ON ENA2169 Adjustable voltage type regulator Datasheet

Ordering number : ENA2169
LA59700MC
Monolithic Linear IC
Adjustable Voltage Type
Regulator
http://onsemi.com
Overview
LA59700MC is an adjustable voltage regulator which has chip enable function.
The maximum current of 1.0A can be output.
Features
• Adjustable output voltage
• Maximum output current: 1.0A
• Chip enable function
• Build-in over current protection circuit
• Available ceramic capacitors
Specifications
Maximum Ratings at Ta = 25°C
Parameter
Symbol
Maximum supply voltage
VCC max
Maximum input voltage
VIN max
Allowable power dissipation
Pd max
Operating temperature
Storage temperature
Conditions
Ratings
Unit
16
V
16
V
1.8
W
Topr
-40 to +85
°C
Tstg
-55 to +150
°C
Mounted on a specified board *1
*1. Specified board: 50mm × 50mm × 1.6mm, glass epoxy double side board.
Note 1 : Absolute maximum ratings represent the values which cannot be exceeded for any length of time.
Stresses
exceeding
Maximum
damage
the device.
Maximum
Ratingsratings,
are stress
Functional usage
operation
above
thetemperature,
Recommended
Operating
Note
2 : Even
when the
deviceRatings
is usedmay
within
the range
of absolute
maximum
as aratings
resultonly.
of continuous
under
high
high
current,
Conditions
not implied.
Extended
exposure tochange,
stressesthe
above
the Recommended
Operating
Conditions
may contact
affect device
highisvoltage,
or drastic
temperature
reliability
of the IC may
be degraded.
Please
us forreliability.
the further details.
Semiconductor Components Industries, LLC, 2013
August, 2013
12313NKPC 20120327-S00004 No.A2169-1/9
LA59700MC
Recommended Operating Conditions at Ta = 25°C
Parameter
Symbol
Conditions
Ratings
Unit
Input voltage (VCC1)
VCC1
3.5 to 15
V
Input voltage (VCC2)
VCC2
*2 (VOUT+VDROP) to 15
V
Input voltage (EN)
VEN
0 to 15
V
Output voltage
VOUT
1.5 to (VCC1-1.5)
V
*2. VDROP: Dropout voltage
Electrical Characteristics at Ta = 25°C, VCC1 = VCC2 = 3.5V, VEN = 1.6V, VOUT = 1.5V
Parameter
Symbol
Supply current
ICC
VEN = 1.6V
Standby current
ISTBY
VEN = 0V
Output voltage
VOUT
OUT = ADJ, IOUT = 10mA
Output current
IOUT
Dropout voltage
VDROP
(VCC2-VOUT)
Ratings
Conditions
min
typ
Unit
max
3.5
7
mA
1
μA
1.25
1.275
V
IOUT = 500mA
0.42
0.6
1.225
1.0
A
V
IOUT = 1.0A
0.84
1.2
V
ADJ source current
IADJ
ADJ = 0V, OUT = Open
160
300
nA
Load regulation
RLD
IOUT = 10mA to 500mA
10
mV
Line regulation
RLN
VCC1 = VCC2 = 3.5V to 7V, IOUT = 10mA
Output voltage temperature
ΔV / ΔT
Ta = -40 to +85°C, IOUT = 10mA
Ripple rejection *3
RR
VCC1 = VCC2 = 4.25V, OUT = ADJ,
IOUT = 10mA, VRpp = 1V, fRR = 120Hz
Chip enable voltage
VEN
Disable voltage
VDIS
EN input current
IEN
VEN = 1.6V
Thermal shutdown temperature *3
TTSD
Junction temperature
TSD hysteresis *3
THYS
10
±100
mV
ppm/°C
coefficient *3
65
dB
COUT = Ceramic 10μF
1.6
V
0.4
V
50
μA
170
°C
30
°C
*3. Design guarantee value, Do not measurement.
Package Dimensions
unit : mm (typ)
3439
Pd max -- Ta
TOP VIEW
BOTTOM VIEW
SIDE VIEW
(3.10)
4.93
0.64
3.94
5.99
(2.41)
8
2
0.41
0.2
1.68 MAX
1.27
Specified board: 50×50×1.6mm3
glass epoxy duble side board.
2.0
1.8
1.5
1.0
0.94
0.5
0
-40
-20
0
20
40
60
8085
100
Ambient temperature, Ta -- °C
(1.5)
SIDE VIEW
0.05
1
Allowable power dissipation, Pd max -- W
2.5
SANYO : SOP8L(200mil)
No.A2169-2/9
LA59700MC
〈〈front〉〉
〈〈back〉〉
Specification of evaluation board: 50mm × 50mm × 1.6tmm, glass epoxy, double side board
Pin Assignment
OUT 1
8 VCC2
ADJ 2
7 VCC1
6 EN
NC 3
5 GND
GND 4
Top view
Block Diagram and Application Circuit Example
VCC2
8
10μF
1
VREF
(1.25V)
VCC1
R2
7
2
1μF
EN 6
Chip Enable
(High_Enable)
OCL
TSD
VOUT
OUT
200Ω~
9.8kΩ
Ceramic
10μF
ADJ
R1
1kΩ
Enable/
Disable
GND 5
4 GND
No.A2169-3/9
LA59700MC
Formula of Output Voltage Adjustment
VOUT = VADJ (≈1.25V) × (R1+R2)/R1
Note: Set the resistance of R1 and R2 so that a large enough current flows through the two resistors, making the effect
on the source current from the ADJ pin negligible.
Startup Method
This IC can be started in one of the following two ways:
(1) Start the IC by turning on and off the EN pin after applying power to VCC1 and VCC2.
(2) Short circuit the VCC1, VCC2, and EN pins.
When using method (1), apply power to VCC1 and VCC2 simultaneously, or in the order of VCC1 to VCC2, then to
the EN pin.
To shutdown the IC, follow the start-up procedure in reverse order.
Pin Function
Pin No.
1
Pin name
OUT
Function
Equivalent circuit
Output.
VCC1
VCC2
30kΩ
OUT
GND
2
ADJ
Adjustable input.
VCC1
ADJ
2kΩ
1.3kΩ
GND
3
NC
No connection.
4
GND
Ground. Connect to Pin 5 internally.
5
GND
Ground. Connect to Pin 4 internally.
6
EN
Chip Enable.
(High Enable)
VCC1
EN
20kΩ
105kΩ
55kΩ
GND
7
VCC1
Analog power supply.
8
VCC2
Output power supply.
*4 When you use this IC, Please short-circuit Exposed-Pad and GND-pin on the IC mounting side.
No.A2169-4/9
LA59700MC
ICC -- Ta
5
ICC -- VCC
5
VEN = 1.6V
VCC1 = VCC2
Output voltage 1.5V setting
VCC1 = VCC2 = 15V
4
Current drain, ICC -- mA
Current drain, ICC -- mA
4
7V 11V
3.5V
3
2
1
0
3
25°C
2
1
Ta = 25°C
VEN = 1.6V
Output voltage 1.5V setting
0
-50
Ta = 85°C
-40°C
50
100
0
150
0
5
Ambient temperature, Ta -- °C
VOUT -- VCC
Output voltage, VOUT -- V
Ta = 25°C
VEN = 1.6V
OUT = ADJ
1.5
-40°C
25°C
1.0
0.5
0
0
5
10
1.20
1.15
-50
15
VDROP -- IOUT
50
100
VEN -- Ta
1.5
Output voltage 1.5V setting
=
Ta
Chip enable voltage, VEN -- V
Dropout voltage, VDROP -- V
0
Ambient temperature, Ta -- °C
VCC1 = 3.5V
VDROP = VCC2 − VOUT
VEN = 1.6V
Output voltage 1.5V setting
0.5
15V
V C2 =
V CC1 = C
3.5V
7V
11V
1.25
Input voltage, VCC -- V
1.0
15
VOUT -- Ta
1.30
VEN = 1.6V
VCC1 = VCC2
Output voltage 1.5V setting
Ta = 85°C
Output voltage, VOUT -- V
2.0
10
Input voltage, VCC -- V
°C
85
°C
-40
5°C
2
VCC1 = VCC2 = 3.5V
Almost same
VCC1 = VCC2 = 15V
1.0
Ch
ip e
Ch
nab
le
ip d
isab
le
0
0
0.5
1
EN input current, IEN -- μA
100
0.5
-50
0
50
100
150
Ambient temperature, Ta -- °C
Output current, IOUT -- A
IEN -- Ta
VEN = 1.6V
Output voltage 1.5V setting
VCC 1 =
VCC 2 =
3.5V
50
15V
0
-50
0
50
100
150
Ambient temperature, Ta -- °C
No.A2169-5/9
LA59700MC
VOUT -- IOUT
2.0
VOUT -- IOUT
15
Output voltage, VOUT -- V
0.5
V
7V
3.5
1.0
0
10V
5V
1.5
VCC 1 = V
CC 2 = 1
Output voltage, VOUT -- V
VOUT = 12V
Ta = 25°C
VOUT = 1.5V
COUT = 100μF
0
0.5
1.0
1.5
2.0
10
9V
5V
5
Ta = 25°C
VCC1 = VCC2 = 15V
COUT = 100μF
1.5V
0
2.5
0
0.5
Output current, IOUT -- A
RR -- f
Ripple rejection, RR -- dB
80
80
IO
U
60
T =1
0m
A
100
mA
40
20
0
10
2
3
5 7 100
2.5
VCC1 = VCC2 = 4.5V
VOUT = 1.5V
Ripple Noise = 1Vp-p
COUT = Ceramic 10μF
IO
U
60
T =1
0m
100
A
mA
40
2
3
5 7 1k
2
3
5 7 10k
0
10
2
3
5 7 100
2
3
5 7 1k
2
3
5 7 10k
Frequency, f -- Hz
RR -- f
100
Ripple rejection, RR -- dB
2.0
20
Frequency, f -- Hz
80
1.5
RR -- f
100
VCC1 = VCC2 = 4.25V
VOUT = 1.25V(OUT = ADJ)
Ripple Noise = 1Vp-p
COUT = Ceramic 10μF
Ripple rejection, RR -- dB
100
1.0
Output current, IOUT -- A
VCC1 = VCC2 = 14V
VOUT = 11V
Ripple Noise = 1Vp-p
COUT = Ceramic 10μF
60
IOUT = 10mA
100mA
40
20
0
10
2
3
5 7 100
2
3
5 7 1k
2
3
5 7 10k
Frequency, f -- Hz
No.A2169-6/9
LA59700MC
1
Ta = 25°C
VCC1 = VCC2 = 3.5V
VOUT = 1.5V
COUT = Ceramic 10μF
0
VOUT
IOUT = 0A
Almost same
IOUT = 100mA
t -- μs
100μs / div
1
15
0A
0m
A
T=
Ta = 25°C
VCC1 = VCC2 = EN = 15V
VOUT = 1.5V
COUT = Ceramic 10μF
0
VOUT
0.5
t -- μs
100μs / div
0
0A
A
mA
1.0
T=
A
1.5
=0
IO
UT
10
10
0m
VOUT
t -- μs
100μs / div
Note: The output voltage (VOUT) may
overshoot when VIN starts up with slew rate of
a voltage of 0.1V/μs or over.
20
VEN
10
Ta = 25°C
VCC1 = VCC2 = EN = 15V
VOUT = 12V
COUT = Ceramic 10μF
0
VOUT
IO
UT
=0
100
A
mA
15
0
100μs / div
VEN
20
Ta = 25°C
VCC1 = VCC2 = EN = 3.5V
VOUT = 1.5V
COUT = Ceramic 10μF
0
5
t -- μs
10
IO
U
VEN
2
10
0
100μs / div
10
0
Output voltage, VOUT -- V
Input voltage, VIN -- V
Output voltage, VOUT -- V
Input voltage, VIN -- V
t -- μs
4
0
IOUT = 0A
Almost same
IOUT = 100mA
0.5
VOUT
10
0.5
VOUT
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 12V
COUT = Ceramic 10μF
0
1.0
0
VEN
2
1.5
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 1.5V
COUT = Ceramic 10μF
IO
U
Output voltage, VOUT -- V
Chip enable voltage, VEN -- V
0.5
0
1
1.0
1.0
5
VEN
2
1.5
1.5
0
Output voltage, VOUT -- V
Chip enable voltage, VEN -- V
VEN
2
Output voltage, VOUT -- V
Input voltage, VIN -- V
Output voltage, VOUT -- V
Chip enable voltage, VEN -- V
VOUT Startup Characteristic
t -- μs
100μs / div
No.A2169-7/9
LA59700MC
0A⇔50mA
0
Ta = 25°C
VCC1 = VCC2 = 3.5V
VOUT = 1.5V
COUT = Ceramic 10μF
1.52
VOUT
1.50
1.48
t -- μs
50μs / div
Output voltage, VOUT -- V
Output current, IOUT -- mA
IOUT
50
IOUT
100
50m⇔100mA
50
Ta = 25°C
VCC1 = VCC2 = 3.5V
VOUT = 1.5V
COUT = Ceramic 10μF
1.52
VOUT
1.50
1.48
t -- μs
50μs / div
IOUT
500
100m⇔500mA
0
Ta = 25°C
VCC1 = VCC2 = 3.5V
VOUT = 1.5V
COUT = Ceramic 10μF
1.52
VOUT
1.50
1.48
t -- μs
IOUT
50
0A⇔50mA
0
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 1.5V
COUT = Ceramic 10μF
1.52
VOUT
1.50
1.48
t -- μs
50μs / div
50
0A⇔50mA
0
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 12V
COUT = Ceramic 10μF
12.05
Output voltage, VOUT -- V
Output current, IOUT -- mA
50μs / div
Output voltage, VOUT -- V
Output current, IOUT -- mA
Output voltage, VOUT -- V
Output current, IOUT -- mA
Output voltage, VOUT -- V
Output current, IOUT -- mA
Output voltage, VOUT -- V
Output current, IOUT -- mA
Output voltage, VOUT -- V
Output current, IOUT -- mA
Load Transient Response Characteristics
IOUT
50
50m⇔100mA
0
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 1.5V
COUT = Ceramic 10μF
1.52
VOUT
1.50
1.48
t -- μs
50μs / div
100
50m⇔100mA
50
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 12V
COUT = Ceramic 10μF
12.05
12.00
12.00
11.95
11.95
t -- μs
50μs / div
t -- μs
50μs / div
No.A2169-8/9
Output voltage, VOUT -- V
Output current, IOUT -- mA
LA59700MC
IOUT
500
100mA⇔500mA
0
Ta = 25°C
VCC1 = VCC2 = 15V
VOUT = 12V
COUT = Ceramic 10μF
12.05
VOUT
12.00
11.95
t -- μs
50μs / div
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in
which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for
any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the
part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PS No.A2169-9/9
Similar pages