 MCU family of devices.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
207
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
8.3
www.ti.com
Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the
upper right corner, click on Alert me to register and receive a weekly digest of any product information that
has changed. For change details, review the revision history included in any revised document.
The current documentation that describes the processor, related peripherals, and other technical collateral
follows.
Errata
TMS320F28004x Piccolo™ Microcontrollers Silicon Errata describes known advisories on silicon and
provides workarounds.
Technical Reference Manual
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual details the integration, the
environment, the functional description, and the programming models for each peripheral and subsystem
in the F28004x microcontrollers.
InstaSPIN Technical Reference Manuals
InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide describes the InstaSPIN-FOC and InstaSPINMOTION devices.
CPU User's Guides
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and
the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This
Reference Guide also describes emulation features available on these DSPs.
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline,
and instruction set of the TMU, VCU-II, and FPU accelerators.
Peripheral Guides
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the
28x DSPs.
Tools Guides
TMS320C28x Assembly Language Tools v17.9.0.STS User's Guide describes the assembly language
tools (assembler and other tools used to develop assembly language code), assembler directives, macros,
common object file format, and symbolic debugging directives for the TMS320C28x device.
TMS320C28x Optimizing C/C++ Compiler v17.9.0.STS User's Guide describes the TMS320C28x C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly
language source code for the TMS320C28x device.
TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the
Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x core.
Application Reports
Semiconductor Packing Methodology describes the packing methodologies employed to prepare
semiconductor devices for shipment to end users.
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful
lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at
general engineers who wish to determine if the reliability of the TI EP meets the end system reliability
requirement.
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS
including its history, advantages, compatibility, model generation flow, data requirements in modeling the
input/output structures, and future trends.
208
Device and Documentation Support
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
8.4
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to order now.
Table 8-1. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TMS320F280049
Click here
Click here
Click here
Click here
Click here
TMS320F280049C
Click here
Click here
Click here
Click here
Click here
TMS320F280048
Click here
Click here
Click here
Click here
Click here
TMS320F280048C
Click here
Click here
Click here
Click here
Click here
TMS320F280045
Click here
Click here
Click here
Click here
Click here
TMS320F280041
Click here
Click here
Click here
Click here
Click here
TMS320F280041C
Click here
Click here
Click here
Click here
Click here
TMS320F280040
Click here
Click here
Click here
Click here
Click here
TMS320F280040C
Click here
Click here
Click here
Click here
Click here
8.5
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,
explore ideas and help solve problems with fellow engineers.
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors
from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
8.6
Trademarks
InstaSPIN-FOC, FAST, Piccolo, TMS320C2000, C2000, InstaSPIN-MOTION, Delfino, TMS320, Code
Composer Studio, E2E are trademarks of Texas Instruments.
Bosch is a registered trademark of Robert Bosch GmbH Corporation.
All other trademarks are the property of their respective owners.
8.7
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
8.8
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
209
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
9 Mechanical, Packaging, and Orderable Information
9.1
Packaging Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without
dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL
PAD MECHANICAL DATA figure.
210
Mechanical, Packaging, and Orderable Information
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
PACKAGE OUTLINE
RSH0056D
VQFN - 1 mm max height
SCALE 2.000
VQFN
7.15
6.85
B
A
PIN 1 INDEX AREA
7.15
6.85
C
1 MAX
SEATING PLANE
0.05
0.00
5.3 0.1
(0.2)
28
15
29
14
52X 0.4
4X
5.2
1
PIN 1 ID
(OPTIONAL)
42
43
56
56X
0.6
0.4
56X
0.25
0.15
0.1
0.05
C A
C
B
4218794/A 07/2013
NOTES:
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
www.ti.com
Mechanical, Packaging, and Orderable Information
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
211
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
www.ti.com
EXAMPLE BOARD LAYOUT
RSH0056D
VQFN - 1 mm max height
VQFN
(5.3)
43
SYMM
56
SEE DETAILS
56X (0.7)
56X (0.2)
1
42
52X (0.4)
6X
(1.12)
(1.28)
TYP
SYMM
(6.7)
14
( 0.2) TYP
VIA
29
15
28
6X (1.12)
(1.28) TYP
(6.7)
LAND PATTERN EXAMPLE
SCALE:10X
0.05 MIN
ALL AROUND
0.05 MAX
ALL AROUND
METAL
SOLDERMASK
OPENING
SOLDERMASK
OPENING
NON SOLDERMASK
DEFINED
(PREFERRED)
METAL
SOLDERMASK
DEFINED
SOLDERMASK DETAILS
4218794/A 07/2013
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note
in literature No. SLUA271 (www.ti.com/lit/slua271).
www.ti.com
212
Mechanical, Packaging, and Orderable Information
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
TMS320F280049, TMS320F280049C
TMS320F280048, TMS320F280048C, TMS320F280045
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C
www.ti.com
SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017
EXAMPLE STENCIL DESIGN
RSH0056D
VQFN - 1 mm max height
VQFN
SYMM
METAL
TYP
(1.28) TYP
43
56
56X (0.7)
1
42
56X (0.2)
52X (0.4)
(1.28)
TYP
SYMM
(6.7)
29
14
15
28
16X
(1.08)
(6.7)
SOLDERPASTE EXAMPLE
BASED ON 0.1mm THICK STENCIL
EXPOSED PAD
67% PRINTED SOLDER COVERAGE BY AREA
SCALE:12X
4218794/A 07/2013
NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
Mechanical, Packaging, and Orderable Information
Submit Documentation Feedback
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045
TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C
Copyright © 2017, Texas Instruments Incorporated
213
PACKAGE OPTION ADDENDUM
www.ti.com
1-May-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
F280040CPMQ
PREVIEW
LQFP
PM
64
90
TBD
Call TI
Call TI
-40 to 125
F280040PMQ
PREVIEW
LQFP
PM
64
90
TBD
Call TI
Call TI
-40 to 125
F280041CPMS
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041CPZQ
PREVIEW
LQFP
PZ
100
90
TBD
Call TI
Call TI
-40 to 125
F280041CPZS
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041CRSHS
PREVIEW
VQFN
RSH
56
90
TBD
Call TI
Call TI
-40 to 125
F280041PMS
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041PMS
F280041PMSR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041PMS
F280041PZQ
PREVIEW
LQFP
PZ
100
90
TBD
Call TI
Call TI
-40 to 125
F280041PZS
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041PZS
F280041PZSR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280041PZS
F280041RSHS
PREVIEW
VQFN
RSH
56
90
TBD
Call TI
Call TI
-40 to 125
F280045PMS
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280045PMS
F280045PMSR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280045PMS
F280045PZS
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280045PZS
F280045PZSR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280045PZS
F280045RSHS
PREVIEW
VQFN
RSH
56
90
TBD
Call TI
Call TI
-40 to 125
F280048CPMQ
PREVIEW
LQFP
PM
64
90
TBD
Call TI
Call TI
-40 to 125
F280048PMQ
PREVIEW
LQFP
PM
64
90
TBD
Call TI
Call TI
-40 to 125
F280049CPMS
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280049CPZQ
PREVIEW
LQFP
PZ
100
90
TBD
Call TI
Call TI
-40 to 125
Addendum-Page 1
F280041CPMS
F280041CPZS
F280049CPMS
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
1-May-2018
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
90
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
Device Marking
(4/5)
F280049CPZS
ACTIVE
LQFP
PZ
100
F280049CPZS
F280049CRSHS
PREVIEW
VQFN
RSH
56
90
TBD
Call TI
Call TI
-40 to 125
F280049PMS
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280049PMS
F280049PMSR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280049PMS
F280049PZQ
PREVIEW
LQFP
PZ
100
90
TBD
Call TI
Call TI
-40 to 125
F280049PZS
ACTIVE
LQFP
PZ
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280049PZS
F280049PZSR
ACTIVE
LQFP
PZ
100
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
F280049PZS
F280049RSHS
PREVIEW
VQFN
RSH
56
90
TBD
Call TI
Call TI
-40 to 125
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
1-May-2018
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
5-May-2018
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
F280041PMSR
LQFP
PM
F280045PMSR
LQFP
F280045PZSR
LQFP
F280049PMSR
F280049PZSR
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
PZ
100
1000
330.0
32.4
16.9
16.9
2.0
24.0
32.0
Q2
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
LQFP
PZ
100
1000
330.0
32.4
16.9
16.9
2.0
24.0
32.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
5-May-2018
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
F280041PMSR
LQFP
PM
64
1000
336.6
336.6
41.3
F280045PMSR
LQFP
PM
64
1000
336.6
336.6
41.3
F280045PZSR
LQFP
PZ
100
1000
367.0
367.0
55.0
F280049PMSR
LQFP
PM
64
1000
336.6
336.6
41.3
F280049PZSR
LQFP
PZ
100
1000
367.0
367.0
55.0
Pack Materials-Page 2
MECHANICAL DATA
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996
PZ (S-PQFP-G100)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
75
0,08 M
51
76
50
100
26
1
0,13 NOM
25
12,00 TYP
Gage Plane
14,20
SQ
13,80
16,20
SQ
15,80
0,05 MIN
1,45
1,35
0,25
0°– 7°
0,75
0,45
Seating Plane
0,08
1,60 MAX
4040149 /B 11/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Similar pages