Rohm BUXXTH5WNVX High accuracy detection Datasheet

Datasheet
CMOS LDO Regulator for Portable Equipments
High Ripple Rejection,
Low Current Consumption,
Versatile Package
FULL CMOS LDO Regulator (500mA)
BUXXTH5WNVX
General Description
Key Specifications





BUXXTH5WNVX is high-performance FULL CMOS
regulator with 500-mA output, which is mounted on
versatile package SSON004X1010 (1.00mm  1.00 mm
 0.60mm). It has excellent ripple rejection, noise
characteristics and load responsiveness characteristics
despite its low circuit current consumption of 10A. It is
most appropriate for various applications such as power
supplies for logic IC, RF, and camera modules.
Smartphone, Battery-powered portable equipment, etc.
Package
High accuracy detection
High ripple rejection
low current consumption
Compatible with small ceramic capacitor
(Cin=Co=1.0uF)
With built-in output discharge circuit
ON/OFF control of output voltage
With built-in over current protection circuit



500mA
±1.0%
80dB@1KHz
10μA (TYP)
-20°C to +85°C
Applications
Features




Load Current:
Accuracy output voltage:
Power Supply rejection Ratio:
Low current consumption:
Operating temperature range:
SSON004X1010 :
1.00mm x 1.00mm x 0.60mm
Typical Application Circuit
CE
CE
VIN
VIN
1.0µF
VOUT
VOUT
1.0µF
GND
GND
GND
Figure 1. Application Circuit
○Product structure:Silicon monolithic integrated circuit
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
○This product is not designed for protection against radioactive rays
1/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Connection Diagram
SSON004X1010
TOP VIEW
4 VIN
BOTTOM VIEW
3 CE
1 VOUT
2 GND
LOT Number
reverse FIN
Part Number Marking
3 CE
4 VIN
2 GND
1 VOUT
1PIN MARK
Pin Descriptions
SSON004X1010
Symbol
Function
VOUT
Output Voltage
GND
Grounding
ON/OFF control of output voltage
CE
(High: ON, Low: OFF)
VIN
Power Supply Voltage
FIN
Substrate (Connect to GND)
PIN No.
1
2
3
4
reverse
Ordering Information
B
U
X
Part
Number
X
T
Output Voltage
1A : 1.05V
⇓
35 : 3.50V
H
5
W
High Ripple Rejection
Maximum Output Current
500mA
N
V
with
Package
output discharge NVX : SSON004X1010
X
-
T
L
Packageing and forming specification
Embossed tape and reel
TL : The pin number 1 is the lower left
SSON004X1010
<Tape and Reel information>
1.0±0.1
0.6MAX
1.0±0.1
1PIN MARK
0.32±0.1
1
2
5000pcs
(0.12)
+0.03
0.02 −0.02
5
.0 0.65±0.05
±0
48
0.
Embossed carrier tape
Quantity
Direction
of feed
S
0.05
Tape
TL
The direction is the 1pin of product is at the lower left when you hold
( reel on the left hand and you pull out the tape on the left hand
)
3-C0.18
R0.05
45º
5
0.07±0.1
3
0.25±0.1
.0
±0
48
0.
4
0.25±0.05
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
Lineup
Marking
Output
Voltage
Part
Number
8i
9i
6i
Ai
1.05V
1.20V
2.85V
3.50V
BU1A
BU12
BU2J
BU35
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
2/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Absolute Maximum Ratings (Ta=25°C)
PARAMETER
Symbol
Limit
VMAX
-0.3 to +6.5
V
Pd
560 (Note1)
mW
TjMAX
+125
°C
Topr
-20 to +85
°C
Tstg
-55 to +125
°C
Power Supply Voltage
Power Dissipation
Maximum junction temperature
Operating Temperature Range
Storage Temperature Range
Unit
(Note1) Pd deleted at 5.6mW/°C at temperatures above Ta=25°C, mounted on 70×70×1.6 mm glass-epoxy PCB.
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the
absolute maximum ratings.
RECOMMENDED OPERATING RANGE (not to exceed Pd)
PARAMETER
Power Supply Voltage
Maximum Output Current
Symbol
VIN
Limit
1.7 to 6.0
Unit
V
IMAX
500
mA
OPERATING CONDITIONS
PARAMETER
Input Capacitor
Symbol
Cin
MIN.
1.0 (Note2)
TYP.
-
MAX.
-
Unit
μF
Co
1.0 (Note2)
-
-
μF
Output Capacitor
(Note2) Make sure that
CONDITION
Ceramic capacitor recommended
the output capacitor value is not kept lower than this specified level across a variety of temperature, DC bias, changing as time
progresses characteristic.
Electrical Characteristics
(Ta=25°C, VIN= VOUT+1.0V, CIN=1.0μF, Co=1.0μF, unless otherwise noted.)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Input Voltage
VIN
Output Voltage
VOUT
1.7
VOUT
-25mV
VOUT
6.0
VOUT
+25mV
Conditions
V
V
IOUT=10µA, VOUT<2.5V
V
IOUT=10µA, VOUT≧2.5V
Line Regulation
⊿VOUT-line
VOUT
×0.99
-
-
VOUT
×1.01
20
mV
From (VOUT+0.3V) to 5.0V, IOUT=10mA
Load Regulation
⊿VOUT-load
-
21
40
mV
IOUT=5mA to 250mA
-
520
700
mV
VOUT=1.05V (IOUT=250mA)
-
440
550
mV
VOUT=1.20V (IOUT=250mA)
-
160
250
mV
VOUT=2.85V (IOUT=250mA)
-
150
230
mV
VOUT=3.50V (IOUT=250mA)
⊿Vdrop-out
Voltage Dropout
Load Current
Iload
500
-
-
mA
No Load Quiescent Current
Icq
-
10
20
µA
IOUT=0mA
Power Supply
Rejection Ratio
RR1
-
82
-
dB
fRR=100Hz
RR2
-
80
-
dB
fRR=1kHz
Output Noise Voltage
Noise
-
40
-
nV√Hz
@10KHz
Operating Temperature range
Topr
-20
-
85
°C
RDSC
20
50
80
Ω
Discharge Resistor
CE Pin Pull-down Current
CE Pin Control Voltage
ISTB
0.1
0.9
8.0
uA
ON
VCEH
1.2
-
6.0
V
OFF
VCEL
-0.3
-
0.3
V
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Block Diagrams
VIN
VIN
VREF
VOUT
CIN
OCP
GND
CE
VOUT
Co
CIN・・・1.0μF (Ceramic capacitor)
Co ・・・1.0μF (Ceramic capacitor)
CE
Figure 2. Block Diagrams
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU1ATH5WNVX (Ta=25ºC unless otherwise specified.)
LINE REGULATION
1.08
25℃
85℃
1.07
Load Regulation
1.150
-20℃
25℃
85℃
CE=VIN
Iout=10mA
-20℃
1.06
VIN=2.5V
CE=VIN
1.100
VOUT [V]
VOUT[V]
1.05
1.04
1.03
1.050
1.02
1.000
1.01
1.00
0.950
0.99
1.7
2.0
2.3
2.6
2.9
3.2
0
3.5
50
100
Figure 3.
200
250
300
Figure 4.
OUTPUT VOLTAGE vs TEMPERATURE
GROUND PIN CURRENT vs INPUT VOLTAGE
20
1.15
VIN=2.5V
CE=VIN
IOUT=10uA
-20℃
25℃
85℃
CE=VIN
IOUT=0mA
15
IGND[uA]
1.10
VOUT[V]
150
IOUT[mA]
VIN[V]
1.05
10
1.00
5
0.95
-20
0
20
40
Temperature[℃]
60
0
80
1.7
2.3
2.6
VIN[V]
2.9
3.2
3.5
Figure 6.
Figure 5.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
2.0
5/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU1ATH5WNVX (Ta=25ºC unless otherwise specified.)
GROUND PIN CURRENT vs TEMPERATURE
20
GROUND PIN CURRENT vs LOAD
300
VIN=2.5V
CE=VIN
IOUT=0mA
18
16
VIN=2.5V
CE=VIN
Ta=25℃
200
12
IGND [uA]
IGND[uA]
14
10
8
6
100
4
2
0
-20
0
20
40
Temperature[℃]
60
0
80
0
100
200
Figure 7.
VIN=2.5V
CE=VIN
Ta=25℃
90
80
70
0.8
PSRR[dB]
VOUT[V]
500
PSRR vs FREQUENCY
100
VIN=2.5V
CE=VIN
Ta=25℃
1.0
400
Figure 8.
OCP
1.2
300
IOUT [mA]
0.6
0.4
60
50
40
30
20
0.2
10
0.0
0
0
100 200 300 400 500 600 700 800 900 1000 1100
IOUT[mA]
100
1,000
100mV/div
1.05V
500mV/div
100mV/div
500mV/div
VOUT
CE=VIN
VOUT
Ta=25℃
Iout=10mA
2.5V
VOUT
1.05V
3.5V
VIN
CE=VIN
Ta=25℃
Iout=150mA
2.5V
200us/div
200us/div
Figure 11.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1,000,000
LINE TRANSIENT RESPONSE
LINE TRANSIENT RESPONSE
VIN
100,000
Figure 10.
Figure 9.
3.5V
10,000
Frequency[Hz]
Figure 12.
6/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU1ATH5WNVX (Ta=25ºC unless otherwise specified.)
DISCHARGE TIME
START UP TIME
1.5V
1V/div
1V/div
1.5V
CE
CE
1V/div
1V/div
0V
VIN=2.5V
Ta=25℃
Iout=0mA
Cout=1.0uF
VOUT
VIN=2.5V
Ta=25℃
Iout=0mA
Cout=1.0uF
VOUT
20µs/div
40µs/div
Figure 13.
Figure 14.
LOAD TRANSIENT RESPONSE
SHUTDOWN CURRENT vs INPUT VOLTAGE
10.00
Trise=12us
VIN=5.5V
CE=0V
250mA
IOUT
1mA
ISTBY[uA]
200mA/div
0V
1.00
200mV/div
0.10
VOUT
VIN=2.5V
CE=VIN
Ta=25℃
0.01
-20
0
20
40
60
80
Temperature[℃]
20µs/div
Figure 16.
Figure 15.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
7/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU2JTH5WNVX (Ta=25ºC unless otherwise specified.)
LINE REGULATION
2.88
2.87
-20℃
25℃
85℃
CE=VIN
Iout=10mA
2.86
VIN=3.85V
CE=VIN
2.900
VOUT [V]
2.85
VOUT[V]
Load Regulation
2.950
-20℃
25℃
85℃
2.84
2.83
2.850
2.82
2.800
2.81
2.80
2.750
2.79
3.3
3.8
4.3
0
4.8
VIN[V]
50
100
Figure 17.
250
300
GROUND PIN CURRENT vs INPUT VOLTAGE
20
VIN=3.85V
CE=VIN
IOUT=10uA
2.90
-20℃
25℃
85℃
CE=VIN
IOUT=0mA
15
IGND[uA]
VOUT[V]
200
Figure 18.
OUTPUT VOLTAGE vs TEMPERATURE
2.95
150
IOUT[mA]
2.85
2.80
10
5
2.75
-20
0
20
40
Temperature[℃]
60
0
80
3.9
VIN[V]
4.9
5.4
Figure 20.
Figure 19.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4.4
8/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU2JTH5WNVX (Ta=25ºC unless otherwise specified.)
GROUND PIN CURRENT vs TEMPERATURE
20
18
16
GROUND PIN CURRENT vs LOAD
300
VIN=3.85V
CE=VIN
IOUT=0mA
VIN=3.85V
CE=VIN
Ta=25℃
200
12
IGND [uA]
IGND[uA]
14
10
8
6
100
4
2
0
-20
0
20
40
60
Temperature[℃]
0
80
0
100
200
Figure 21.
500
PSRR vs FREQUENCY
100
VIN=3.85V
CE=VIN
Ta=25℃
3.0
VIN=4.3V
CE=VIN
Ta=25℃
90
80
70
PSRR[dB]
2.5
VOUT [V]
400
Figure 22.
OCP
3.5
300
IOUT [mA]
2.0
1.5
60
50
40
30
1.0
20
0.5
10
0
0.0
0
100
200
300
400
500
600
700
800
900
100
1000 1100
1,000
100mV/div
VOUT
2.85V
CE=VIN
Ta=25℃
Iout=10mA
3.2V
200us/div
VOUT
2.85V
4.2V
VIN
CE=VIN
Ta=25℃
Iout=150mA
3.2V
200us/div
Figure 25.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1,000,000
LINE TRANSIENT RESPONSE
500mV/div
500mV/div
100mV/div
LINE TRANSIENT RESPONSE
VIN
100,000
Figure 24.
Figure 23.
4.2V
10,000
Frequency[Hz]
IOUT [mA]
Figure 26.
9/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU2JTH5WNVX (Ta=25ºC unless otherwise specified.)
START UP TIME
DISCHARGE TIME
1.5V
1V/div
1V/div
1.5V
CE
CE
VOUT
VIN=3.85V
Ta=25℃
Iout=0mA
Cout=1.0uF
0V
VIN=3.85V
Ta=25℃
Iout=0mA
Cout=1.0uF
VOUT
1V/div
1V/div
0V
40µs/div
20µs/div
Figure 28.
Figure 27.
LOAD TRANSIENT RESPONSE
VIN=5.5V
CE=0V
250mA
IOUT
1mA
ISTBY[uA]
200mA/div
SHUTDOWN CURRENT vs INPUT VOLTAGE
10.00
Trise=12us
1.00
200mV/div
0.10
VOUT
VIN=3.85V
CE=VIN
Ta=25℃
0.01
-20
0
20
40
60
80
Temperature[℃]
20µs/div
Figure 30.
Figure 29.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU35TH5WNVX (Ta=25ºC unless otherwise specified.)
LINE REGULATION
3.55
3.54
25℃
85℃
3.53
Load Regulation
3.600
-20℃
-20℃
25℃
85℃
CE=VIN
Iout=10mA
VIN=4.5V
CE=VIN
3.550
VOUT [V]
3.52
VOUT[V]
3.51
3.50
3.49
3.48
3.500
3.450
3.47
3.46
3.400
3.45
4.0
4.5
5.0
0
5.5
50
100
Figure 31.
250
300
GROUND PIN CURRENT vs INPUT VOLTAGE
20
VIN=4.5V
CE=VIN
IOUT=10uA
-20℃
25℃
85℃
3.55
CE=VIN
IOUT=0mA
15
IGND[uA]
VOUT[V]
200
Figure 32.
OUTPUT VOLTAGE vs TEMPERATURE
3.60
150
IOUT[mA]
VIN[V]
3.50
10
3.45
5
3.40
-20
0
20
40
Temperature[℃]
60
0
80
4.0
VIN[V]
5.0
5.5
Figure 34.
Figure 33.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4.5
11/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU35TH5WNVX (Ta=25ºC unless otherwise specified.)
GROUND PIN CURRENT vs TEMPERATURE
20
GROUND PIN CURRENT vs LOAD
400
VIN=4.5V
CE=VIN
IOUT=0mA
18
16
300
12
IGND [uA]
IGND[uA]
14
10
8
6
200
VIN=4.5V
CE=VIN
Ta=25℃
100
4
2
0
-20
0
20
40
Temperature[℃]
60
0
80
0
100
200
Figure 35.
500
PSRR vs FREQUENCY
100
VIN=4.5V
CE=VIN
Ta=25℃
90
3.5
80
3.0
70
2.5
VIN=4.5V
CE=VIN
Ta=25℃
2.0
PSRR[dB]
VOUT[V]
400
Figure 36.
OCP
4.0
300
IOUT [mA]
1.5
60
50
40
30
1.0
20
0.5
10
0
0.0
0
100 200
300
400 500
600
700 800
100
900 1000 1100 1200
1,000
IOUT[mA]
100mV/div
VOUT
3.50V
CE=VIN
VOUT
Ta=25℃
Iout=10mA
4.0V
VOUT
3.50V
5.0V
VIN
CE=VIN
Ta=25℃
Iout=150mA
4.0V
200us/div
200us/div
Figure 39.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1,000,000
LINE TRANSIENT RESPONSE
500mV/div
500mV/div
100mV/div
LINE TRANSIENT RESPONSE
VIN
100,000
Figure 38.
Figure 37.
5.0V
10,000
Frequency[Hz]
Figure 40.
12/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Reference data BU35TH5WNVX (Ta=25ºC unless otherwise specified.)
START UP TIME
DISCHARGE TIME
1.5V
1V/div
1V/div
1.5V
CE
CE
1V/div
1V/div
0V
VIN=4.5V
Ta=25℃
Iout=0mA
Cout=1.0uF
VOUT
0V
VIN=4.5V
Ta=25℃
Iout=0mA
Cout=1.0uF
VOUT
40µs/div
20µs/div
Figure 42.
Figure 41.
LOAD TRANSIENT RESPONSE
VIN=5.5V
CE=0V
250mA
IOUT
1mA
ISTBY[uA]
200mA/div
SHUTDOWN CURRENT vs INPUT VOLTAGE
10.00
Trise=12us
1.00
200mV/div
0.10
VOUT
VIN=4.5V
CE=VIN
Ta=25℃
0.01
-20
0
20
40
60
80
Temperature[℃]
20µs/div
Figure 44.
Figure 43.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
13/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
About power dissipation (Pd)
As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of
IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the
implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is
recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original
IC performance, such as reduction in current capability. Therefore, be sure to prepare sufficient margin within power
dissipation for usage.
Calculation of the maximum internal power consumption of IC (PMAX)
PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current)
Measurement conditions
Standard ROHM Board
Evaluation Board 1
Top Layer (Top View)
Top Layer (Top View)
Bottom Layer (Top View)
Bottom Layer (Top View)
Measurement State
With board implemented (Wind speed 0 m/s)
With board implemented (Wind speed 0 m/s)
Board Material
Glass epoxy resin (Double-side board)
Glass epoxy resin (Double-side board)
Layout of Board for
Measurement
IC
Implementation
Position
Board Size
70 mm x 70 mm x 1.6 mm
40 mm x 40 mm x 1.6 mm
Top layer
Wiring
Bottom
Rate
layer
Through Hole
Metal (GND) wiring rate: Approx. 0%
Metal (GND) wiring rate: Approx. 50%
Metal (GND) wiring rate: Approx. 50%
Metal (GND) wiring rate: Approx. 50%
Diameter 0.5mm x 6 holes
Diameter 0.5mm x 25 holes
Power Dissipation
0.56W
0.39W
Thermal Resistance
θja=178.6°C/W
θja=256.4°C/W
0.6
0.56W
0.5
Pd [W]
0.4
0.39W
0.3
* Please design the margin so that
PMAX becomes is than Pd (PMAXPd)
within the usage temperature range
0.2
0.1
0
0
25
50
75
85
100
125
Ta [℃]
Figure 31. SSON004X1010
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
Power dissipation heat reduction characteristics (Reference)
14/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Operational Notes
1.
Reverse Connection of Power Supply
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply
pins.
2.
Power Supply Lines
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and
aging on the capacitance value when using electrolytic capacitors.
3.
Ground Voltage
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4.
Ground Wiring Pattern
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.
5.
Thermal Consideration
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,
increase the board size and copper area to prevent exceeding the Pd rating.
6.
Recommended Operating Conditions
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.
The electrical characteristics are guaranteed under the conditions of each parameter.
7.
Inrush Current
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing
of connections.
8.
Operation Under Strong Electromagnetic Field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9.
Testing on Application Boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should
always be turned off completely before connecting or removing it from the test setup during the inspection process. To
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and
storage.
10. Inter-pin Short and Mounting Errors
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and
unintentional solder bridge deposited in between pins during assembly to name a few.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
15/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Operational Notes – continued
11. Unused Input Pins
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power
supply or ground line.
12. Regarding the Input Pin of the IC
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation
of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage.
Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower
than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power
supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have
voltages within the values specified in the electrical characteristics of this IC.
13. Voltage of CE pin
To enable standby mode for all channels, set the CE pin to 0.3 V or less, and for normal operation, to 1.2 V or more.
Setting CE to a voltage between 0.3 and 1.2 V may cause malfunction and should be avoided. Keep transition time
between high and low (or vice versa) to a minimum.
Additionally, if CE is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit, causing
a temporary voltage to remain on the output pin. If the IC is switched on again while this voltage is present,
overshoot may occur on the output. Therefore, in applications where these pins are shorted, the output should always
be completely discharged before turning the IC on.
14. Ceramic Capacitor
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with
temperature and the decrease in nominal capacitance due to DC bias and others.
15. Area of Safe Operation (ASO)
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe
Operation (ASO).
16. Over Current Protection Circuit (OCP)
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should
not be used in applications characterized by continuous operation or transitioning of the protection circuit.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
16/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
BUXXTH5WNVX
Revision History
Date
Revision
27.Mar.2014
001
27.May.2014
002
Changes
New Release.
Adding a lineup.
Reference data LOAD REGULATION extension of IOUT.
CE Pin Control Voltage is changed.
www.rohm.com
© 2014 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
17/17
TSZ02201-0RBR0A300190-1-2
27.May.2014.Rev.002
Datasheet
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
(Note 1)
, transport
intend to use our Products in devices requiring extremely high reliability (such as medical equipment
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice – GE
© 2013 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice – GE
© 2013 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.001
Similar pages