IRF IRGIB15B60KD1 Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD- 94599A
IRGIB15B60KD1
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Maximum Junction Temperature Rated at 175°C
Benefits
VCES = 600V
IC = 12A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 1.80V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220
Full-Pak
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
19
IC @ TC = 100°C
Continuous Collector Current
12
ICM
38
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
IF @ TC = 25°C
Diode Continuous Forward Current
19
IF @ TC = 100°C
Diode Continuous Forward Current
12
IFM
Diode Maximum Forward Current
VISOL
RMS Isolation Voltage, Terminal to Case, t = 1 min
2500
VGE
Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
52
PD @ TC = 100°C Maximum Power Dissipation
26
c
TJ
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature for 10 sec.
A
38
38
V
W
-55 to +175
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf.in (1.1N.m)
Thermal / Mechanical Characteristics
Parameter
Min.
Typ.
Max.
–––
–––
2.9
RθJC
Junction-to-Case- IGBT
RθJC
Junction-to-Case- Diode
–––
–––
4.6
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
62
Wt
Weight
–––
2.0
–––
www.irf.com
Units
°C/W
g
1
2/27/04
IRGIB15B60KD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
—
VCE(on)
Collector-to-Emitter Voltage
—
—
VGE(th)
Gate Threshold Voltage
3.5
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
gfe
Forward Transconductance
—
—
ICES
Zero Gate Voltage Collector Current
—
—
VFM
Diode Forward Voltage Drop
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
0.32
1.80
2.05
2.10
4.5
-10
10
1.0
163
829
1.69
1.31
1.25
—
Conditions
Ref.Fig.
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 15A, VGE = 15V, TJ = 25°C
2.20
2.50
V IC = 15A, VGE = 15V, TJ = 150°C
IC = 15A, VGE = 15V, TJ = 175°C
2.60
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
—
S VCE = 50V, IC = 15A, PW = 80µs
VGE = 0V, VCE = 600V
150
500
µA VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
1800
2.30
V IF = 15A, VGE = 0V
IF = 15A, VGE = 0V, TJ = 150°C
1.75
IF = 15A, VGE = 0V, TJ = 175°C
1.65
±100 nA VGE = ±20V, VCE = 0V
5,6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
SCSOA
ISC (PEAK)
Erec
trr
Irr
Qrr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
Peak Short Circuit Collector Current
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Diode Reverse Recovery Charge
 Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 22Ω.
2
Min. Typ. Max. Units
—
56
84
—
7.0
10
—
26
39
—
127
140
—
334
422
—
461
556
—
30
39
—
25
35
—
173
188
—
41
53
—
258
282
—
570
646
—
829
915
—
30
39
—
25
35
—
194
207
—
56
73
—
7.5
—
—
850 1275
—
100
150
—
32
48
FULL SQUARE
10
—
—
—
—
—
—
140
267
67
23
984
—
—
347
87
30
1279
nC
µJ
ns
µJ
ns
Conditions
Ref.Fig.
IC = 15A
VCC = 400V
VGE = 15V
IC = 15A, VCC = 400V
VGE = 15V, RG = 22Ω, L = 1.07mH
Ls= 150nH, TJ = 25°C
IC = 15A, VCC = 400V
VGE = 15V, RG = 22Ω, L = 1.07mH
Ls= 150nH, TJ = 25°C
23
CT1
CT4
d
IC = 15A, VCC = 400V
VGE = 15V, RG = 22Ω, L = 1.07mH
Ls= 150nH, TJ = 150°C
IC = 15A, VCC = 400V
VGE = 15V, RG = 22Ω, L = 1.07mH
Ls= 150nH, TJ = 150°C
d
CT4
CT4
13,15
WF1,WF2
14,16
CT4
WF1
WF2
nH
pF
µs
A
µJ
ns
A
nC
Measured 5 mm from package
VGE = 0V
VCC = 30V
22
f = 1.0MHz
TJ = 150°C, IC = 38A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG = 22Ω
TJ = 150°C, Vp = 600V, RG = 22Ω
VCC=360V,VGE = +15V to 0V
4
CT2
CT3
WF4
WF4
TJ = 150°C
VCC = 400V, IF = 15A, L = 1.07mH
VGE = 15V, RG = 22Ω
di/dt = 875A/µs
17,18,19
20,21
CT4,WF3
‚ Energy losses include "tail" and diode reverse recovery.
www.irf.com
IRGIB15B60KD1
55
20
50
45
16
40
35
IC (A)
Ptot (W)
12
8
30
25
20
15
4
10
5
0
0
0
20
40
60
0
80 100 120 140 160 180
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
IC A)
IC (A)
10
100 µs
10
1
1ms
DC
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
1
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGIB15B60KD1
20
20
18
18
16
16
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
12
10
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
14
ICE (A)
ICE (A)
14
8
12
10
8
6
6
4
4
2
2
0
0
0
2
4
6
0
2
VCE (V)
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 60µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 60µs
70
20
18
-40°C
25°C
150°C
60
16
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
12
10
50
IF (A)
14
ICE (A)
4
8
6
40
30
20
4
10
2
0
0
0
2
4
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 60µs
4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 60µs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 7.5A
10
ICE = 15A
8
ICE = 30A
VCE (V)
VCE (V)
IRGIB15B60KD1
12
ICE = 7.5A
10
ICE = 15A
ICE = 30A
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
VGE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
70
18
T J = 25°C
60
T J = 150°C
16
50
12
ICE = 7.5A
10
ICE = 15A
ICE (A)
14
VCE (V)
15
VGE (V)
ICE = 30A
8
6
40
30
20
T J = 150°C
4
10
2
0
T J = 25°C
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGIB15B60KD1
1400
1000
1200
tdOFF
Swiching Time (ns)
Energy (µJ)
1000
EOFF
800
EON
600
400
100
tF
tdON
tR
10
200
0
0
5
10
15
20
25
1
30
0
5
10
IC (A)
25
30
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.07mH; VCE= 400V
RG= 22Ω; VGE= 15V
1200
10000
EOFF
1000
Swiching Time (ns)
EON
800
Energy (µJ)
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.07mH; VCE= 400V
RG= 22Ω; VGE= 15V
600
400
1000
tdOFF
100
tF
tdON
tR
200
0
10
0
50
100
150
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.07mH; VCE= 400V
ICE= 15A; VGE= 15V
6
15
200
0
50
100
150
200
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.07mH; VCE= 400V
ICE= 15A; VGE= 15V
www.irf.com
IRGIB15B60KD1
25
24
RG = 22 Ω
20
RG = 47 Ω
16
15
IRR (A)
IRR (A)
20
RG = 100 Ω
10
RG = 200 Ω
12
8
5
4
0
0
0
5
10
15
20
25
30
0
40
IF (A)
80
120
160
200
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 15A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
24
1500
30A
20
1000
15A
Q RR (nC)
IRR (A)
16
12
7.5A
500
8
200Ω
100 Ω
47Ω
22Ω
4
0
0
0
200
400
600
800
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 15A; TJ = 150°C
www.irf.com
1000
0
200
400
600
800
1000
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGIB15B60KD1
200
Energy (µJ)
160
120
200 Ω
100 Ω
80
47 Ω
22 Ω
40
0
5
10
15
20
25
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
10000
14
300V
12
400V
1000
10
VGE (V)
Capacitance (pF)
Cies
8
6
Coes
100
4
2
Cres
0
10
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
20
40
60
80
Q G, Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 15A; L = 2500µH
www.irf.com
IRGIB15B60KD1
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
0.1
τJ
0.02
0.01
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
Ri (°C/W) τi (sec)
0.437
0.000542
τ3
Ci= τi/Ri
Ci τi/Ri
0.01
1.087
0.127526
1.376
2.702
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
0.20
1
0.10
0.05
τJ
0.02
0.1
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
R4
R4
SINGLE PULSE
( THERMAL RESPONSE )
τi (sec)
0.8631
0.000202
0.6432
0.001053
1.1937
0.055415
1.9013
2.335
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB15B60KD1
L
L
VCC
DUT
+
-
80 V
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB15B60KD1
600
tf
800
25
700
40
35
TEST CURRENT
600
400
500
15
10
5% V CE
100
90% test current
15
200
0
5% V CE
0.1
0.3
0
-5
0.5
0
-100
0.7
-5
0.2
0.4
0.6
time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
0
20
450
400
15
400
350
10
350
300
300
250
250
200
200
150
150
100
100
50
-25
50
0
-30
0.50
0
QRR
-100
5
-300
0
-400
-5
-500
Peak
IRR
-10
10%
Peak
IRR
-600
-700
-800
-900
0.10
0.20
0.30
0.40
-15
-20
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
VCE (V)
-200
I F (A)
t RR
ICE (A)
time(µs)
100
V F (V)
5
Eon Loss
Eoff Loss
-100
10
10% test current
100
0
20
300
5
5% ICE
25
400
V CE (V)
300
I CE (A)
VCE (V)
90% ICE
200
30
tr
20
ICE (A)
500
30
-50
0
10
20
30
40
50
Time (uS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGIB15B60KD1
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
10.60 (.417)
10.40 (.409)
ø
3.40 (.133)
3.10 (.123)
4.80 (.189)
4.60 (.181)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
2.80 (.110)
2.60 (.102)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1
2
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
A
1.40 (.055)
3X
1.05 (.042)
0.90 (.035)
3X 0.70 (.028)
0.25 (.010)
3X
M A M
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
B
2.54 (.100)
2X
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
EXAMPLE: THIS IS AN IRFI840G
WITH AS SEMBLY
LOT CODE 3432
AS S EMBLED ON WW 24 1999
IN THE AS S EMBLY LINE "K"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFI840G
924K
34
AS S EMBLY
LOT CODE
32
DAT E CODE
YEAR 9 = 1999
WEEK 24
LINE K
TO-220 FullPak packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.2/04
12
www.irf.com
Similar pages