ETC2 NUC123SC2AN1 32-bit microcontroller Datasheet

NUC123
ARM® Cortex® -M0
32-bit Microcontroller
NuMicro® Family
NUC123 Series
Datasheet
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based
system design. Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or questions, please contact: Nuvoton Technology Corporation.
www.nuvoton.com
May 3, 2017
Page 1 of 99
Rev.2.04
NUC123 SERIES DATASHEET
The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.
NUC123
TABLE OF CONTENTS
List of Figures .............................................................................................. 6
List of Tables ............................................................................................... 7
1
GENERAL DESCRIPTION ....................................................................... 8
2
FEATURES ......................................................................................... 9
NuMicro® NUC123 Series Features ................................................................ 9
2.1
3
Abbreviations ..................................................................................... 12
4
PARTS INFORMATION LIST AND PIN CONFIGURATION .............................. 14
4.1
NuMicro® NUC123 Series Naming Rule ..........................................................14
4.2
NuMicro® NUC123 Series Selection Guide .......................................................15
4.2.1
NuMicro NUC123xxxANx Selection Guide .............................................................. 15
4.2.2
NuMicro NUC123xxxAEx Selection Guide .............................................................. 15
®
®
NuMicro® NUC123 Series Pin Configuration .....................................................16
4.3
4.3.1
NuMicro NUC123xxxANx Pin Diagram .................................................................. 16
4.3.2
NuMicro NUC123xxxAEx Pin Diagram .................................................................. 19
®
®
Pin Description ........................................................................................22
4.4
4.4.1
NuMicro NUC123 Pin Description ........................................................................ 22
®
BLOCK DIAGRAM ............................................................................... 27
5
NUC123 SERIES DATASHEET
NuMicro® NUC123 Block Diagram .................................................................27
5.1
FUNCTIONAL DESCRIPTION ................................................................. 28
6
6.1
ARM® Cortex® -M0 Core..............................................................................28
6.2
System Manager ......................................................................................30
6.2.1
Overview ....................................................................................................... 30
6.2.2
System Reset.................................................................................................. 30
6.2.3
Power modes and Wake-up sources ...................................................................... 36
6.2.4
System Power Distribution .................................................................................. 39
6.2.5
System Memory Map ......................................................................................... 40
6.2.6
System Timer (SysTick) ..................................................................................... 42
6.2.7
Nested Vectored Interrupt Controller (NVIC) ............................................................. 43
6.3
Clock Controller .......................................................................................47
6.3.1
Overview ....................................................................................................... 47
6.3.2
System Clock and SysTick Clock .......................................................................... 50
6.3.3
Peripherals Clock ............................................................................................. 50
May 3, 2017
Page 2 of 99
Rev.2.04
NUC123
6.3.4
Power-down Mode Clock .................................................................................... 50
6.3.5
Frequency Divider Output ................................................................................... 51
6.4
Flash Memory Controller (FMC) ....................................................................52
6.4.1
Overview ....................................................................................................... 52
6.4.2
Features ........................................................................................................ 52
6.5
General Purpose I/O (GPIO) ........................................................................53
6.5.1
Overview ....................................................................................................... 53
6.5.2
Features ........................................................................................................ 53
6.6
PDMA Controller (PDMA) ...........................................................................54
6.6.1
Overview ....................................................................................................... 54
6.6.2
Features ........................................................................................................ 54
6.7
Timer Controller (TMR) ..............................................................................55
6.7.1
Overview ....................................................................................................... 55
6.7.2
Features ........................................................................................................ 55
6.8
PWM Generator and Capture Timer (PWM) .....................................................56
6.8.1
Overview ....................................................................................................... 56
6.8.2
Features ........................................................................................................ 56
6.9
Watchdog Timer (WDT)..............................................................................57
6.9.1
Overview ....................................................................................................... 57
6.9.2
Features ........................................................................................................ 57
Window Watchdog Timer (WWDT) ................................................................58
6.10.1
Overview ....................................................................................................... 58
6.10.2
Features ........................................................................................................ 58
6.11
UART Interface Controller (UART) .................................................................59
6.11.1
Overview ....................................................................................................... 59
6.11.2
Features ........................................................................................................ 59
6.12
PS/2 Device Controller (PS2D) .....................................................................60
Overview ....................................................................................................... 60
6.12.1
Features ........................................................................................................ 60
6.12.2
6.13
I C Serial Interface Controller (Master/Slave) (I2C)..............................................61
2
6.13.1
Overview ....................................................................................................... 61
6.13.2
Features ........................................................................................................ 61
6.14
Serial Peripheral Interface (SPI) ....................................................................62
6.14.1
Overview ....................................................................................................... 62
6.14.2
Features ........................................................................................................ 62
May 3, 2017
Page 3 of 99
Rev.2.04
NUC123 SERIES DATASHEET
6.10
NUC123
6.15
I2S Controller (I2S) ....................................................................................63
6.15.1
Overview ....................................................................................................... 63
6.15.2
Features ........................................................................................................ 63
6.16
USB Device Controller (USB) .......................................................................64
6.16.1
Overview ....................................................................................................... 64
6.16.2
Features ........................................................................................................ 64
6.17
Analog-to-Digital Converter (ADC) .................................................................65
6.17.1
Overview ....................................................................................................... 65
6.17.2
Features ........................................................................................................ 65
ELECTRICAL CHARACTERISTICS (NUC123xxxANx) ................................... 66
7
7.1
Absolute Maximum Ratings .........................................................................66
7.2
DC Electrical Characteristics ........................................................................67
7.3
AC Electrical Characteristics ........................................................................71
7.3.1
External 4~24 MHz High Speed Oscillator ............................................................... 71
7.3.2
External 4~24 MHz High Speed Crystal .................................................................. 71
7.3.3
Internal 22.1184 MHz High Speed Oscillator ............................................................. 72
7.3.4
Internal 10 kHz Low Speed Oscillator ..................................................................... 72
Analog Characteristics ...............................................................................73
7.4
NUC123 SERIES DATASHEET
7.4.1
10-bit SARADC Specifications .............................................................................. 73
7.4.2
LDO and Power Management Specifications ............................................................ 74
7.4.3
Low Voltage Reset Specifications .......................................................................... 74
7.4.4
Brown-out Detector Specifications ......................................................................... 75
7.4.5
Power-On Reset (5V) Specifications ...................................................................... 75
7.4.6
USB PHY Specifications ..................................................................................... 76
7.5
Flash DC Electrical Characteristics ................................................................77
7.6
SPI Dynamic Characteristics ........................................................................78
ELECTRICAL CHARACTERISTICS (NUC123xxxAEx).................................... 80
8
8.1
Absolute Maximum Ratings .........................................................................80
8.2
DC Electrical Characteristics ........................................................................81
8.3
AC Electrical Characteristics ........................................................................85
8.3.1
External 4~24 MHz High Speed Oscillator ............................................................... 85
8.3.2
External 4~24 MHz High Speed Crystal .................................................................. 85
8.3.3
Internal 22.1184 MHz High Speed Oscillator ............................................................. 86
8.3.4
Internal 10 kHz Low Speed Oscillator ..................................................................... 86
8.4
Analog Characteristics ...............................................................................87
May 3, 2017
Page 4 of 99
Rev.2.04
NUC123
8.4.1
10-bit SARADC Specifications .............................................................................. 87
8.4.2
LDO and Power Management Specifications ............................................................ 88
8.4.3
Low Voltage Reset Specifications .......................................................................... 88
8.4.4
Brown-out Detector Specifications ......................................................................... 89
8.4.5
Power-On Reset (5V) Specifications ...................................................................... 89
8.4.6
USB PHY Specifications ..................................................................................... 90
8.5
Flash DC Electrical Characteristics ................................................................92
8.6
SPI Dynamic Characteristics ........................................................................93
PACKAGE DIMENSIONS ...................................................................... 95
9
9.1
64L LQFP (7x7x1.4 mm footprint 2.0 mm)........................................................95
9.2
48L LQFP (7x7x1.4 mm footprint 2.0 mm)........................................................96
9.3
33L QFN (5x5x0.8 mm) ..............................................................................97
10
REVISION HISTORY ............................................................................ 98
NUC123 SERIES DATASHEET
May 3, 2017
Page 5 of 99
Rev.2.04
NUC123
List of Figures
®
Figure 4-1 NuMicro NUC123 Series Selection Code ................................................................... 14
®
Figure 4-2 NuMicro NUC123SxxANx LQFP 64-pin Diagram ....................................................... 16
®
Figure 4-3 NuMicro NUC123LxxANx LQFP 48-pin Diagram ....................................................... 17
®
Figure 4-4 NuMicro NUC123ZxxANx QFN 33-pin Diagram ......................................................... 18
®
Figure 4-5 NuMicro NUC123SxxAEx LQFP 64-pin Diagram ....................................................... 19
®
Figure 4-6 NuMicro NUC123LxxAEx LQFP 48-pin Diagram ....................................................... 20
®
Figure 4-7 NuMicro NUC123ZxxAEx QFN 33-pin Diagram ......................................................... 21
®
Figure 5-1 NuMicro NUC123 Block Diagram ............................................................................... 27
Figure 6-1 Functional Controller Diagram ...................................................................................... 28
Figure 6-2 System Reset Resources ............................................................................................. 31
Figure 6-3 nRESET Reset Waveform ............................................................................................ 33
Figure 6-4 Power-on Reset (POR) Waveform ............................................................................... 34
Figure 6-5 Low Voltage Reset Waveform ...................................................................................... 34
Figure 6-6 Brown-Out Detector Waveform .................................................................................... 35
Figure 6-7 Power Mode State Machine ......................................................................................... 36
®
Figure 6-8 NuMicro NUC123 Power Distribution Diagram ........................................................... 39
Figure 6-9 Clock Generator Global View Diagram ......................................................................... 48
Figure 6-10 Clock Generator Global View Diagram ....................................................................... 49
Figure 6-11 System Clock Block Diagram ..................................................................................... 50
Figure 6-12 SysTick Clock Control Block Diagram ........................................................................ 50
NUC123 SERIES DATASHEET
Figure 6-13 Clock Source of Frequency Divider ............................................................................ 51
Figure 6-14 Block Diagram of Frequency Divider .......................................................................... 51
Figure 7-1 Typical Crystal Application Circuit ................................................................................ 71
Figure 7-2 SPI Master Dynamic Characteristics Timing ................................................................ 78
Figure 7-3 SPI Slave Dynamic Characteristics Timing .................................................................. 79
Figure 8-1 Typical Crystal Application Circuit ................................................................................ 85
Figure 8-2 SPI Master Dynamic Characteristics timing ................................................................. 93
Figure 8-3 SPI Slave Dynamic Characteristics Timing .................................................................. 94
May 3, 2017
Page 6 of 99
Rev.2.04
NUC123
List of Tables
Table 1-1 Key Features Support Table ............................................................................................ 8
Table 3-1 List of Abbreviations ....................................................................................................... 13
Table 6-1 Reset Value of Registers ............................................................................................... 32
Table 6-2 Power Mode Difference Table ....................................................................................... 36
Table 6-3 Clocks in Power Modes ................................................................................................. 37
Table 6-4 Condition of Entering Power-down Mode Again ............................................................ 38
Table 6-5 Address Space Assignments for On-Chip Controllers ................................................... 41
Table 6-6 Exception Model ............................................................................................................ 44
Table 6-7 System Interrupt Map ..................................................................................................... 45
Table 6-8 Vector Table Format ...................................................................................................... 46
Table 6-9 Clock Stable Count Value Table .................................................................................... 47
NUC123 SERIES DATASHEET
May 3, 2017
Page 7 of 99
Rev.2.04
NUC123
1
GENERAL DESCRIPTION
®
®
The NuMicro NUC123 series is a new 32-bit Cortex -M0 microcontroller with USB 2.0 Full-speed
devices and a 10-bit ADC. The NUC123 series provides the high 72 MHz operating speed, large
20 Kbytes SRAM, 8 USB endpoints and three sets of SPI controllers, which make it powerful in
USB communication and data processing. The NUC123 series is ideal for industrial control,
consumer electronics, and communication system applications such as printers, touch panel,
gaming keyboard, gaming joystick, USB audio, PC peripherals, and alarm systems.
The NUC123 series runs up to 72 MHz and supports 32-bit multiplier, structure NVIC (Nested
Vector Interrupt Control), dual-channel APB and PDMA (Peripheral Direct Memory Access) with
CRC function. Besides, the NUC123 series is equipped with 36/68 Kbytes Flash memory, 12/20
Kbytes SRAM, and 4 Kbytes loader ROM for the ISP. It operates at a wide voltage range of 2.5V
~ 5.5V and temperature range of -40℃ ~ +105℃ and -40℃ ~ +85℃. It is also equipped with
2
2
plenty of peripheral devices, such as 8-channel 10-bit ADC, UART, SPI, I C, I S, USB 2.0 FS
devices, and offers low-voltage reset and Brown-out detection, PWM (Pulse-width Modulation),
capture and compare features, four sets of 32-bit timers, Watchdog Timer, and internal RC
oscillator. All these peripherals have been incorporated into the NUC123 series to reduce
component count, board space and system cost.
Additionally, the NUC123 series is equipped with ISP (In-System Programming), IAP (InApplication-Programming) and ICP (In-Circuit Programming) functions, which allows the user to
update the program under software control through the on-chip connectivity interface, such as
SWD, UART and USB.
Product Line
UART
SPI
I2C
USB
PS/2
I2S
PWM
ADC
NUC123
2
3
2
1
1
1
4
8
Table 1-1 Key Features Support Table
NUC123 SERIES DATASHEET
May 3, 2017
Page 8 of 99
Rev.2.04
NUC123
2
2.1
FEATURES
NuMicro® NUC123 Series Features

Core
®
®
– ARM Cortex -M0 core runs up to 72 MHz
– One 24-bit system timer
– Supports low power sleep mode
– Single-cycle 32-bit hardware multiplier
– NVIC for the 32 interrupt inputs, each with 4-levels of priority
– Supports Serial Wire Debug with 2 watchpoints/4 breakpoints
 Built-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V

Flash Memory
– 36/68 KB Flash for program code
– 4 KB flash for ISP loader
– Supports In-System Program (ISP) application code update
– 512 byte page erase for flash
– Configurable Data Flash address and size for both 36KB and 68KB system
– Supports 2-wire ICP update through SWD/ICE interface
– Supports fast parallel programming mode by external programmer
 SRAM Memory
– 12/20 KB embedded SRAM
– Supports PDMA mode
 PDMA (Peripheral DMA)
–
Supports 6 channels PDMA for automatic data transfer between SRAM and
2
peripherals such as SPI, UART, I S, USB 2.0 FS device, PWM and ADC
– Supports CRC calculation with four common polynomials, CRC-CCITT, CRC-8, CRC16 and CRC-32
 Clock Control
Flexible selection for different applications
Built-in 22.1184 MHz high speed oscillator (Trimmed to 1%) for system operation, and
low power 10 kHz low speed oscillator for watchdog and wake-up operation
– Supports one PLL, up to 144 MHz, for high performance system operation
– External 4~24 MHz high speed crystal input for precise timing operation
 GPIO
–
Four I/O modes:
 Quasi bi-direction
 Push-Pull output
 Open-Drain output
 Input only with high impendence
– TTL/Schmitt trigger input selectable
– I/O pin configured as interrupt source with edge/level setting
– Supports High Driver and High Sink I/O mode
 Timer
– Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
– Independent clock source for each timer
– Provides one-shot, periodic, toggle and continuous counting operation modes
– Supports event counting function
 Watchdog/Windowed-Watchdog Timer
–
May 3, 2017
Multiple clock sources
Page 9 of 99
Rev.2.04
NUC123 SERIES DATASHEET
–
–
NUC123
– 8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)
– Wake-up from Power-down or Idle mode
– Interrupt or reset selectable on watchdog timer time-out
– Interrupt on windowed-watchdog timer time-out
– Reset on windowed-watchdog timer time-out or reload in an unexpected time window
 PWM/Capture
–
Up to two built-in 16-bit PWM generators provided with four PWM outputs or two
complementary paired PWM outputs
– Each PWM generator equipped with one clock source selector, one clock divider, one
8-bit prescaler and one Dead-zone generator for complementary paired PWM
– Up to four 16-bit digital Capture timers (shared with PWM timers) provided with four
rising/falling capture inputs
– Supports Capture interrupt
 UART
NUC123 SERIES DATASHEET
–
–
–
–
–
–
–
 SPI
Up to two UART controllers
UART ports with flow control (TXD, RXD, CTS and RTS)
UART0/1 with 16-byte FIFO for standard device
Support IrDA (SIR) function
Supports RS-485 9-bit mode and direction control.
Programmable baud-rate generator up to 1/16 system clock
Supports PDMA mode
–
–
–
–
–
–
–
–
2
 IC
Up to three sets of SPI controllers
Supports SPI master/Slave mode
Full duplex synchronous serial data transfer
Variable length of transfer data from 8 to 32 bits
MSB or LSB first data transfer
Up to two slave/device select lines in Master mode
Supports Byte Suspend mode in 16/24/32-bit transmission
Supports PDMA transfer
–
–
–
–
–
–
–
–
–
–
2
 IS
–
–
–
–
–
–
May 3, 2017
2
Up to two sets of I C devices
Master/Slave mode
Bidirectional data transfer between masters and slaves
Multi-master bus (no central master)
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus
Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus
Serial clock synchronization used as a handshake mechanism to suspend and resume
serial transfer
Programmable clocks allowing versatile rate control
Supports multiple address recognition (four slave address with mask option)
Supports wake-up by address recognition (for 1st slave address only)
Interface with external audio CODEC
Operated as either master or Slave mode
Capable of handling 8-, 16-, 24- and 32-bit word sizes
Supports Mono and stereo audio data
2
Supports I S and MSB justified data format
Two 8 word FIFO data buffers are provided, one for transmitting and the other for
receiving
Page 10 of 99
Rev.2.04
NUC123
– Generates interrupt requests when buffer levels cross a programmable boundary
– Supports two DMA requests, one for transmitting and the other for receiving
 PS/2 Device Controller
– Host communication inhibit and request to send detection
– Reception frame error detection
– Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
– Double buffer for data reception
– S/W override bus
 USB 2.0 Full-Speed Device
– One set of USB 2.0 FS Device 12 Mbps
– On-chip USB transceiver
– Provides 1 interrupt source with 4 interrupt events
– Supports Control, Bulk In/Out, Interrupt and Isochronous transfers
– Auto suspend function when no bus signaling for 3 ms
– Provides 8 programmable endpoints
– Includes 512 bytes internal SRAM as USB buffer
– Provides remote wake-up capability
 ADC
– 10-bit SAR ADC with 150K SPS (for NUC123xxxANx)
– 10-bit SAR ADC with 200K SPS (for NUC123xxxAEx)
– Up to 8-ch single-end input
– Single scan/single cycle scan/continuous scan
– Each channel with individual result register
– Scan on enabled channels
– Threshold voltage detection
– Conversion start by software programming or external input
– Supports PDMA mode
 Brown-out detector
NUC123 SERIES DATASHEET
– With 4 levels: 4.4 V/3.7 V/2.7 V/2.2 V
– Supports Brown-out Interrupt and Reset option
 Low Voltage Reset
– Threshold voltage levels: 2.0 V
 One built-in LDO

Operating Temperature: -40℃~85℃ (for NUC123xxxANx)

Operating Temperature: -40℃~105℃ (for NUC123xxxAEx)

Packages:
–
–
–
–
May 3, 2017
All Green package (RoHS)
LQFP 64-pin
LQFP 48-pin
QFN 33-pin
Page 11 of 99
Rev.2.04
NUC123
3
ABBREVIATIONS
NUC123 SERIES DATASHEET
Acronym
Description
ACMP
Analog Comparator Controller
ADC
Analog-to-Digital Converter
AES
Advanced Encryption Standard
APB
Advanced Peripheral Bus
AHB
Advanced High-Performance Bus
BOD
Brown-out Detection
CAN
Controller Area Network
DAP
Debug Access Port
DES
Data Encryption Standard
EBI
External Bus Interface
EPWM
Enhanced Pulse Width Modulation
FIFO
First In, First Out
FMC
Flash Memory Controller
FPU
Floating-point Unit
GPIO
General-Purpose Input/Output
HCLK
The Clock of Advanced High-Performance Bus
HIRC
22.1184 MHz Internal High Speed RC Oscillator
HXT
4~20 MHz External High Speed Crystal Oscillator
IAP
In Application Programming
ICP
In Circuit Programming
ISP
In System Programming
LDO
Low Dropout Regulator
LIN
Local Interconnect Network
LIRC
10 kHz internal low speed RC oscillator (LIRC)
MPU
Memory Protection Unit
NVIC
Nested Vectored Interrupt Controller
PCLK
The Clock of Advanced Peripheral Bus
PDMA
Peripheral Direct Memory Access
PLL
Phase-Locked Loop
PWM
Pulse Width Modulation
QEI
Quadrature Encoder Interface
SD
Secure Digital
SPI
Serial Peripheral Interface
May 3, 2017
Page 12 of 99
Rev.2.04
NUC123
SPS
Samples per Second
TDES
Triple Data Encryption Standard
TK
Touch Key
TMR
Timer Controller
UART
Universal Asynchronous Receiver/Transmitter
UCID
Unique Customer ID
USB
Universal Serial Bus
WDT
Watchdog Timer
WWDT
Window Watchdog Timer
Table 3-1 List of Abbreviations
NUC123 SERIES DATASHEET
May 3, 2017
Page 13 of 99
Rev.2.04
NUC123
4
4.1
PARTS INFORMATION LIST AND PIN CONFIGURATION
NuMicro® NUC123 Series Naming Rule
ARM–Based
32-bit Microcontroller
NUC 1 2 3 - X X X X X X
CPU Core
Option
1: Cortex® -M0
5/7: ARM7
9: ARM9
0: SRAM 20 KB
1: SRAM 12 KB
Temperature
N: -40oC ~ +85oC
E: -40oC ~ +105oC
Product Line Function
0: Advance Line
2: USB Line
3: Automotive Line
4: Connectivity Line
5: High Density
Reserved
SRAM Size
Reserved
2: 12 KB
4: 20 KB
0~9: Sub Product Line
NUC123 SERIES DATASHEET
Package Type
Flash ROM
Z: QFN 33 5x5mm
L: LQFP 48 7x7mm
S: LQFP 64 7x7mm
C: 36 KB
D: 68 KB
®
Figure 4-1 NuMicro NUC123 Series Selection Code
May 3, 2017
Page 14 of 99
Rev.2.04
NUC123
NuMicro® NUC123 Series Selection Guide
4.2
NuMicro® NUC123xxxANx Selection Guide
ISP ROM (KB)
UART
SPI
I2C
USB
LIN
PS/2
I2S
Comp.
PWM
ADC
RTC
EBI
ISP\ICP\IAP
1.8V Power Pin
Package
68
20
4
Up to 20 4x32-bit
1
3
1
1
-
-
1
-
2
3x10-bit
-
-
v
-
QFN33
NUC123ZC2AN1
36
12
4
up to 20
4x32-bit
1
3
1
1
-
-
1
-
2
3x10-bit
-
-
v
-
QFN33
NUC123LD4AN0
68
20
4
up to 36
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP48
NUC123LC2AN1
36
12
4
up to 36
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP48
NUC123SD4AN0
68
20
4
up to 47
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP64
NUC123SC2AN1
36
12
4
up to 47
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP64
NuMicro® NUC123xxxAEx Selection Guide
SPI
IC
USB
LIN
PS/2
I2S
Comp.
PWM
ADC
RTC
EBI
ISP\ICP\IAP
1.8V Power Pin
Package
4
Up to 20 4x32-bit
1
3
1
1
-
-
1
-
3
3x10-bit
-
-
v
-
QFN33
NUC123ZC2AE1
36
12
4
up to 20
4x32-bit
1
3
1
1
-
-
1
-
3
3x10-bit
-
-
v
-
QFN33
NUC123LD4AE0
68
20
4
up to 36
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP48
NUC123LC2AE1
36
12
4
up to 36
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP48
NUC123SD4AE0
68
20
4
up to 47
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP64
NUC123SC2AE1
36
12
4
up to 47
4x32-bit
2
3
2
1
-
1
1
-
4
8x10-bit
-
-
v
-
LQFP64
May 3, 2017
2
UART
20
Timer
ISP ROM (KB)
68
I/O
SRAM (KB)
NUC123ZD4AE0
Page 15 of 99
Rev.2.04
NUC123 SERIES DATASHEET
Flash (KB)
Connectivity
Part Number
4.2.2
Timer
SRAM (KB)
NUC123ZD4AN0
I/O
Flash (KB)
Connectivity
Part Number
4.2.1
NUC123
NuMicro® NUC123 Series Pin Configuration
NuMicro® NUC123xxxANx Pin Diagram
®
AVDD
ICE_CLK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
VSS
PA.15/PWM3/I2S_MCLK/CLKO
PC.8/SPI1_SS0
PC.9/SPI1_CLK
VDD
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
VSS
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
NuMicro NUC123SxxANx LQFP 64 pin
48
4.3.1.1
SPI2_SS0/ADC0/PD.0
49
32
PB.9/SPI1_SS1/TM1
SPI0_SS1/SPI2_CLK/ADC1/PD.1
50
31
PB.10/SPI0_SS1/TM2
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
51
30
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
52
29
PC.1/SPI0_CLK/I2S_BCLK
SPI2_MISO1/ADC4/PD.4
53
28
PC.2/SPI0_MISO0/I2S_DI
SPI2_MOSI1/ADC5/PD.5
54
27
PC.3/SPI0_MOSI0/I2S_DO
TM0_EXT/INT1/PB.15
55
26
PC.4/SPI0_MISO1/UART0_RXD
XT1_OUT/PF.0
56
25
PC.5/SPI0_MOSI1/UART0_TXD
XT1_IN/PF.1
57
24
PB.3/UART0_nCTS/TM3_EXT
nRESET
58
23
PB.2/UART0_nRTS/TM2_EXT
VSS
59
22
PB.1/UART0_TXD
VDD
60
21
PB.0/UART0_RXD
PS2_DAT/I2C0_SDA/ADC6/PF.2
61
20
USB_D+
PS2_CLK/I2C0_SCL/ADC7/PF.3
62
19
USB_D-
PVSS
63
18
USB_VDD33_CAP
TM0/PB.8
64
17
USB_VBUS
13
14
15
16
SPI2_MISO0/UART1_nCTS/PB.7
LDO_CAP
VDD
VSS
9
INT1/PD.11
12
8
CLKO/PD.10
SPI2_MOSI0/UART1_nRTS/PB.6
7
PD.9
11
6
SPI1_MOSI0/PD.8
SPI2_CLK/UART1_TXD/PB.5
5
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
10
4
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
3
CLKO/SPI1_SS0/PB.12
2
NUC123 SERIES DATASHEET
1
NUC123SxxANx
LQFP 64-pin
PB.13
4.3.1
INT0/PB.14
4.3
®
Figure 4-2 NuMicro NUC123SxxANx LQFP 64-pin Diagram
May 3, 2017
Page 16 of 99
Rev.2.04
NUC123
®
ICE_CLK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2S_MCLK/CLKO
PC.8/SPI1_SS0
PC.9/SPI1_CLK
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
35
34
33
32
31
30
29
28
27
26
25
NuMicro NUC123LxxANx LQFP 48 pin
36
4.3.1.2
AVDD
37
24
PB.9/SPI1_SS1/TM1
SPI2_SS0/ADC0/PD.0
38
23
PB.10/SPI0_SS1/TM2
SPI0_SS1/SPI2_CLK/ADC1/PD.1
39
22
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
40
21
PC.1/SPI0_CLK/I2S_BCLK
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
41
20
PC.2/SPI0_MISO0/I2S_DI
SPI2_MISO1/ADC4/PD.4
42
19
PC.3/SPI0_MOSI0/I2S_DO
SPI2_MOSI1/ADC5/PD.5
43
18
PC.4/SPI0_MISO1/UART0_RXD
XT1_OUT/PF.0
44
17
PC.5/SPI0_MOSI1/UART0_TXD
XT1_IN/PF.1
45
16
USB_D+
nRESET
46
15
USB_D-
PS2_DAT/I2C0_SDA/ADC6/PF.2
47
14
USB_VDD33_CAP
PS2_CLK/I2C0_SCL/ADC7/PF.3
48
13
USB_VBUS
12
9
SPI2_MISO0/UART1_nCTS/PB.7
VSS
8
SPI2_MOSI0/UART1_nRTS/PB.6
11
7
SPI2_CLK/UART1_TXD/PB.5
VDD
6
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
10
5
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
LDO_CAP
4
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
2
3
NUC123 SERIES DATASHEET
INT0/PB.14
1
PVSS
TM0/PB.8
NUC123LxxANx
LQFP 48-pin
®
Figure 4-3 NuMicro NUC123LxxANx LQFP 48-pin Diagram
May 3, 2017
Page 17 of 99
Rev.2.04
NUC123
®
ICE_CLK
ICE_DAT
PC.8/SPI1_SS0
PC.9/SPI1_CLK
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
23
22
21
20
19
18
17
NuMicro NUC123ZxxANx QFN 33 pin
24
4.3.1.3
AVDD
25
16
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_SS1/SPI2_CLK/ADC1/PD.1
26
15
PC.1/SPI0_CLK/I2S_BCLK
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
27
14
PC.2/SPI0_MISO0/I2S_DI
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
28
13
PC.3/SPI0_MOSI0/I2S_DO
XT1_OUT/PF.0
29
12
USB_D+
XT1_IN/PF.1
30
11
USB_D-
nRESET
31
10
USB_VDD33_CAP
PVSS
32
9
USB_VBUS
NUC123ZxxANx
QFN 33-pin
1
2
3
4
5
6
7
8
INT0/PB.14
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
SPI2_CLK/UART1_TXD/PB.5
LDO_CAP
VDD
VSS
NUC123 SERIES DATASHEET
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
33 VSS
®
Figure 4-4 NuMicro NUC123ZxxANx QFN 33-pin Diagram
May 3, 2017
Page 18 of 99
Rev.2.04
NUC123
NuMicro® NUC123xxxAEx Pin Diagram
®
AVDD
ICE_CLK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
VSS
PA.15/PWM3/I2S_MCLK/CLKO
PC.8/SPI1_SS0/PWM0
PC.9/SPI1_CLK
VDD
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
VSS
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
NuMicro NUC123SxxAEx LQFP 64 pin
48
4.3.2.1
SPI2_SS0/ADC0/PD.0
49
32
PB.9/SPI1_SS1/TM1/PWM1
SPI0_SS1/SPI2_CLK/ADC1/PD.1
50
31
PB.10/SPI0_SS1/TM2
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
51
30
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
52
29
PC.1/SPI0_CLK/I2S_BCLK
SPI2_MISO1/ADC4/PD.4
53
28
PC.2/SPI0_MISO0/I2S_DI
SPI2_MOSI1/ADC5/PD.5
54
27
PC.3/SPI0_MOSI0/I2S_DO
TM0_EXT/INT1/PB.15
55
26
PC.4/SPI0_MISO1/UART0_RXD
XT1_OUT/PF.0
56
25
PC.5/SPI0_MOSI1/UART0_TXD
XT1_IN/PF.1
57
24
PB.3/UART0_nCTS/TM3_EXT
nRESET
58
23
PB.2/UART0_nRTS/TM2_EXT
VSS
59
22
PB.1/UART0_TXD
VDD
60
21
PB.0/UART0_RXD
PS2_DAT/I2C0_SDA/ADC6/PF.2
61
20
USB_D+
PS2_CLK/I2C0_SCL/ADC7/PF.3
62
19
USB_D-
PVSS
63
18
USB_VDD33_CAP
TM0/PB.8
64
17
USB_VBUS
13
14
15
16
SPI2_MISO0/UART1_nCTS/PB.7
LDO_CAP
VDD
VSS
9
INT1/PD.11
12
8
CLKO/PD.10
SPI2_MOSI0/UART1_nRTS/PB.6
7
PD.9
11
6
SPI1_MOSI0/PD.8
SPI2_CLK/UART1_TXD/PB.5
5
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
10
4
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
3
2
CLKO/SPI1_SS0/PB.12
1
NUC123 SERIES DATASHEET
PB.13
NUC123SxxAEx
LQFP 64-pin
INT0/PB.14
4.3.2
®
Figure 4-5 NuMicro NUC123SxxAEx LQFP 64-pin Diagram
May 3, 2017
Page 19 of 99
Rev.2.04
NUC123
®
ICE_CLK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2S_MCLK/CLKO
PC.8/SPI1_SS0/PWM0
PC.9/SPI1_CLK
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
35
34
33
32
31
30
29
28
27
26
25
NuMicro NUC123LxxAEx LQFP 48 pin
36
4.3.2.2
AVDD
37
24
PB.9/SPI1_SS1/TM1/PWM1
SPI2_SS0/ADC0/PD.0
38
23
PB.10/SPI0_SS1/TM2
SPI0_SS1/SPI2_CLK/ADC1/PD.1
39
22
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
40
21
PC.1/SPI0_CLK/I2S_BCLK
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
41
20
PC.2/SPI0_MISO0/I2S_DI
SPI2_MISO1/ADC4/PD.4
42
19
PC.3/SPI0_MOSI0/I2S_DO
SPI2_MOSI1/ADC5/PD.5
43
18
PC.4/SPI0_MISO1/UART0_RXD
XT1_OUT/PF.0
44
17
PC.5/SPI0_MOSI1/UART0_TXD
XT1_IN/PF.1
45
16
USB_D+
nRESET
46
15
USB_D-
PS2_DAT/I2C0_SDA/ADC6/PF.2
47
14
USB_VDD33_CAP
PS2_CLK/I2C0_SCL/ADC7/PF.3
48
13
USB_VBUS
12
9
SPI2_MISO0/UART1_nCTS/PB.7
VSS
8
SPI2_MOSI0/UART1_nRTS/PB.6
11
7
SPI2_CLK/UART1_TXD/PB.5
VDD
6
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
10
5
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
LDO_CAP
4
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
2
3
NUC123 SERIES DATASHEET
INT0/PB.14
1
PVSS
TM0/PB.8
NUC123LxxAEx
LQFP 48-pin
®
Figure 4-6 NuMicro NUC123LxxAEx LQFP 48-pin Diagram
May 3, 2017
Page 20 of 99
Rev.2.04
NUC123
®
ICE_CLK
ICE_DAT
PC.8/SPI1_SS0/PWM0
PC.9/SPI1_CLK
PC.10/SPI1_MISO0
PC.11/SPI1_MOSI0
PC.12/SPI1_MISO1/PWM2/I2S_MCLK
PC.13/SPI1_MOSI1/PWM3/CLKO
23
22
21
20
19
18
17
NuMicro NUC123ZxxAEx QFN 33 pin
24
4.3.2.3
AVDD
25
16
PC.0/SPI0_SS0/I2S_LRCLK
SPI0_SS1/SPI2_CLK/ADC1/PD.1
26
15
PC.1/SPI0_CLK/I2S_BCLK
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2
27
14
PC.2/SPI0_MISO0/I2S_DI
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3
28
13
PC.3/SPI0_MOSI0/I2S_DO
XT1_OUT/PF.0
29
12
USB_D+
XT1_IN/PF.1
30
11
USB_D-
nRESET
31
10
USB_VDD33_CAP
PVSS
32
9
USB_VBUS
NUC123ZxxAEx
QFN 33-pin
1
2
3
4
5
6
7
8
INT0/PB.14
I2C1_SDA/SPI2_MISO0/SPI1_MISO0/PA.10
SPI1_SS1/SPI2_SS0/UART1_RXD/PB.4
SPI2_CLK/UART1_TXD/PB.5
LDO_CAP
VDD
VSS
NUC123 SERIES DATASHEET
I2C1_SCL/SPI2_MOSI0/SPI1_CLK/PA.11
33 VSS
®
Figure 4-7 NuMicro NUC123ZxxAEx QFN 33-pin Diagram
May 3, 2017
Page 21 of 99
Rev.2.04
NUC123
4.4
4.4.1
Pin Description
NuMicro® NUC123 Pin Description
Pin No
LQFP 64- LQFP 48- QFN 33pin
pin
pin
1
3
3
5*
4
5*
Type
Description
PB.14
I/O
INT0
I
PB.13
I/O
Digital GPIO pin
PB.12
I/O
Digital GPIO pin
SPI1_SS0
I/O
SPI1 1st slave select pin
CLKO
O
Frequency Divider output pin
PA.11
I/O
Digital GPIO pin
SPI1_CLK
I/O
SPI1 serial clock pin
SPI2_MOSI0
I/O
SPI2 1st MOSI (Master Out, Slave In) pin
I2C1_SCL
I/O
I2C1 clock pin
PA.10
I/O
Digital GPIO pin
SPI1_MISO0
I/O
SPI1 1st MISO (Master In, Slave Out) pin
SPI2_MISO0
I/O
SPI2 1st MISO (Master In, Slave Out) pin
I2C1_SDA
I/O
I2C1 data input/output pin
PD.8
I/O
Digital GPIO pin
SPI1_MOSI0
I/O
SPI1 1st MOSI (Master Out, Slave In) pin
PD.9
I/O
Digital GPIO pin
PD.10
I/O
Digital GPIO pin
CLKO
O
Frequency Divider output pin
PD.11
I/O
Digital GPIO pin
Digital GPIO pin
1
2
4
Pin Name
2
3*
6
NUC123 SERIES DATASHEET
7
External interrupt 0 input pin
8
9
INT1
I
PB.4
I/O
UART1_RXD
10
11
12
6
7
I
4
5
External interrupt 1 input pin
Digital GPIO pin
UART1 data receiver input pin
SPI2_SS0
I/O
SPI2 1st slave select pin
SPI1_SS1
I/O
SPI1 2nd slave select pin
PB.5
I/O
Digital GPIO pin
UART1_TXD
O
UART1 data transmitter output pin
SPI2_CLK
I/O
SPI2 serial clock pin
PB.6
I/O
Digital GPIO pin
UART1_nRTS
O
UART1 request to send output pin
8
May 3, 2017
Page 22 of 99
Rev.2.04
NUC123
13
9
SPI2_MOSI0
I/O
SPI2 1st MOSI (Master Out, Slave In) pin
PB.7
I/O
Digital GPIO pin
UART1_nCTS
I
SPI2_MISO0
I/O
UART1 clear to send input pin
SPI2 1st MISO (Master In, Slave Out) pin
LDO_CAP
P
LDO output pin
VDD
P
Power supply for I/O ports and LDO source for internal PLL
and digital function. Voltage range is 2.5V ~ 5V.
8
VSS
P
Ground
13
9
USB_VBUS
USB
Power supply from USB host or hub
18
14
10
USB_VDD33_CAP
USB
Internal power regulator output 3.3V decoupling pin
19
15
11
USB_D-
USB
USB differential signal D-
20
16
12
USB_D+
USB
USB differential signal D+
14
10
6
15
11
7
16
12
17
PB.0
I/O
Digital GPIO pin
21
UART0_RXD
I
UART0 data receiver input pin
PB.1
I/O
Digital GPIO pin
UART0_TXD
O
UART0 data transmitter output pin
PB.2
I/O
Digital GPIO pin
UART0_nRTS
O
UART0 request to send output pin
TM2_EXT
I
Timer2 external capture input pin
22
23
PB.3
24
26
27
28
17
18
19
20
13
14
UART0_nCTS
I
UART0 clear to send input pin
TM3_EXT
I
Timer3 external capture input pin
PC.5
I/O
Digital GPIO pin
SPI0_MOSI1
I/O
SPI0 2nd MOSI (Master Out, Slave In) pin
UART0_TXD
O
UART0 data transmitter output pin
PC.4
I/O
Digital GPIO pin
SPI0_MISO1
I/O
SPI0 2nd MISO (Master In, Slave Out) pin
UART0_RXD
I
21
May 3, 2017
UART0 data receiver input pin
PC.3
I/O
Digital GPIO pin
SPI0_MOSI0
I/O
SPI0 1st MOSI (Master Out, Slave In) pin
I2S_DO
O
I2S data output pin
PC.2
I/O
Digital GPIO pin
SPI0_MISO0
I/O
SPI0 1st MISO (Master In, Slave Out) pin
I
I2S data input pin
PC.1
I/O
Digital GPIO pin
SPI0_CLK
I/O
SPI0 serial clock pin
I2S_DI
29
Digital GPIO pin
NUC123 SERIES DATASHEET
25
I/O
15
Page 23 of 99
Rev.2.04
NUC123
30
31
32
22
16
23
24
33
34
35
NUC123 SERIES DATASHEET
36
37
40
41
I/O
I2S bit clock pin
PC.0
I/O
Digital GPIO pin
SPI0_SS0
I/O
SPI0 1st slave select pin
I2S_LRCLK
I/O
I2S left/right channel clock pin
PB.10
I/O
Digital GPIO pin
SPI0_SS1
I/O
SPI0 2nd slave select pin
TM2
I/O
Timer2 event counter input / toggle output pin
PB.9
I/O
Digital GPIO pin
SPI1_SS1
I/O
SPI1 2nd slave select pin
TM1
I/O
Timer1 event counter input / toggle output pin
PWM1
I/O
PWM1 PWM output / capture input pin (NUC123xxxAEx
Only)
VSS
25
26
27
28
30
I/O
Digital GPIO pin
SPI1_MOSI1
I/O
SPI1 2nd MOSI (Master Out, Slave In) pin
PWM3
I/O
PWM3 PWM output / capture input pin
CLKO
O
Frequency Divider output pin
PC.12
I/O
Digital GPIO pin
SPI1_MISO1
I/O
SPI1 2nd MISO (Master In, Slave Out) pin
PWM2
I/O
PWM2 PWM output / capture input pin
I2S_MCLK
O
I2S master clock output pin
PC.11
I/O
Digital GPIO pin
SPI1_MOSI0
I/O
SPI1 1st MOSI (Master Out, Slave In) pin
PC.10
I/O
Digital GPIO pin
SPI1_MISO0
I/O
SPI1 1st MISO (Master In, Slave Out) pin
18
19
20
P
Power supply for I/O ports and LDO source for internal PLL
and digital function. Voltage range is 2.5V ~ 5V.
PC.9
I/O
Digital GPIO pin
SPI1_CLK
I/O
SPI1 serial clock pin
PC.8
I/O
Digital GPIO pin
SPI1_SS0
I/O
SPI1 1st slave select pin
PWM0
I/O
PWM0 PWM output / capture input pin (NUC123xxxAEx
Only)
PA.15
I/O
Digital GPIO pin
PWM3
I/O
PWM3 PWM output / capture input pin
I2S_MCLK
O
I2S master clock output pin
CLKO
O
Frequency Divider output pin
21
22
31
May 3, 2017
Ground
PC.13
VDD
29
P
17
38
39
I2S_BCLK
Page 24 of 99
Rev.2.04
NUC123
42
43
44
45
VSS
P
Ground
PA.14
I/O
Digital GPIO pin
PWM2
I/O
PWM2 PWM output / capture input pin
PA.13
I/O
Digital GPIO pin
PWM1
I/O
PWM1 PWM output / capture input pin
PA.12
I/O
Digital GPIO pin
PWM0
I/O
PWM0 PWM output / capture input pin
Serial wired debugger data pin
32
33
34
46
35
23
ICE_DAT
I/O
47
36
24
ICE_CLK
I
48
37
25
AVDD
AP
Power supply for internal analog circuit
PD.0
I/O
Digital GPIO pin
ADC0
AI
ADC channel 0 analog input pin
SPI2_SS0
I/O
SPI2 1st slave select pin
PD.1
I/O
Digital GPIO pin
SPI2_CLK
I/O
SPI2 serial clock pin
SPI0_SS1
I/O
SPI0 2nd slave select pin
ADC1
AI
ADC channel 1 analog input pin
PD.2
I/O
Digital GPIO pin
SPI2_MISO0
I/O
SPI2 1st MISO (Master In, Slave Out) pin
SPI0_MISO1
I/O
SPI0 2nd MISO (Master In, Slave Out) pin
ADC2
AI
ADC channel 2 analog input pin
PD.3
I/O
Digital GPIO pin
SPI2_MOSI0
I/O
SPI2 1st MOSI (Master Out, Slave In) pin
SPI0_MOSI1
I/O
SPI0 2nd MOSI (Master Out, Slave In) pin
ADC3
AI
ADC channel 3 analog input pin
PD.4
I/O
Digital GPIO pin
ADC4
AI
ADC channel 4 analog input pin
SPI2_MISO1
I/O
SPI2 2nd MISO (Master In, Slave Out) pin
PD.5
I/O
Digital GPIO pin
ADC5
AI
ADC channel 5 analog input pin
SPI2_MOSI1
I/O
SPI2 2nd MOSI (Master Out, Slave In) pin
PB.15
I/O
Digital GPIO pin
INT1
I
External interrupt 1 input pin
TM0_EXT
I
Timer0 external capture input pin
49
50
51
53
54
39
40
41
26
27
28
42
43
55
56
44
May 3, 2017
29
PF.0
I/O
NUC123 SERIES DATASHEET
52
38
Serial wired debugger clock input pin
Digital GPIO pin
Page 25 of 99
Rev.2.04
NUC123
57
45
XT1_OUT
O
External 4~24 MHz high speed crystal output pin
PF.1
I/O
Digital GPIO pin
30
XT1_IN
I
External 4~24 MHz high speed crystal input pin
nRESET
I
External reset input: Low active, set this pin low reset chip to
initial state. With internal pull-up.
59
VSS
P
Ground
60
VDD
P
Power supply for I/O ports and LDO source for internal PLL
and digital circuit. Voltage range is 2.5 V ~ 5V.
PF.2
I/O
Digital GPIO pin
ADC6
AI
ADC channel 6 analog input pin
I2C0_SDA
I/O
I2C0 data input/output pin
PS2_DAT
I/O
PS/2 data pin
PF.3
I/O
Digital GPIO pin
ADC7
AI
ADC channel 7 analog input pin
I2C0_SCL
I/O
I2C0 clock pin
PS2_CLK
I/O
PS/2 clock pin
58
61
62
46
31
47
48
63
1
64
2
32
PVSS
P
PB.8
I/O
Digital GPIO pin
TM0
I/O
Timer0 event counter input / toggle output pin
PLL ground
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power
NUC123 SERIES DATASHEET
May 3, 2017
Page 26 of 99
Rev.2.04
NUC123
5
5.1
BLOCK DIAGRAM
NuMicro® NUC123 Block Diagram
Memory
Timer/PWM
Analog Interface
32-bit Timer x 4
APROM & DataFlash
36/68 KB
ARM
Watchdog Timer
PDMA
Cortex-M0
72MHz
LDROM
4 KB
SRAM
12/20 KB
10-bit ADC x 8
Windowed
Watchdog Timer
PWM/Capture
Timer x 4
AHB/APB Bus
LDO
Clock Control
Connectivity
UART x 2
Power On Reset
High Speed
Oscillator
22.1184 MHz
High Speed
Crystal
4 ~ 24 MHz
LVR
Brownout
Detection
SPI x 3
PLL
General Purpose
I/O
I2C x 2
I2S
Low Speed
Oscillator
10 KHz
I/O Ports
Reset Pin
PS/2
USB
External Interrupt
®
Figure 5-1 NuMicro NUC123 Block Diagram
NUC123 SERIES DATASHEET
May 3, 2017
Page 27 of 99
Rev.2.04
NUC123
6
6.1
FUNCTIONAL DESCRIPTION
ARM® Cortex® -M0 Core
®
The Cortex -M0 processor, a configurable, multistage, 32-bit RISC processor, has an AMBA
AHB-Lite interface and includes an NVIC component. The processor has optional hardware
®
debug functionality, can execute Thumb code, and is compatible with other Cortex -M profile
processors. The profile supports two modes -Thread mode and Handler mode. Handler mode is
entered as a result of an exception. An exception return can only be issued in Handler mode.
Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure
6-1 shows the functional controller of processor.
Cortex-M0 components
Cortex-M0 processor
Nested
Vectored
Interrupt
Controller
(NVIC)
Interrupts
Debug
Cortex-M0
Processor
Core
Wakeup
Interrupt
Controller
(WIC)
Bus Matrix
Breakpoint
and
Watchpoint
Unit
Debugger
interface
AHB-Lite
interface
Debug
Access
Port
(DAP)
Serial Wire or
JTAG debug port
Figure 6-1 Functional Controller Diagram
NUC123 SERIES DATASHEET
The implemented device provides:


May 3, 2017
A low gate count processor:
–
ARMv6-M Thumb® instruction set
–
Thumb-2 technology
–
ARMv6-M compliant 24-bit SysTick timer
–
A 32-bit hardware multiplier
–
System interface supporting little-endian data accesses
–
Ability to have deterministic, fixed-latency, interrupt handling
–
Load/store-multiples and multicycle-multiplies abandoned and restarted to
facilitate rapid interrupt handling
–
C Application Binary Interface compliant exception model, which is the ARMv6M, C Application Binary Interface (C-ABI) compliant exception model that
enables the use of pure C functions as interrupt handlers
–
Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event
(WFE) instructions, or the return from interrupt sleep-on-exit feature
NVIC :
Page 28 of 99
Rev.2.04
NUC123


–
32 external interrupt inputs, each with four levels of priority
–
Dedicated Non-Maskable Interrupt (NMI) input
–
Supports both level-sensitive and pulse-sensitive interrupt lines
–
Supports Wake-up Interrupt Controller (WIC) with ultra-low power sleep mode
Debug support
–
Four hardware breakpoints
–
Two watchpoints
–
Program Counter Sampling Register (PCSR) for non-intrusive code profiling
–
Single step and vector catch capabilities
Bus interfaces:
–
Single 32-bit AMBA-3 AHB-Lite system interface providing simple integration to
all system peripherals and memory
–
Single 32-bit slave port supporting the DAP (Debug Access Port)
NUC123 SERIES DATASHEET
May 3, 2017
Page 29 of 99
Rev.2.04
NUC123
6.2
System Manager
6.2.1
Overview
The system manager provides the functions of system control, power modes, wake-up sources,
reset sources, system memory map, product ID and multi-function pin control. The following
sections describe the functions for
6.2.2

System Reset

System Power Architecture

System Memory Map

System management registers for Part Number ID, chip reset and on-chip controllers
reset, and multi-functional pin control

System Timer (SysTick)

Nested Vectored Interrupt Controller (NVIC)

System Control registers
System Reset
The system reset can be issued by one of the events listed below. These reset event flags can be
read from RSTSRC register to determine the reset source. Hardware reset can reset chip through
peripheral reset signals. Software reset can trigger reset through control registers.

NUC123 SERIES DATASHEET

Hardware Reset Sources
–
Power-on Reset (POR)
–
Low level on the nRESET pin
–
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)
–
Low Voltage Reset (LVR)
–
Brown-out Detector Reset (BOD Reset)
Software Reset Sources
–
CHIP Reset will reset whole chip by writing 1 to CHIPRST (IPRSTC1[0])
–
MCU Reset to reboot but keeping the booting setting from APROM or LDROM
by writing 1 to SYSRESETREQ (AIRCR[2])
–
CPU Reset for Cortex -M0 core Only by writing 1 to CPURST (IPRSTC1[1])
®
Power-on Reset or CHIP_RST (IPRST1[0]) resets the whole chip including all peripherals,
external crystal circuit and BS (ISPCON[1]) bit.
SYSRESETREQ (AIRCR[2]) resets the whole chip including all peripherals, but does not reset
external crystal circuit and BS (ISPCON[1]) bit.
May 3, 2017
Page 30 of 99
Rev.2.04
NUC123
Glitch Filter
36 us
nRESET
~50k ohm
@5v
POR_DIS_CODE(PORCR[15:0])
Power-on
Reset
VDD
LVR_EN(BODCR[7])
AVDD
Reset Pulse Width
3.2ms
Low Voltage
Reset
BOD_RSTEN(BODCR[3])
Brown-out
Reset
WDT/WWDT
Reset
System Reset
Reset Pulse Width
64 WDT clocks
CHIP Reset
CHIP_RST(IPRSTC1[0])
MCU Reset
SYSRESETREQ(AIRCR[2])
Software Reset
Reset Pulse Width
2 system clocks
CPU Reset
CPU_RST(IPRSTC1[1])
Figure 6-2 System Reset Resources
®
There are a total of 8 reset sources in the NuMicro family. In general, CPU reset is used to reset
®
®
Cortex -M0 only; the other reset sources will reset Cortex -M0 and all peripherals. However,
there are small differences between each reset source and they are listed in Table 6-1.
POR
Register
NRESET
WDT
LVR
BOD
CHIP
MCU
CPU
RSTSRC
Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 0 = 1
Bit 5 = 1
Bit 7 = 1
CHIP_RST
0x0
-
-
-
-
-
-
-
(IPRSTC1[0])
BOD_EN
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
from
from
CONFIG0 CONFIG0
(PWRCON [0])
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
Reload
Reload from Reload
from
from
from
CONFIG0
from
CONFIG0 CONFIG0 CONFIG0
CONFIG0
WDT_EN
0x1
0x1
(BODCR[0])
Reload from Reload
CONFIG0
from
CONFIG0
BOD_VL
(BODCR[2:1])
BOD_RSTEN
(BODCR[3])
XTL12M_EN
-
-
-
0x1
-
-
(APBCLK[0])
HCLK_S
(CLKSEL0[2:0])
May 3, 2017
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
Reload
Reload from Reload
from
from
from
CONFIG0
from
CONFIG0 CONFIG0 CONFIG0
CONFIG0
Page 31 of 99
Rev.2.04
NUC123 SERIES DATASHEET
Reset Sources
NUC123
WDT_S
0x3
0x3
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
0x0
0x0
0x0
0x0
0x0
0x0
0x0
-
(CLKSEL1[1:0])
XTL12M_STB
(CLKSTATUS[0])
PLL_STB
(CLKSTATUS[2])
OSC10K_STB
(CLKSTATUS[3])
OSC22M_STB
(CLKSTATUS[4])
CLK_SW_FAIL
(CLKSTATUS[7])
WTE
(WTCR[7])
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
Reload
Reload from
from
from
from
CONFIG0
CONFIG0 CONFIG0 CONFIG0
WTCR
0x0700
0x0700
0x0700
0x0700
0x0700
0x0700
-
-
WTCRALT
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
-
-
WWDTRLD
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
-
-
WWDTCR
0x3F0800
0x3F0800
0x3F0800 0x3F0800 0x3F0800 0x3F0800
-
-
WWDTSR
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
-
-
WWDTCVR
0x3F
0x3F
0x3F
0x3F
0x3F
0x3F
-
-
BS
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
Reload
Reload from from
from
from
CONFIG0
CONFIG0 CONFIG0 CONFIG0
-
DFBADR
Reload from Reload
CONFIG1 from
CONFIG1
Reload
Reload
Reload
Reload from from
from
from
CONFIG1
CONFIG1 CONFIG1 CONFIG1
-
CBS
Reload from Reload
CONFIG0 from
CONFIG0
Reload
Reload
Reload
Reload from from
from
from
CONFIG0
CONFIG0 CONFIG0 CONFIG0
-
Reload
base on
CONFIG0
Reload
Reload
Reload
Reload base base on
base on
base on
on
CONFIG0 CONFIG0 CONFIG0 CONFIG0
-
(ISPCON[1])
NUC123 SERIES DATASHEET
(ISPSTA[2:1))
VECMAP
(ISPSTA[20:9])
Reload
base on
CONFIG0
(NUC123xxxAEx Only)
Other Peripheral
Registers
Reset Value
FMC Registers
Reset Value
-
Note: ‘-‘ means that the value of register keeps original setting.
Table 6-1 Reset Value of Registers
6.2.2.1
nRESET Reset
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an
asynchronous reset input pin and can be used to reset system at any time. When the nRESET
voltage is lower than 0.2 VDD and the state keeps longer than 36 us (glitch filter), chip will be
May 3, 2017
Page 32 of 99
Rev.2.04
NUC123
reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above
0.7 VDD and the state keeps longer than 36 us (glitch filter). The RSTS_RESET (RSTSRC[1]) will
be set to 1 if the previous reset source is nRESET reset.
nRESET
0.7 VDD
36 us
0.2 VDD
SS
36 us
nRESET Reset
SS
Figure 6-3 shows the nRESET reset waveform.
nRESET
0.7 VDD
36 us
0.2 VDD
SS
36 us
nRESET Reset
SS
Figure 6-3 nRESET Reset Waveform
Power-On Reset (POR)
The Power-on reset (POR) is used to generate a stable system reset signal and forces the
system to be reset when power-on to avoid unexpected behavior of MCU. When applying the
power to MCU, the POR module will detect the rising voltage and generate reset signal to system
until the voltage is ready for MCU operation. At POR reset, the RSTS_POR (RSTSRC[0]) will be
set to 1 to indicate there is a POR reset event. The RSTS_POR (RSTSRC[0]) bit can be cleared
by writing 1 to it. Figure 6-4 shows the waveform of Power-On reset.
VPOR
0.1V
VDD
Power On
Reset
May 3, 2017
Page 33 of 99
Rev.2.04
NUC123 SERIES DATASHEET
6.2.2.2
NUC123
Figure 6-4 Power-on Reset (POR) Waveform
6.2.2.3
Low Voltage Reset (LVR)
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit
LVR_EN (BODCR[7]) to 1, after 100us delay, LVR detection circuit will be stable and the LVR
function will be active. Then LVR function will detect AVDD during system operation. When the
AVDD voltage is lower than VLVR and the state keeps longer than De-glitch time (16*HCLK cycles),
chip will be reset. The LVR reset will control the chip in reset state until the AVDD voltage rises
above VLVR and the state keeps longer than De-glitch time. The RSTS_RESET (RSTSRC[1]) will
be set to 1 if the previous reset source is nRESET reset. Figure 6-5 shows the Low Voltage Reset
waveform.
AVDD
VLVR
T1
(<De-glitch time)
T2
(=De-glitch time)
T3
(=De-glitch time)
Low Voltage Reset
100 us
Delay for LVR stable
NUC123 SERIES DATASHEET
LVR_EN
Figure 6-5 Low Voltage Reset Waveform
6.2.2.4
Brown-out Detector Reset (BOD Reset)
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit
BOD_EN (BODCR[0]), Brown-Out Detector function will detect AVDD during system operation.
When the AVDD voltage is lower than VBOD which is decided by BOD_EN (BODCR[0]) and
BOD_VL (BODCR[2:1]) and the state keeps longer than De-glitch time (Max(20*HCLK cycles,
1*LIRC cycle)), chip will be reset. The BOD reset will control the chip in reset state until the AVDD
voltage rises above VBOD and the state keeps longer than De-glitch time. The default value of
BOD_EN, BOD_VL and BOD_RSTEN is set by flash controller user configuration register
CBODEN (CONFIG0[23]), CBOV1-0 (CONFIG0[22:21]) and CBORST (CONFIG0[20])
respectively. User can determine the initial BOD setting by setting the CONFIG0 register. Figure
6-6 shows the Brown-Out Detector waveform.
May 3, 2017
Page 34 of 99
Rev.2.04
NUC123
AVDD
VBODH
VBODL
Hysteresis
T1
T2
(< de-glitch time) (= de-glitch time)
BODOUT
T3
(= de-glitch time)
BODRSTEN
Brown-out
Reset
Figure 6-6 Brown-Out Detector Waveform
6.2.2.5
Watch Dog Timer Reset
Software can check if the reset is caused by watch dog time-out to indicate the previous reset is a
watch dog reset and handle the failure of MCU after watch dog time-out reset by checking
RSTS_WDT (RSTSRC[2]).
6.2.2.6
CPU Reset, CHIP Reset and MCU Reset
®
The CPU Reset means only Cortex -M0 core is reset and all other peripherals remain the same
status after CPU reset. User can set the CPU Reset CPU_RST (IPRSTC1[1]) to 1 to assert the
CPU Reset signal.
The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and BS
(ISPCON[1]) bit is automatically reloaded from CONFIG0 setting. User can set the CHIP Reset
CHIP_RST (IPRSTC1[0]) to 1 to assert the CHIP Reset signal.
The MCU Reset is similar with CHIP Reset. The difference is that BS (ISPCON[1]) will not be
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or
LDROM. User can set the MCU Reset SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.
May 3, 2017
Page 35 of 99
Rev.2.04
NUC123 SERIES DATASHEET
In most industrial applications, system reliability is very important. To automatically recover the
MCU from failure status is one way to improve system reliability. The watch dog timer (WDT) is
widely used to check if the system works fine. If the MCU is crashed or out of control, it may
cause the watch dog time-out. User may decide to enable system reset during watch dog time-out
to recover the system and take action for the system crash/out-of-control after reset.
NUC123
6.2.3
Power modes and Wake-up sources
There are several wake-up sources in Idle mode and Power-down mode. Table 6-2 lists the
available clocks for each power mode.
Power Mode
Normal Mode
Idle Mode
Power-Down Mode
Definition
CPU is in active state
CPU is in sleep state
CPU is in sleep state and all
clocks stop except LIRC.
SRAM content retended.
Entry Condition
Chip is in normal mode after
system reset released
CPU executes WFI instruction. CPU sets sleep mode enable
and power down enable and
executes WFI instruction.
Wake-up Sources
N/A
All interrupts
WDT, I²C, Timer, UART, BOD
and GPIO
Available Clocks
All
All except CPU clock
LIRC
After Wake-up
N/A
CPU back to normal mode
CPU back to normal mode
Table 6-2 Power Mode Difference Table
System reset released
Normal Mode
CPU Clock ON
HXT, HIRC, LIRC, HCLK, PCLK ON
Flash ON
CPU executes WFI
Interrupts occur
NUC123 SERIES DATASHEET
1. SLEEPDEEP(SCR[2]) = 1
2. PWR_DOWN_EN (PWRCON[7]) = 1
PD_WAIT_CPU (PWRCON[8]) = 1
3. CPU executes WFI
Idle Mode
Wake-up events
occur
Power-down Mode
CPU Clock OFF
HXT, HIRC, LIRC, HCLK, PCLK ON
Flash Halt
CPU Clock OFF
HXT, HIRC, HCLK, PCLK OFF
LIRC ON
Flash Halt
Figure 6-7 Power Mode State Machine
May 3, 2017
Page 36 of 99
Rev.2.04
NUC123
1. LIRC (10 kHz OSC) ON or OFF depends on Software setting in run mode.
2. If TIMER clock source is selected as LIRC and LIRC is on.
3. If WDT clock source is selected as LIRC and LIRC is on.
Idle Mode
Power-Down Mode
HXT (4~20 MHz XTL)
ON
ON
Halt
HIRC (12/16 MHz OSC)
ON
ON
Halt
LIRC (10 kHz OSC)
ON
ON
ON/OFF1
PLL
ON
ON
Halt
LDO
ON
ON
ON
CPU
ON
Halt
Halt
HCLK/PCLK
ON
ON
Halt
SRAM retention
ON
ON
ON
FLASH
ON
ON
Halt
GPIO
ON
ON
Halt
PDMA
ON
ON
Halt
TIMER
ON
ON
ON/OFF2
PWM
ON
ON
Halt
WDT
ON
ON
ON/OFF3
WWDT
ON
ON
Halt
UART
ON
ON
Halt
PS/2
ON
ON
Halt
I2C
ON
ON
Halt
SPI
ON
ON
Halt
I2S
ON
ON
Halt
USB
ON
ON
Halt
ADC
ON
ON
Halt
NUC123 SERIES DATASHEET
Normal Mode
Table 6-3 Clocks in Power Modes
Wake-up sources in Power-down mode:
WDT, I²C, Timer, UART, BOD, GPIO and USB
After chip enters power down, the following wake-up sources can wake chip up to normal mode.
Wake-Up
Wake-Up Condition
Source
BOD
System Can Enter Power-Down Mode Again Condition*
Brown-Out Detector Interrupt After software writes 1 to clear BOD_INTF (BODCR[4]).
GPIO
GPIO Interrupt
After software write 1 to clear the ISRC[n] bit.
TIMER
Timer Interrupt
After software writes 1 to clear TWF (TISRx[1]) and TIF (TISRx[0]).
May 3, 2017
Page 37 of 99
Rev.2.04
NUC123
WDT
WDT Interrupt
After software writes 1 to clear WTWKF (WTCR[5]) (Write Protect).
UART
nCTS wake-up
After software writes 1 to clear DCTSF (UA_MSR[0]).
I2C
Addressing I2C device
USB
Remote Wake-up
After software writes 1 to clear WKUPIF (I2CWKUPSTS[0]).
After software writes 1 to clear BUS_STS (USBD_INTSTS[0]).
Table 6-4Table 6-4 lists the condition about how to enter Power-down mode again for each
peripheral.
*User needs to wait this condition before setting PWR_DOWN_EN (PWRCON[7]) and execute WFI to
enter Power-down mode.
Wake-Up
Wake-Up Condition
Source
BOD
System Can Enter Power-Down Mode Again Condition*
Brown-Out Detector Interrupt After software writes 1 to clear BOD_INTF (BODCR[4]).
GPIO
GPIO Interrupt
After software write 1 to clear the ISRC[n] bit.
TIMER
Timer Interrupt
After software writes 1 to clear TWF (TISRx[1]) and TIF (TISRx[0]).
WDT
WDT Interrupt
After software writes 1 to clear WTWKF (WTCR[5]) (Write Protect).
UART
nCTS wake-up
After software writes 1 to clear DCTSF (UA_MSR[0]).
2
2
IC
Addressing I C device
USB
Remote Wake-up
After software writes 1 to clear WKUPIF (I2CWKUPSTS[0]).
After software writes 1 to clear BUS_STS (USBD_INTSTS[0]).
Table 6-4 Condition of Entering Power-down Mode Again
NUC123 SERIES DATASHEET
May 3, 2017
Page 38 of 99
Rev.2.04
NUC123
6.2.4
System Power Distribution
In this chip, power distribution is divided into three segments:

Analog power from AVDD and AVSS provides the power for analog components
operation.

Digital power from VDD and VSS supplies the power to the internal regulator which
provides a fixed 1.8 V power for digital operation and I/O pins.

USB transceiver power from VBUS offers the power for operating the USB
transceiver.
The outputs of internal voltage regulators, LDO and USB_VDD33_CAP, require an external
capacitor which should be located close to the corresponding pin. Analog power (AVDD) should be
the same voltage level of the digital power (VDD). Figure 6-8 shows the power distribution of the
®
NuMicro NUC123 series.
10-bit
ADC
AVDD
Low
Voltage
Reset
SRAM
USB_D+
USB
Transceiver
NUC123
Power
Distribution
USB_VDD33_CAP
3.3V
1uF
Brownout
Detector
FLASH
USB_D-
5V to 3.3V LDO
USB_VBUS
Digital
Logic
22.1184 MHz
HIRC
Oscillator
10 kHz
LIRC
Oscillator
1.8V
VDD to 1.8V
LDO
VDD
IO cell
GPIO
VSS
POR50
POR18
PVSS
PLL
1uF
®
Figure 6-8 NuMicro NUC123 Power Distribution Diagram
May 3, 2017
Page 39 of 99
Rev.2.04
NUC123 SERIES DATASHEET
LDO_CAP
NUC123
6.2.5
System Memory Map
®
The NuMicro NUC123 series provides 4G-byte addressing space. The memory locations
assigned to each on-chip controllers are shown in the Table 6-5. The detailed register definition,
memory space, and programming detailed will be described in the following sections for each on®
chip peripherals. The NuMicro NUC123 Series only supports little-endian data format.
Address Space
Token
Controllers
0x0000_0000 – 0x0000_FFFF
FLASH_BA
FLASH Memory Space (64KB)
0x2000_0000 – 0x2000_4FFF
SRAM_BA
SRAM Memory Space (20KB)
Flash and SRAM Memory Space
AHB Controllers Space (0x5000_0000 – 0x501F_FFFF)
0x5000_0000 – 0x5000_01FF
GCR_BA
System Global Control Registers
0x5000_0200 – 0x5000_02FF
CLK_BA
Clock Control Registers
0x5000_0300 – 0x5000_03FF
INT_BA
Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF
GPIO_BA
GPIO Control Registers
0x5000_8000 – 0x5000_BFFF
PDMA_BA
Peripheral DMA Control Registers
0x5000_C000 – 0x5000_FFFF
FMC_BA
Flash Memory Control Registers
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)
NUC123 SERIES DATASHEET
0x4000_4000 – 0x4000_7FFF
WDT_BA
Watchdog/Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF
TMR01_BA
Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF
I2C0_BA
I2C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF
SPI0_BA
SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF
SPI1_BA
SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF
PWMA_BA
PWM0/1/2/3 Control Registers
0x4005_0000 – 0x4005_3FFF
UART0_BA
UART0 Control Registers
0x4006_0000 – 0x4006_3FFF
USBD_BA
USB 2.0 FS device Controller Registers
0x400E_0000 – 0x400E_FFFF
ADC_BA
Analog-Digital-Converter (ADC) Control Registers
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)
0x4010_0000 – 0x4010_3FFF
PS2_BA
PS/2 Interface Control Registers
0x4011_0000 – 0x4011_3FFF
TMR23_BA
Timer2/Timer3 Control Registers
0x4012_0000 – 0x4012_3FFF
I2C1_BA
I2C1 Interface Control Registers
0x4013_0000 – 0x4013_3FFF
SPI2_BA
SPI2 with master/slave function Control Registers
0x4015_0000 – 0x4015_3FFF
UART1_BA
UART1 Control Registers
0x401A_0000 – 0x401A_3FFF
I2S_BA
I2S Interface Control Registers
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)
0xE000_E010 – 0xE000_E0FF
May 3, 2017
SCS_BA
System Timer Control Registers
Page 40 of 99
Rev.2.04
NUC123
0xE000_E100 – 0xE000_ECFF
SCS_BA
External Interrupt Controller Control Registers
0xE000_ED00 – 0xE000_ED8F
SCS_BA
System Control Registers
Table 6-5 Address Space Assignments for On-Chip Controllers
NUC123 SERIES DATASHEET
May 3, 2017
Page 41 of 99
Rev.2.04
NUC123
6.2.6
System Timer (SysTick)
®
The Cortex -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.
When system timer is enabled, it will count down from the value in the SysTick Current Value
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value
Register (SYST_RVR) on the next clock cycle, and then decrement on subsequent clocks. When
the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on
reads.
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to
zero before enabling the feature. This ensures the timer will count from the SYST_RVR value
rather than an arbitrary value when it is enabled.
If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is
reloaded with this value. This mechanism can be used to disable the feature independently from
the timer enable bit.
®
®
For more detailed information, please refer to the “ARM Cortex -M0 Technical Reference
®
Manual” and “ARM v6-M Architecture Reference Manual”.
NUC123 SERIES DATASHEET
May 3, 2017
Page 42 of 99
Rev.2.04
NUC123
6.2.7
Nested Vectored Interrupt Controller (NVIC)
®
Cortex -M0 provides an interrupt controller as an integral part of the exception mode, named as
“Nested Vectored Interrupt Controller (NVIC)”. It is closely coupled to the processor kernel and
provides following features:

Nested and Vectored interrupt support

Automatic processor state saving and restoration

Dynamic priority changing

Reduced and deterministic interrupt latency
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in Handler
mode. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.
All of the interrupts and most of the system exceptions can be configured to different priority
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the
current running one’s priority. If the priority of the new interrupt is higher than the current one, the
new interrupt handler will override the current handler.
When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is
fetched from a vector table in memory. There is no need to determine which interrupt is accepted
and branch to the starting address of the correlated ISR by software. While the starting address is
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers
from stack and resume the normal execution. Thus it will take less and deterministic time to
process the interrupt request.
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the
overhead of states saving and restoration and therefore reduces delay time in switching to
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will
give priority to the higher one without delay penalty. Thus it advances the real-time capability.
®
May 3, 2017
Page 43 of 99
Rev.2.04
NUC123 SERIES DATASHEET
®
For more detailed information, please refer to the “ARM Cortex -M0 Technical Reference
®
Manual” and “ARM v6-M Architecture Reference Manual”.
NUC123
6.2.7.1
Exception Model and System Interrupt Map
®
Table 6-6 lists the exception model supported by the NuMicro NUC123 Series. Software can set
four levels of priority on some of these exceptions as well as on all interrupts. The highest userconfigurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.
Exception Name
Vector Number
Priority
Reset
1
-3
NMI
2
-2
Hard Fault
3
-1
Reserved
4 ~ 10
Reserved
SVCall
11
Configurable
Reserved
12 ~ 13
Reserved
PendSV
14
Configurable
SysTick
15
Configurable
Interrupt (IRQ0 ~ IRQ31)
16 ~ 47
Configurable
Table 6-6 Exception Model
Vector
Number
Interrupt Number
NUC123 SERIES DATASHEET
(Bit In Interrupt
Registers)
Interrupt Name
Source IP
0 ~ 15
-
-
-
16
0
BOD_OUT
Brown-out
17
1
WDT_INT
WDT
Watchdog/Window Watchdog Timer interrupt
18
2
EINT0
GPIO
External signal interrupt from PB.14 pin
19
3
EINT1
GPIO
External signal interrupt from PB.15 or PD.11 pin
20
4
GPAB_INT
GPIO
External signal interrupt from PA[15:0]/PB[13:0]
21
5
GPCDF_INT
GPIO
External interrupt from PC[15:0]/PD[15:0]/PF[3:0]
22
6
PWMA_INT
PWM0~3
PWM0, PWM1, PWM2 and PWM3 interrupt
23
7
Reserved
Reserved
Reserved
24
8
TMR0_INT
TMR0
Timer 0 interrupt
25
9
TMR1_INT
TMR1
Timer 1 interrupt
26
10
TMR2_INT
TMR2
Timer 2 interrupt
27
11
TMR3_INT
TMR3
Timer 3 interrupt
28
12
UART0_INT
UART0
UART0 interrupt
29
13
UART1_INT
UART1
UART1 interrupt
30
14
SPI0_INT
SPI0
May 3, 2017
Interrupt Description
System exceptions
Brown-out low voltage detected interrupt
SPI0 interrupt
Page 44 of 99
Rev.2.04
NUC123
31
15
SPI1_INT
SPI1
SPI1 interrupt
32
16
SPI2_INT
SPI2
SPI2 interrupt
33
17
Reserved
Reserved
2
Reserved
34
18
I2C0_INT
I C0
I2C0 interrupt
35
19
I2C1_INT
I2C1
I2C1 interrupt
36
20
Reserved
Reserved
Reserved
37
21
Reserved
Reserved
Reserved
38
22
Reserved
Reserved
Reserved
39
23
USB_INT
USBD
USB 2.0 FS Device interrupt
40
24
PS2_INT
PS/2
PS/2 interrupt
41
25
Reserved
Reserved
42
26
PDMA_INT
PDMA
43
27
I2S_INT
I2S
44
28
PWRWU_INT
CLKC
Clock controller interrupt for chip wake-up from Powerdown state
45
29
ADC_INT
ADC
ADC interrupt
46
30
Reserved
Reserved
Reserved
47
31
Reserved
Reserved
Reserved
Reserved
PDMA interrupt
I2S interrupt
Table 6-7 System Interrupt Map
NUC123 SERIES DATASHEET
May 3, 2017
Page 45 of 99
Rev.2.04
NUC123
6.2.7.2
Vector Table
When any interrupts is accepted, the processor will automatically fetch the starting address of the
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base
address is fixed at 0x00000000. The vector table contains the initialization value for the stack
pointer on reset, and the entry point addresses for all exception handlers. The vector number on
previous page defines the order of entries in the vector table associated with exception handler
entry as illustrated in previous section.
Vector Table Word Offset
Description
SP_main – The Main stack pointer
0
Vector Number
Exception Entry Pointer using that Vector Number
Table 6-8 Vector Table Format
6.2.7.3
Operation Description
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt SetEnable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write1-to-clear policy, both registers reading back the current enabled state of the corresponding
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become
Pending; however, the interrupt will not activate. If an interrupt is Active when it is disabled, it
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit
prevents new activations of the associated interrupt.
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers
reading back the current pended state of the corresponding interrupts. The Clear-Pending
Register has no effect on the execution status of an Active interrupt.
NUC123 SERIES DATASHEET
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register
supporting four interrupts).
The general registers associated with the NVIC are all accessible from a block of memory in the
System Control Space and will be described in next section.
May 3, 2017
Page 46 of 99
Rev.2.04
NUC123
6.3
Clock Controller
6.3.1
Overview
The clock controller generates the clocks for the whole chip, including system clocks and all
peripheral clocks. The clock controller also implements the power control function with the
individually clock ON/OFF control, clock source selection and clock divider. The chip enters
®
Power-down mode when Cortex -M0 core executes the WFI instruction only if the
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external
high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the
overall system power consumption. The Figure 6-9 and Figure 6-10 show the clock generator and
the overview of the clock source control.
The clock generator consists of 4 clock sources as listed below:

4~24 MHz external high speed crystal oscillator (HXT)

Programmable PLL output clock frequency(PLL FOUT), PLL source can be from 4~24
MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed
RC oscillator (HIRC))

22.1184 MHz internal high speed RC oscillator (HIRC)

10 kHz internal low speed RC oscillator (LIRC)
Clock Source
Clock Stable Count Value
HXT
4096 HXT clock
PLL
6144 PLL source
(PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)
HIRC
256 HIRC clock
LIRC
1 LIRC
Table 6-9 Clock Stable Count Value Table
May 3, 2017
Page 47 of 99
Rev.2.04
NUC123 SERIES DATASHEET
Each of these clock sources has certain stable time to wait for clock operating at stable
frequency. When clock source is enabled, a stable counter start counting and correlated clock
stable index (OSC22M_STB(CLKSTATUS[4]), OSC10K_STB(CLKSTATUS[3]),
PLL_STB(CLKSTATUS[2]) and XTL12M_STB(CLKSTATUS[0])) are set to 1 after stable counter
value reach a define value asshown in Table 6-9. System and peripheral can use the clock as its
operating clock only when correlate clock stable index is set to 1. The clock stable index will auto
clear when user disables the clock source (OSC10K_EN(PWRCON[3]),
OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the
clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock
stable counter will re-counting after chip wake-up if correlate clock is enabled.
NUC123
XTL12M_EN (PWRCON[0])
XT1_OUT
HXT
4~24 MHz
HXT
PLL_SRC (PLLCON[19])
XT1_IN
0
OSC22M_EN (PWRCON[2])
PLL
PLL FOUT
1
22.1184 MHz
HIRC
HIRC
OSC10K_EN (PWRCON[3])
LIRC
10 kHz
LIRC
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
LIRC = 10 kHz internal low speed RC oscillator
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on
and stable.
Figure 6-9 Clock Generator Global View Diagram
NUC123 SERIES DATASHEET
May 3, 2017
Page 48 of 99
Rev.2.04
NUC123
LIRC
(10 kHz)
HIRC
111
LIRC
010
1/2
HXT
CPUCLK
011
PLLFOUT
HIRC
(22.1184 MHz)
1/(HCLK_N+1)
HCLK
001
000
1/(APBDIV+1)
PCLK
HIRC
HXT
0
PLL
111
LIRC
PLLFOUT
TMx, x = 0, 1, 2
HCLK
PLLCON[19]
HXT
HIRC
HCLK
1/2
111
1/2
011
1/2
010
HXT
HCLK
HXT
100
TMR 0
011
TMR 1
010
TMR 2
000
TMR 3
LIRC
CLKSEL1[22:20]
CLKSEL1[18:16]
CLKSEL1[14:12]
CLKSEL1[10: 8]
LIRC
000
111
HIRC
011
HCLK
PWM 2-3
010
HXT
PWM 0-1
000
{CLKSEL2[9], CLKSEL1[31:30]}
11
HIRC
{CLKSEL2[8], CLKSEL1[29:28]}
10
00
PS2
FMC
FDIV
HIRC
11
HCLK
CLKSEL2[3:2]
BOD
SysTick
CLKSEL0[5:3]
HIRC
APB
I2C 0-1
CLKSEL0[2:0]
1
AHB
PDMA
HXT
(4~12 MHz)
HIRC
CPU
PLLFOUT
HXT
10
I2S
01
ADC
1/(USB_N+1)
USB
NUC123 SERIES DATASHEET
00
1/(ADC_N+1)
CLKSEL2[1:0]
CLKSEL1[3:2]
PLLFOUT
LIRC
HCLK
11
WDT
1/2048
10
LIRC
CLKSEL1[1:0]
HCLK
HIRC
PLLFOUT
HXT
11
11
WWDT
1/2048
10
CLKSEL2[17:16]
01
1/(UART_N+1)
00
HCLK
PLLFOUT
CLKSEL1[25:24]
1
0
CLKSEL1[4]
UART0/1
SPI0
SPI1
SPI2
CLKSEL1[5]
CLKSEL1[6]
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and
stable.
Figure 6-10 Clock Generator Global View Diagram
May 3, 2017
Page 49 of 99
Rev.2.04
NUC123
6.3.2
System Clock and SysTick Clock
The system clock has 5 clock sources which were generated from clock generator block. The
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is
shown in Figure 6-11.
HIRC (22.1184 MHz)
LIRC (10 KHz)
PLLFOUT
111
011
010
1/2
HXT (4~24 MHz)
001
CPUCLK
CPU
1/(HCLK_N+1)
HCLK
AHB
1/(APBDIV+1)
PCLK
APB
000
CPU in Power Down Mode
HCLK_S (CLKSEL0[2:0])
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.
Figure 6-11 System Clock Block Diagram
®
The clock source of SysTick in Cortex -M0 core can use CPU clock or external clock
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block
diagram is shown in Figure 6-12.
HIRC (22.1184 MHz)
HCLK
1/2
111
1/2
011
1/2
010
HXT (4~24 MHz)
STCLK
000
NUC123 SERIES DATASHEET
STCLK_S (CLKSEL0[5:3])
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on
and stable.
Figure 6-12 SysTick Clock Control Block Diagram
6.3.3
Peripherals Clock
The peripherals clock had different clock source switch setting depending on different peripherals.
Please refer to the CLKSEL1 and CLKSEL2 register description in TRM.
6.3.4
Power-down Mode Clock
When chip enters into Power-down mode, system clocks, some clock sources, and some
peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in
Power-down mode.
The clocks kept active are listed below:

Clock Generator
–
May 3, 2017
Internal 10 kHz low speed oscillator clock
Page 50 of 99
Rev.2.04
NUC123

6.3.5
WDT/Timer/PWM Peripherals Clock (when 10 kHz intertnal low speed RC oscillator
(LIRC) is adopted as clock source)
Frequency Divider Output
This device is equipped with a power-of-2 frequency divider which is composed by16 chained
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided
1
16
clocks with the frequency from Fin/2 to Fin/2 where Fin is input clock frequency to the clock
divider.
(N+1)
The output formula is Fout = Fin/2
, where Fin is the input clock frequency, Fout is the clock
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0
to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low
state and stay in low state.
HIRC (22.1184 MHz)
HCLK
11
10
HXT (4~24 MHz)
FRQDIV_CLK
00
FDIV_EN (APBCLK[6])
FRQDIV_S (CLKSEL2[3:2])
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on
and stable.
Figure 6-13 Clock Source of Frequency Divider
Enable
divide-by-2 counter
FRQDIV_CLK
1/2
16 chained
divide-by-2 counter
1/22
1/23
…...
1/215 1/216
0000
0001
16 to 1
MUX
:
:
1110
1111
CLKO
FSEL
(FRQDIV[3:0])
Figure 6-14 Block Diagram of Frequency Divider
May 3, 2017
Page 51 of 99
Rev.2.04
NUC123 SERIES DATASHEET
DIVIDER_EN
(FRQDIV[4])
NUC123
6.4
Flash Memory Controller (FMC)
6.4.1
Overview
®
The NuMicro NUC123 series is equipped with 68/36 Kbytes on-chip embedded flash for
application program memory (APROM) and Data Flash, and 4 Kbytes for ISP loader program
memory (LDROM) that could be programmed boot loader to update APROM and Data Flash
through In-System-Programming (ISP) procedure. The ISP function enables user to update
®
embedded flash when chip is soldered on PCB. After chip is powered on, Cortex -M0 CPU
fetches code from APROM or LDROM decided by boot select (CBS (Config0[7:6]). User can also
select to enable or disable In-Application-Programming (IAP) function through boot select (CBS
(Config0[7:6]). Also, the NUC123 provides Data Flash for user, to store some application
dependent data before chip is powered off.
6.4.2
Features

Runs up to 72 MHz and optional up to 50MHz with zero wait state for continuous address
read access

Supports 68/36 KB application program ROM (APROM)

Supports 4KB loader ROM (LDROM)

Supports Data Flash with configurable memory size

Supports 8 bytes User Configuration block to control system initiation

Supports 512 bytes page erase for all embedded flash

Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update
embedded flash memory
NUC123 SERIES DATASHEET
May 3, 2017
Page 52 of 99
Rev.2.04
NUC123
6.5
General Purpose I/O (GPIO)
6.5.1
Overview
®
The NuMicro NUC123 series has up to 47 General Purpose I/O pins shared with other function
pins depending on the chip configuration. These 47 pins are arranged in 5 ports named GPIOA,
GPIOB, GPIOC, GPIOD and GPIOF. GPIOA has 6 pins on PA[15:10]. GPIOB has 15 pins on
PB[15:12] and PB[10:0]. GPIOC has 12 pins on PC[13:8] and PC[5:0]. GPIOD has 10 pins on
PD[11:8] and PD[5:0]. GPIOF has 4 pins on PF[3:0]. Each one of the 47 pins is independent and
has the corresponding register bits to control the pin mode function and data.
The I/O type of each of I/O pins can be configured by software individually as input, output, opendrain or quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are depending
on CIOINI (Config0[10]) (NUC123xxxAEx Only). Each I/O pin has a very weakly individual pull-up
resistor which is about 110 K~300 K for VDD is from 5.0 V to 2.5 V.
6.5.2

Features
Four I/O modes:
–
Quasi bi-direction
–
Push-Pull output
–
Open-Drain output
–
Input only with high impendence

TTL/Schmitt trigger input selectable by GPx_TYPE[15:0] in GPx_MFP[31:16]

I/O pin can be configured as interrupt source with edge/level setting

Supports High Driver and High Sink I/O mode

Configurable default I/O mode of all pins after reset by CIOINI (Config0[10]) setting
(NUC123xxxAEx Only)
If CIOINI (Config[10]) is 0, all GPIO pins in input tri-state mode after chip reset
–
If CIOINI (Config[10]) is 1, all GPIO pins in Quasi-bidirectional mode after chip reset

I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode

Enabling the pin interrupt function will also enable the wake-up function
May 3, 2017
Page 53 of 99
Rev.2.04
NUC123 SERIES DATASHEET
–
NUC123
6.6
PDMA Controller (PDMA)
6.6.1
Overview
®
The NuMicro NUC123 contains a six-channel peripheral direct memory access (PDMA)
controller and a cyclic redundancy check (CRC) generator.
The PDMA can transfer data to and from memory or transfer data to and from APB devices. For
PDMA channel (PDMA CH0~CH5), there is one-word buffer as transfer buffer between the
Peripherals APB devices and Memory. The CPU can recognize the completion of a PDMA
operation by software polling or when it receives an internal PDMA interrupt. The PDMA controller
can increase source or destination address or fixed them as well.
The PDMA controller contains a cyclic redundancy check (CRC) generator that can perform CRC
calculation with programmable polynomial settings. The CRC engine supports CPU PIO mode
and PDMA transfer mode.
6.6.2
Features

Supports six PDMA channels and one CRC channel; each PDMA channel can support a
unidirectional transfer

AMBA AHB master/slave interface compatible, for data transfer and register read/write

Hardware round robin priority scheme. PDMA channel 0 has the highest priority

PDMA
NUC123 SERIES DATASHEET

–
Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer
–
Supports word/half-word/byte transfer data width from/to peripheral
–
Supports address direction: increment, fixed
–
Supports software, SPI, UART, ADC, PWM and I S request
2
Cyclic Redundancy Check (CRC)
–
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32




CRC-CCITT: X16 + X12 + X5 + 1
CRC-8: X8 + X2 + X + 1
CRC-16: X16 + X15 + X2 + 1
–
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1
Programmable seed value
–
Supports programmable order reverse setting for input data and CRC checksum
–
Supports programmable 1’s complement setting for input data and CRC checksum.
–
Supports CPU PIO mode or PDMA transfer mode
–
Supports 8/16/32-bit of data width in CPU PIO mode



–
May 3, 2017
8-bit write mode: 1-AHB clock cycle operation
16-bit write mode: 2-AHB clock cycle operation
32-bit write mode: 4-AHB clock cycle operation
Supports byte alignment transfer length in CRC PDMA mode
Page 54 of 99
Rev.2.04
NUC123
6.7
Timer Controller (TMR)
6.7.1
Overview
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily
implement a timer control for applications. The timer can perform functions, such as frequency
measurement, delay timing, clock generation, and event counting by external input pins, and
interval measurement by external capture pins.
6.7.2
Features

Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter

Independent clock source for each timer

Provides one-shot, periodic, toggle-output and continuous counting operation modes

24-bit up counter value is readable through TDR (TDR[23:0])

Supports event counting function

24-bit capture value is readable through TCAP (TCAP[23:0])

Supports external capture pin event for interval measurement

Supports external capture pin event to reset 24-bit up counter

Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated
NUC123 SERIES DATASHEET
May 3, 2017
Page 55 of 99
Rev.2.04
NUC123
6.8
PWM Generator and Capture Timer (PWM)
6.8.1
Overview
®
The NuMicro NUC123 series has 1 set of PWM group supporting 1 set of PWM generators
which can be configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary
PWM pairs, (PWM0, PWM1), (PWM2, PWM3) with two programmable dead-zone generators.
PWM output function can be alternated to capture function.
Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,
1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for
PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator.
The PWM generators provide four independent PWM interrupt flags which are set by hardware
when the corresponding PWM period down counter reaches zero.
Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM
interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM
cycle signal or auto-reload mode to output PWM waveform continuously. PWM can be used to
trigger ADC when operation in center-aligned mode.
6.8.2
Features
PWM function:
NUC123 SERIES DATASHEET

Up to 1 PWM group (PWMA) to support 4 PWM channels or 2 PWM paired channels

Supports 8-bit prescaler from 1 to 255

Up to 16-bit resolution PWM timer

PWM timer supports down and up-down operation type

One-shot or Auto-reload mode PWM

PWM Interrupt request synchronized with PWM period or duty

Supports dead-zone generator with 8-bit resolution for 2 PWM paired channels

Supports trigger ADC on center point in center-aligned mode
Capture function:

Supports 4 Capture input channels shared with 4 PWM output channels

Supports rising or falling capture condition

Supports rising or falling capture interrupt

Supports PDMA transfer function for each channel
May 3, 2017
Page 56 of 99
Rev.2.04
NUC123
6.9
Watchdog Timer (WDT)
6.9.1
Overview
The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an
unknown state. This prevents system from hanging for an infinite period of time. Besides, this
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.
6.9.2
Features

18-bit free running up counter for WDT time-out interval

Selectable time-out interval (2 ~ 2 ) and the time-out interval is 1.6 ms ~ 26.214 s if
WDT_CLK = 10 kHz.

System kept in reset state for a period of (1 / WDT_CLK) * 63

Supports selectable WDT reset delay period, including 1026、130、18 or 3 WDT_CLK reset
delay period

Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in
Config0 register

Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz.
4
18
NUC123 SERIES DATASHEET
May 3, 2017
Page 57 of 99
Rev.2.04
NUC123
6.10 Window Watchdog Timer (WWDT)
6.10.1 Overview
The Window Watchdog Timer is used to perform a system reset within a specified window period to
prevent software run to uncontrollable status by any unpredictable condition. The 6-bit down counter
value will stop to update when chip is in Idle or Power-down mode.
6.10.2 Features

6-bit down counter value WWDTCVAL (WWDTCVR[5:0]) and 6-bit compare value WINCMP
(WWDTCR[21:16]) to make the WWDT time-out window period flexible

Supports 4-bit value PERIODSEL (WWDTCR[11:8]) to programmable maximum 11-bit
prescale counter period of WWDT counter
NUC123 SERIES DATASHEET
May 3, 2017
Page 58 of 99
Rev.2.04
NUC123
6.11 UART Interface Controller (UART)
6.11.1 Overview
®
The NuMicro NUC123 series provides two channels of Universal Asynchronous Receiver/
Transmitters (UART). UART Controller performs Normal Speed UART and supports flow control
function. The UART Controller performs a serial-to-parallel conversion on data received from the
peripheral and a parallel-to-serial conversion on data transmitted from the CPU. Each UART
Controller channel supports six types of interrupts. The UART controller also supports IrDA SIR
and RS-485.
6.11.2 Features
Full duplex, asynchronous communications

Separates receive / transmit 16/16 bytes entry FIFO for data payloads

Supports hardware auto flow control/flow control

Programmable receiver buffer trigger level

Supports programmable baud-rate generator for each channel individually

Supports nCTS wake-up function

Supports 8-bit receiver buffer time-out detection function

UART0/UART1 served by the DMA controller

Programmable transmitting data delay time between the last stop and the next start bit by
setting DLY (UA_TOR [15:8])

Supports break error, frame error, parity error and receive/transmit buffer overflow detect
function

Fully programmable serial-interface characteristics

–
Programmable number of data bit, 5-, 6-, 7-, 8-bit character
–
Programmable parity bit, even, odd, no parity or stick parity bit generation and
detection
–
Programmable stop bit, 1, 1.5, or 2 stop bit generation
Supports IrDA SIR function mode
–

Supports for 3/16-bit duration for normal mode
Supports RS-485 function mode.
–
Supports RS-485 9-bit mode
–
Supports hardware or software direct enable to program nRTS pin to control RS-485
transmission direction
May 3, 2017
Page 59 of 99
Rev.2.04
NUC123 SERIES DATASHEET

NUC123
6.12 PS/2 Device Controller (PS2D)
6.12.1 Overview
PS/2 device controller provides basic timing control for PS/2 communication. All communication
between the device and the host is managed through the CLK and DATA pins. Unlike PS/2
keyboard or mouse device controller, the received/transmit code needs to be translated as
meaningful code by firmware. The device controller generates the CLK signal after receiving a
request to send, but host has ultimate control over communication. DATA sent from the host to
the device is read on the rising edge and DATA sent from device to the host is change after rising
edge. A 16 bytes FIFO is used to reduce CPU intervention. Software can select 1 to 16 bytes for
a continuous transmission.
6.12.2 Features

Host communication inhibit and request to send detection

Reception frame error detection

Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention

Double buffer for data reception

S/W override bus
NUC123 SERIES DATASHEET
May 3, 2017
Page 60 of 99
Rev.2.04
NUC123
6.13 I2C Serial Interface Controller (Master/Slave) (I2C)
6.13.1 Overview
2
I C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data
2
exchange between devices. The I C standard is a true multi-master bus including collision
detection and arbitration that prevents data corruption if two or more masters attempt to control
the bus simultaneously.
2
There are two sets of I C controllers which support Power-down wake-up function.
6.13.2 Features
2

Supports up to two I C ports

Master/Slave mode

Bidirectional data transfer between masters and slaves

Multi-master bus (no central master)

Arbitration between simultaneously transmitting masters without corruption of serial data on
the bus

Serial clock synchronization allow devices with different bit rates to communicate via one
serial bus

Built-in 14-bit time-out counter requesting the I C interrupt if the I C bus hangs up and timerout counter overflows.

Programmable clocks allow for versatile rate control

Supports 7-bit addressing mode

Supports multiple address recognition ( four slave address with mask option)

Supports Power-down wake-up function
2
2
NUC123 SERIES DATASHEET
May 3, 2017
Page 61 of 99
Rev.2.04
NUC123
6.14 Serial Peripheral Interface (SPI)
6.14.1 Overview
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and
allows full duplex transfer. Devices communicate in Master/Slave mode with 4-wire bi-direction
®
interface. This NuMicro NUC123 series contains up to three sets of SPI controllers performing a
serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial
conversion on data transmitted to a peripheral device. Each set of SPI controller can be
configured as a Master or a Slave device.
This controller supports variable serial clock function for special application and it also supports 2bit Transfer mode. The controller also supports PDMA function to access the data buffer and also
supports Dual I/O transfer mode.
6.14.2 Features
NUC123 SERIES DATASHEET

Up to three sets of SPI controllers

Supports Master or Slave mode operation

Supports 2-bit Transfer mode

Supports Dual I/O transfer mode

Configurable bit length of a transfer word from 8 to 32-bit

Provide separate 8-layer depth transmit and receive FIFO buffers

Supports MSB first or LSB first transfer sequence

Up to two slave select lines in Master mode

Supports Byte Reorder function

Supports configurable suspend interval in Master mode

Variable output serial clock frequency in Master mode

Supports PDMA transfer

Supports 3-Wire, no slave select signal, bi-direction interface
May 3, 2017
Page 62 of 99
Rev.2.04
NUC123
6.15 I2S Controller (I2S)
6.15.1 Overview
The I2S controller consists of IIS protocol to interface with external audio CODEC. Two 8 word
depth FIFO buffers for read path and write path respectively and is capable of handling
8/16/24/32 bits word sizes. PDMA controller handles the data movement between FIFO and
memory.
6.15.2 Features

Operated as either Master or Slave

Capable of handling 8, 16, 24 and 32 bits word

Supports monaural and stereo audio data

Supports four data format:
2
–
I S data format
–
MSB justified data format
–
PCM mode A
–
PCM mode B

Provides two 8 word depth FIFO buffers, one for transmitting and the other for receiving

Generates interrupt requests when buffer levels cross a programmable boundary

Supports PDMA transfer
NUC123 SERIES DATASHEET
May 3, 2017
Page 63 of 99
Rev.2.04
NUC123
6.16 USB Device Controller (USB)
6.16.1 Overview
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is
compliant with USB 2.0 full-speed device specification and supports Control/Bulk/Interrupt/
Isochronous transfer types.
In this device controller, there are two main interfaces: APB bus and USB bus which comes from
the USB PHY transceiver. For the APB bus, the CPU can program control registers through it.
There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User
needs to set the effective starting address of SRAM for each endpoint buffer through buffer
segmentation register (BUFSEGx).
There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are
implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data
sequential synchronization, endpoint state control, current start address, transaction status, and
data buffer status for each endpoint.
There are four different interrupt events in this controller. They are the wake-up event, device
plug-in or plug-out event, USB events, such as IN ACK, OUT ACK, and BUS events, such as
suspend and resume, etc. Any event will cause an interrupt, and user just needs to check the
related event flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of
interrupt occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to
acknowledge what kind of event occurring in this endpoint.
A software-disable function is also supported for this USB controller. It is used to simulate the
disconnection of this device from the host. If user enables DRVSE0 bit (USB_DRVSE0), the USB
controller will force the output of USB_D+ and USB_D- to level low and its function is disabled.
After disable the DRVSE0 bit, host will enumerate this USB device again.
NUC123 SERIES DATASHEET
For more information on the Universal Serial Bus, please refer to Universal Serial Bus
Specification Revision 1.1.
6.16.2 Features

Compliant with USB 2.0 Full-Speed specification

Provides 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB and
BUS)

Supports Control/Bulk/Interrupt/Isochronous transfer types

Supports suspend function when no bus activity existing for 3 ms

Provides 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and
maximum 512 bytes buffer size

Provides remote wake-up capability
May 3, 2017
Page 64 of 99
Rev.2.04
NUC123
6.17 Analog-to-Digital Converter (ADC)
6.17.1 Overview
®
NuMicro NUC123 Series contains one 10-bit successive approximation analog-to-digital
converters (SAR A/D converter) with 8 input channels. The A/D converter supports three
operation modes: single, single-cycle scan and continuous scan mode. The A/D converters can
be started by software, PWM center-aligned trigger and external STADC pin.
6.17.2 Features

Conversion range : 0 to AVDD

10-bit resolution and 8-bit accuracy is guaranteed

Up to 8 single-end analog input channels

Maximum ADC clock frequency as 6 MHz (NUC123xxxANx Only)

Maximum ADC clock frequency as 3 MHz (NUC123xxxAEx Only)

Up to 166 kSPS (Samples Per Second) conversion rate (NUC123xxxANx Only)

Up to 200 kSPS (Samples Per Second) conversion rate (NUC123xxxAEx Only)

Three operating modes

–
Single mode: A/D conversion is performed one time on a specified channel
–
Single-cycle Scan mode: A/D conversion is performed one cycle on all specified
channels with the sequence from the lowest numbered channel to the highest
numbered channel
–
Continuous Scan mode: A/D converter continuously performs Single-cycle scan mode
until software stops A/D conversion
A/D conversion started by:
Software writes 1 to ADST bit
–
External pin STADC (PB.8)
–
PWM center-aligned trigger

Supports 8 data registers to stored conversion result with valid and overrun indicators

Supports 2 sets of digital comparators to monitor conversion result of specified channel and
to generate an interrupt when conversion result matches comparison condition

Channel 7 supports 2 input sources: external analog voltage and internal band-gap voltage

Supports PDMA transfer
May 3, 2017
Page 65 of 99
Rev.2.04
NUC123 SERIES DATASHEET
–
NUC123
7
ELECTRICAL CHARACTERISTICS (NUC123XXXANX)
7.1
Absolute Maximum Ratings
Symbol
VDD  VSS
VIN
1/tCLCL
Parameter
DC Power Supply
Input Voltage
Oscillator Frequency
Min
Max
Unit
-0.3
+7.0
V
VSS - 0.3
VDD + 0.3
V
4
24
MHz
TA
Operating Temperature
-40
+85
TST
Storage Temperature
-55
+150
℃
IDD
Maximum Current into VDD
-
120
mA
ISS
Maximum Current out of VSS
120
mA
Maximum Current sunk by a I/O pin
35
mA
Maximum Current sourced by a I/O pin
35
mA
Maximum Current sunk by total I/O pins
100
mA
Maximum Current sourced by total I/O pins
100
mA
IIO
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of
the device.
NUC123 SERIES DATASHEET
May 3, 2017
Page 66 of 99
Rev.2.04
NUC123
7.2
DC Electrical Characteristics
(VDD -VSS = 5.5 V, TA = 25C)
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
5.5
V
Operation voltage
VDD
2.5
VDD rise rate to ensure internal
operation correctly
VRISE
0.05
V/ms
-0.3
V
Power ground
VSS
AVSS
LDO output voltage
VLDO
1.62
1.8
Analog operating voltage
AVDD
0
1.98
VDD = 2.5V ~ 5.5V up to 72 MHz
V
VDD > 2.5V
VDD
V
When system uses analog function,
please refer to chapter 7.4 for
corresponding analog operating voltage
IDD1
36
mA
IDD2
21
mA
IDD3
35
mA
IDD4
20
mA
IDD5
7
mA
IDD6
4
mA
IDD7
6
mA
VDD = 5.5V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 5.5V at 72 MHz,
Operating current
All IP Disabled and PLL Enabled, XTAL =
12 MHz
Normal Run mode
at 72 MHz
VDD = 3V at 72 MHz,
All IP and PLL enabled,
XTAL = 12 MHz
All IP Disabled and PLL Enabled, XTAL =
12 MHz
VDD = 5.5V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 5.5V at 12 MHz,
Operating current
Normal Run mode
at 12 MHz
All IP and PLL Disabled,
XTAL = 12 MHz
VDD = 3V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 3V at 12 MHz,
IDD8
3
mA
All IP and PLL Disabled,
XTAL = 12 MHz
Operating current
Normal Run mode
May 3, 2017
VDD = 5V at 4 MHz,
IDD9
4
Page 67 of 99
mA
All IP Enabled and PLL Disabled, XTAL =
4 MHz
Rev.2.04
NUC123 SERIES DATASHEET
VDD = 3V at 72 MHz,
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
at 4 MHz
VDD = 5V at 4 MHz,
IDD10
3
mA
IDD11
4
mA
IDD12
2
mA
IIDLE1
29
mA
IIDLE2
14
mA
IIDLE3
28
mA
IIDLE4
13
mA
IIDLE5
6
mA
IIDLE6
3
mA
IIDLE7
5
mA
IIDLE8
2
mA
IIDLE9
3
mA
IIDLE10
2
mA
IIDLE11
2
mA
IIDLE12
1
mA
All IP and PLL Disabled,
XTAL = 4 MHz
VDD = 3V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 3V at 4 MHz,
All IP and PLL Disabled,
XTAL = 4 MHz
VDD = 5.5V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 5.5V at 72 MHz,
Operating current
All IP Disabled and PLL Enabled, XTAL =
12 MHz
Idle mode
at 72 MHz
VDD = 3V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 3V at 72 MHz,
All IP Disabled and PLL Enabled,
XTAL=12 MHz
VDD = 5.5V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
NUC123 SERIES DATASHEET
VDD = 5.5V at 12 MHz,
Operating current
All IP and PLL Disabled,
XTAL = 12 MHz
Idle mode
at 12 MHz
VDD = 3V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 3 V at 12 MHz,
All IP and PLL Disabled,
XTAL = 12 MHz
VDD = 5V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 5V at 4 MHz,
Operating current
All IP and PLL Disabled,
XTAL = 4 MHz
Idle mode
at 4 MHz
VDD = 3V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 3V at 4 MHz,
May 3, 2017
Page 68 of 99
All IP and PLL Disabled,
XTAL = 4 MHz
Rev.2.04
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VDD = 5.5V at 10 kHz,
IIDLE5
131
uA
IIDLE6
129
uA
IIDLE7
125
uA
IIDLE8
124
uA
IPWD1
12
A
IPWD2
9
A
Input Current PA, PB, PC, PD, PE,
PF (Quasi-bidirectional mode)
IIN1
-64
A
VDD = 5.5V, VIN = 0V or VIN = VDD
Input Current at /RESET[1]
IIN2
-55
-45
-30
A
VDD = 3.3V, VIN = 0.45V
Input Leakage Current PA, PB, PC,
PD, PE, PF
ILK
-2
-
+2
A
VDD = 5.5V, 0 < VIN < VDD
Logic 1 to 0 Transition Current
PA~PF (Quasi-bidirectional mode)
ITL [3]
-650
-
-200
A
VDD = 5.5V, VIN < 2.0V
Input Low Voltage PA, PB, PC, PD,
PE, PF (TTL input)
-0.3
-
0.8
VIL1
Input High Voltage PA, PB, PC,
PD, PE, PF (TTL input)
VIH1
Input Low Voltage PA, PB, PC, PD,
PE, PF (Schmitt input)
All IP Enabled and PLL Disabled, LIRC
10 kHz Enabled
VDD = 5.5V at 10 kHz,
Operating current
All IP and PLL Disabled,
LIRC 10 kHz Enabled
Idle mode
at 10 kHz
VDD = 3V at 10 kHz,
All IP Enabled and PLL Disabled, LIRC
10 kHz Enabled
VDD = 3 V at 10 kHz,
Standby current
Power-down mode
-
0.6
2.0
-
VDD +0.2
VDD = 5.5V
V
-0.5
-
0.35 VDD
V
Input High Voltage PA, PB, PC,
PD, PE, PF (Schmitt input)
VIH2
0.65 VDD
-
VDD+0.5
V
Hysteresis voltage of PA~PE
(Schmitt input)
VHY
Input Low Voltage XT1[*2]
VIL3
(Schmitt input), /RESET
May 3, 2017
when BOV function Disabled
VDD = 2.5V
VIL2
Positive going threshold
VDD = 3.3V, No load
NUC123 SERIES DATASHEET
-0.3
VDD +0.2
(Schmitt input), /RESET
when BOV function Disabled
VDD = 4.5V
-
Negative going threshold
VDD = 5.5V, No load
V
1.5
Input High Voltage XT1[*2]
All IP and PLL Disabled,
LIRC 10 kHz Enabled
0.2 VDD
0
-
VDD = 3.0V
V
0.8
VDD = 4.5V
V
0
-
0.4
VDD = 3.0V
3.5
-
VDD +0.2
2.4
-
VDD +0.2
VILS
-0.5
-
0.2 VDD
V
VIHS
0.6 VDD
-
VDD+0.5
V
V
VDD = 5.5V
VIH3
Page 69 of 99
VDD = 3.0V
Rev.2.04
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ISR11
-300
-370
-450
A
VDD = 4.5V, VS = 2.4V
ISR12
-50
-70
-90
A
VDD = 2.7V, VS = 2.2V
ISR12
-40
-60
-80
A
VDD = 2.5V, VS = 2.0V
ISR21
-20
-24
-28
mA
VDD = 4.5V, VS = 2.4V
ISR22
-4
-6
-8
mA
VDD = 2.7V, VS = 2.2V
ISR22
-3
-5
-7
mA
VDD = 2.5V, VS = 2.0V
ISK1
10
16
20
mA
VDD = 4.5V, VS = 0.45V
ISK1
7
10
13
mA
VDD = 2.7V, VS = 0.45V
ISK1
6
9
12
mA
VDD = 2.5V, VS = 0.45V
Brown-out voltage with
BOV_VL [1:0] =00b
VBO2.2
2.1
2.2
2.3
V
Brown-out voltage with
BOV_VL [1:0] =01b
VBO2.7
2.6
2.7
2.8
V
Brown-out voltage with
BOV_VL [1:0] =10b
VBO3.8
3.7
3.8
3.9
V
Brown-out voltage with
BOV_VL [1:0] =11b
VBO4.5
4.4
4.5
4.6
V
VBH
30
-
150
mV
Source Current PA, PB, PC, PD,
PE, PF (Quasi-bidirectional Mode)
Source Current PA, PB, PC, PD,
PE, PF (Push-pull Mode)
Sink Current PA, PB, PC, PD, PE,
PF (Quasi-bidirectional and Pushpull Mode)
Hysteresis range of BOD voltage
VDD = 2.5V - 5.5V
Notes:
1. nRESET pin is a Schmitt trigger input.
NUC123 SERIES DATASHEET
2. Crystal Input is a CMOS input.
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2V.
May 3, 2017
Page 70 of 99
Rev.2.04
NUC123
7.3
AC Electrical Characteristics
7.3.1
External 4~24 MHz High Speed Oscillator
tCLCL
tCLCH
0.7 VDD
90%
tCLCX
10%
0.3 VDD
tCHCL
tCHCX
Note: Duty cycle is 50%.
SYMBOL
PARAMETER
tCHCX
MIN
TYP
MAX
UNIT
Clock High Time
10
-
-
nS
tCLCX
Clock Low Time
10
-
-
nS
tCLCH
Clock Rise Time
2
-
15
nS
tCHCL
Clock Fall Time
2
-
15
nS
CONDITIONS
MIN
TYP
MAX
UNIT
External crystal
4
12
24
MHz
Temperature
-
-40
-
85
℃
VDD
-
2.5
5
5.5
V
7.3.2
CONDITIONS
External 4~24 MHz High Speed Crystal
PARAMETER
Input clock frequency
Typical Crystal Application Circuits
CRYSTAL
C1
C2
R
4 MHz ~ 24 MHz
10~20pF
10~20pF
without
XT1_OUT
C2
XT1_IN
R
C1
Figure 7-1 Typical Crystal Application Circuit
May 3, 2017
Page 71 of 99
Rev.2.04
NUC123 SERIES DATASHEET
7.3.2.1
NUC123
7.3.3
Internal 22.1184 MHz High Speed Oscillator
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Supply voltage[1]
-
2.5
-
5.5
V
Center Frequency
-
-
22.1184
-
MHz
+25℃; VDD =5 V
-1
-
+1
%
-3
-
+3
%
VDD =5 V
-
500
-
uA
CONDITIONS
MIN
TYP
MAX
UNIT
Supply voltage[1]
-
2.5
-
5.5
V
Center Frequency
-
-
10
-
kHz
+25℃; VDD =5 V
-30
-
+30
%
-50
-
+50
%
Calibrated Internal Oscillator Frequency
-40℃~+85℃;
VDD =2.5 V~5.5 V
Operation Current
7.3.4
Internal 10 kHz Low Speed Oscillator
PARAMETER
Calibrated Internal Oscillator Frequency
-40℃~+85℃;
VDD=2.5 V~5.5 V
Note: Internal operation voltage comes from LDO.
NUC123 SERIES DATASHEET
May 3, 2017
Page 72 of 99
Rev.2.04
NUC123
7.4
Analog Characteristics
7.4.1
10-bit SARADC Specifications
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
2.7
MAX
UNIT
5.5
V
AVDD = VDD
AVDD = VDD = 5V, FSPS = 150K
Operating Voltage
AVDD
Operating Current
IADC
1.5
mA
Resolution
RADC
10
bit
Reference Voltage
VREF
ADC input Voltage
VIN
0
Sampling Rate
FSPS
150K
Integral Non-linearity Error (INL)
INL
±1
LSB
Differential Non-linearity Error
(DNL)
DNL
±1
LSB
Gain Error
EG
±2
LSB
Offset Error
EOFFSET
3
LSB
Absolute Error
EABS
4
LSB
ADC Clock Frequency
FADC
100K
Clock Cycle
ADCYC
36
AVDD
V
AVDD
V
Hz
6M
VREF Connected to AVDD in Chip
Hz
VDD = 5V, ADC Clock = 6MHz
Free Running Conversion
VDD = 5V
Cycle
NUC123 SERIES DATASHEET
May 3, 2017
Page 73 of 99
Rev.2.04
NUC123
7.4.2
LDO and Power Management Specifications
PARAMETER
MIN
TYP
MAX
UNIT
NOTE
Input Voltage
2.5
5
5.5
V
VDD input voltage
Output Voltage
1.62
1.8
1.98
V
VDD > 2.5V
Temperature
-40
25
85
℃
Cbp
-
1
-
uF
Resr = 1Ω
Notes:
1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between V DD and the
closest VSS pin of the device.
2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest VSS
pin of the device.
7.4.3
Low Voltage Reset Specifications
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Operation voltage
-
1.7
-
5.5
V
Quiescent current
VDD = 5.5 V
-
-
5
uA
Temperature
-
-40
25
85
℃
Temperature = 25℃
1.7
2.0
2.3
V
Temperature = -40℃
-
2.4
-
V
Temperature = 85℃
-
1.6
-
V
-
0
0
0
V
Threshold voltage
NUC123 SERIES DATASHEET
Hysteresis
May 3, 2017
Page 74 of 99
Rev.2.04
NUC123
7.4.4
Brown-out Detector Specifications
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Operation voltage
-
2.5
-
5.5
V
Quiescent current
AVDD = 5.5 V
-
-
125
μA
Temperature
-
-40
25
85
℃
BOV_VL[1:0] = 11
4.4
4.5
4.6
V
BOV_VL [1:0] = 10
3.7
3.8
3.9
V
BOV_VL [1:0] = 01
2.6
2.7
2.8
V
BOV_VL [1:0] = 00
2.1
2.2
2.3
V
-
30
-
150
mV
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Temperature
-
-40
25
85
℃
Reset voltage
V+
-
2
-
V
Quiescent current
Vin>reset voltage
-
1
-
nA
Brown-out voltage
Hysteresis
7.4.5
Power-On Reset (5V) Specifications
NUC123 SERIES DATASHEET
May 3, 2017
Page 75 of 99
Rev.2.04
NUC123
7.4.6
USB PHY Specifications
7.4.6.1
USB DC Electrical Characteristics
SYMBOL
PARAMETER
VIH
Input high (driven)
VIL
Input low
VDI
Differential input sensitivity
VCM
VSE
CONDITIONS
MIN
TYP
MAX
UNIT
2.0
V
0.8
Differential
common-mode range
V
|PADP-PADM|
0.2
Includes VDI range
0.8
2.5
V
0.8
2.0
V
Single-ended receiver threshold
Receiver hysteresis
V
200
mV
VOL
Output low (driven)
0
0.3
V
VOH
Output high (driven)
2.8
3.6
V
VCRS
Output signal cross voltage
1.3
2.0
V
RPU
Pull-up resistor
1.425
1.575
kΩ
RPD
Pull-down resistor
14.25
15.75
kΩ
VTRM
Termination Voltage for upstream port
pull up (RPU)
3.0
3.6
V
ZDRV
Driver output resistance
Steady state drive*
CIN
Transceiver capacitance
Pin to GND
Ω
10
20
pF
MAX
UNIT
Note: Driver output resistance doesn’t include series resistor resistance.
NUC123 SERIES DATASHEET
7.4.6.2
USB Full-Speed Driver Electrical Characteristics
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
TFR
Rising time
CL = 50p
4
20
ns
TFF
Falling time
CL = 50p
4
20
ns
TFRFF
Rising and falling time matching
TFRFF = TFR/TFF
90
111.11
%
CONDITIONS
MIN
MAX
UNIT
7.4.6.3
USB Power Dissipation
SYMBOL
IVBUS
PARAMETER
VBUS current
Standby
(steady state)
7.4.6.4
SYMBOL
TYP
50
uA
USB LDO Specification
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VBUS
VBUS Pin Input Voltage
4.0
5.0
5.5
V
VDD33
LDO Output Voltage
3.0
3.3
3.6
V
May 3, 2017
Page 76 of 99
Rev.2.04
NUC123
Cbp
7.5
External Bypass Capacitor
1.0
-
uF
Flash DC Electrical Characteristics
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1.62
1.8
1.98
V[1]
VDD
Supply voltage
TRET
Data Retention
TERASE
Page Erase Time
20
ms
TMER
Mass Erase Time
40
ms
TPROG
Program Time
40
us
IDD1
Read Current
IDD2
Program/Erase Current
IPD
Power Down Current
Temp=85 ℃
10
year
1
0.25
mA
7
mA
20
uA
Note: VDD is source from chip LDO output voltage.
NUC123 SERIES DATASHEET
May 3, 2017
Page 77 of 99
Rev.2.04
NUC123
7.6
SPI Dynamic Characteristics
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
SPI Master mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)
tDS
Data setup time
TBD
TBD
-
ns
tDH
Data hold time
TBD
-
-
ns
tV
Data output valid time
-
TBD
TBD
ns
SPI Master mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)
tDS
Data setup time
TBD
TBD
-
ns
tDH
Data hold time
TBD
-
-
ns
tV
Data output valid time
-
TBD
TBD
ns
SPI Slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)
tDS
Data setup time
TBD
-
-
ns
tDH
Data hold time
TBD
-
-
ns
tV
Data output valid time
-
TBD
TBD
ns
SPI Slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)
tDS
Data setup time
TBD
-
-
ns
tDH
Data hold time
TBD
-
-
ns
tV
Data output valid time
-
TBD
TBD
ns
NUC123 SERIES DATASHEET
TBD: To be defined.
CLKP=0
SPICLK
CLKP=1
tV
MOSI
Data Valid
Data Valid
tDS
MISO
Data Valid
CLKP=0, TX_NEG=1, RX_NEG=0
or
CLKP=1, TX_NEG=0, RX_NEG=1
tDH
Data Valid
tV
Data Valid
MOSI
tDS
MISO
Data Valid
CLKP=0, TX_NEG=0, RX_NEG=1
or
CLKP=1, TX_NEG=1, RX_NEG=0
tDH
Data Valid
Data Valid
Figure 7-2 SPI Master Dynamic Characteristics Timing
May 3, 2017
Page 78 of 99
Rev.2.04
NUC123
CLKP=0
SPICLK
CLKP=1
tDS
MOSI
Data Valid
tDH
Data Valid
CLKP=0, TX_NEG=1, RX_NEG=0
or
CLKP=1, TX_NEG=0, RX_NEG=1
tv
MISO
Data Valid
tDS
MOSI
Data Valid
tDH
Data Valid
Data Valid
Data Valid
Data Valid
tv
MISO
CLKP=0, TX_NEG=0, RX_NEG=1
or
CLKP=1, TX_NEG=1, RX_NEG=0
Figure 7-3 SPI Slave Dynamic Characteristics Timing
NUC123 SERIES DATASHEET
May 3, 2017
Page 79 of 99
Rev.2.04
NUC123
8
ELECTRICAL CHARACTERISTICS (NUC123XXXAEX)
8.1
Absolute Maximum Ratings
Symbol
VDD  VSS
VIN
1/tCLCL
Parameter
DC Power Supply
Input Voltage
Oscillator Frequency
Min
Max
Unit
-0.3
+7.0
V
VSS - 0.3
VDD + 0.3
V
4
24
MHz
TA
Operating Temperature
-40
+105
TST
Storage Temperature
-55
+150
℃
IDD
Maximum Current into VDD
-
120
mA
ISS
Maximum Current out of VSS
120
mA
Maximum Current sunk by a I/O pin
35
mA
Maximum Current sourced by a I/O pin
35
mA
Maximum Current sunk by total I/O pins
100
mA
Maximum Current sourced by total I/O pins
100
mA
IIO
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of
the device.
NUC123 SERIES DATASHEET
May 3, 2017
Page 80 of 99
Rev.2.04
NUC123
8.2
DC Electrical Characteristics
(VDD-VSS=2.5 ~ 5.5 V, TA = 25C)
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
5.5
V
Operation voltage
VDD
2.5
VDD rise rate to ensure internal
operation correctly
VRISE
0.05
V/ms
-0.3
V
Power ground
VSS
AVSS
LDO output voltage
VLDO
1.62
1.8
1.98
V
Analog operating voltage
AVDD
0
VDD
V
IDD1
39
mA
IDD2
24
mA
IDD3
37
mA
IDD4
23
mA
IDD5
10
mA
IDD6
7
mA
IDD7
8
mA
IDD8
6
mA
VDD = 2.5V ~ 5.5V up to 72 MHz
VDD > 2.5V
VDD = 5.5V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 5.5V at 72 MHz,
Operating current
All IP Disabled and PLL Enabled, XTAL =
12 MHz
Normal Run mode
at 72 MHz
VDD = 3V at 72 MHz,
All IP and PLL enabled,
XTAL = 12 MHz
All IP Disabled and PLL Enabled, XTAL =
12 MHz
VDD = 5.5V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 5.5V at 12 MHz,
Operating current
Normal Run mode
at 12 MHz
All IP and PLL Disabled,
XTAL = 12 MHz
VDD = 3V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 3V at 12 MHz,
All IP and PLL Disabled,
XTAL = 12 MHz
Operating current
Normal Run mode
May 3, 2017
VDD = 5V at 4 MHz,
IDD9
6
Page 81 of 99
mA
All IP Enabled and PLL Disabled, XTAL =
4 MHz
Rev.2.04
NUC123 SERIES DATASHEET
VDD = 3V at 72 MHz,
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
at 4 MHz
VDD = 5V at 4 MHz,
IDD10
5
mA
IDD11
4
mA
IDD12
3
mA
IIDLE1
28
mA
IIDLE2
12
mA
IIDLE3
25
mA
IIDLE4
10
mA
IIDLE5
6
mA
IIDLE6
3
mA
IIDLE7
5
mA
IIDLE8
2
mA
IIDLE9
5
mA
IIDLE10
4
mA
IIDLE11
3
mA
IIDLE12
2
mA
All IP and PLL Disabled,
XTAL = 4 MHz
VDD = 3V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 3V at 4 MHz,
All IP and PLL Disabled,
XTAL = 4 MHz
VDD = 5.5V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 5.5V at 72 MHz,
Operating current
All IP Disabled and PLL Enabled, XTAL =
12 MHz
Idle mode
at 72 MHz
VDD = 3V at 72 MHz,
All IP and PLL Enabled,
XTAL = 12 MHz
VDD = 3V at 72 MHz,
All IP Disabled and PLL Enabled,
XTAL=12 MHz
VDD = 5.5V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
NUC123 SERIES DATASHEET
VDD = 5.5V at 12 MHz,
Operating current
All IP and PLL Disabled,
XTAL = 12 MHz
Idle mode
at 12 MHz
VDD = 3V at 12 MHz,
All IP Enabled and PLL Disabled, XTAL =
12 MHz
VDD = 3 V at 12 MHz,
All IP and PLL Disabled,
XTAL = 12 MHz
VDD = 5V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 5V at 4 MHz,
Operating current
All IP and PLL Disabled,
XTAL = 4 MHz
Idle mode
at 4 MHz
VDD = 3V at 4 MHz,
All IP Enabled and PLL Disabled, XTAL =
4 MHz
VDD = 3V at 4 MHz,
May 3, 2017
Page 82 of 99
All IP and PLL Disabled,
XTAL = 4 MHz
Rev.2.04
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VDD = 5.5V at 10 kHz,
IIDLE5
110
uA
IIDLE6
110
uA
IIDLE7
100
uA
IIDLE8
100
uA
IPWD1
15
A
IPWD2
13
A
Input Current PA, PB, PC, PD, PE,
PF (Quasi-bidirectional mode)
IIN1
-64
A
VDD = 5.5V, VIN = 0V
Input Current at /RESET[1]
IIN2
-55
-45
-30
A
VDD = 3.3V, VIN = 0.45V
Input Leakage Current PA, PB, PC,
PD, PE, PF
ILK
-2
-
+2
A
VDD = 5.5V, 0 < VIN < VDD
Logic 1 to 0 Transition Current
PA~PF (Quasi-bidirectional mode)
ITL [3]
-650
-
-200
A
VDD = 5.5V, VIN < 2.0V
Input Low Voltage PA, PB, PC, PD,
PE, PF (TTL input)
-0.3
-
0.8
VIL1
Input High Voltage PA, PB, PC,
PD, PE, PF (TTL input)
VIH1
Input Low Voltage PA, PB, PC, PD,
PE, PF (Schmitt input)
All IP Enabled and PLL Disabled, LIRC
10 kHz Enabled
VDD = 5.5V at 10 kHz,
Operating current
All IP and PLL Disabled,
LIRC 10 kHz Enabled
Idle mode
at 10 kHz
VDD = 3V at 10 kHz,
All IP Enabled and PLL Disabled, LIRC
10 kHz Enabled
VDD = 3 V at 10 kHz,
Standby current
Power-down mode
-
0.6
2.0
-
VDD +0.2
VDD = 5.5V
V
-0.5
-
0.35 VDD
V
Input High Voltage PA, PB, PC,
PD, PE, PF (Schmitt input)
VIH2
0.65 VDD
-
VDD+0.5
V
Hysteresis voltage of PA~PE
(Schmitt input)
VHY
Input Low Voltage XT1[*2]
VIL3
(Schmitt input), /RESET
May 3, 2017
when BOV function Disabled
VDD = 2.5V
VIL2
Positive going threshold
VDD = 3.3V, No load
NUC123 SERIES DATASHEET
-0.3
VDD +0.2
(Schmitt input), /RESET
when BOV function Disabled
VDD = 4.5V
-
Negative going threshold
VDD = 5.5V, No load
V
1.5
Input High Voltage XT1[*2]
All IP and PLL Disabled,
LIRC 10 kHz Enabled
0.2 VDD
0
-
VDD = 3.0V
V
0.8
VDD = 4.5V
V
0
-
0.4
VDD = 3.0V
3.9
-
VDD +0.2
2.4
-
VDD +0.2
VILS
-0.5
-
0.2 VDD
V
VIHS
0.6 VDD
-
VDD+0.5
V
V
VDD = 5.5V
VIH3
Page 83 of 99
VDD = 3.0V
Rev.2.04
NUC123
SPECIFICATIONS
PARAMETER
SYM
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ISR11
-300
-370
-450
A
VDD = 4.5V, VS = 2.4V
ISR12
-50
-70
-90
A
VDD = 2.7V, VS = 2.2V
ISR12
-40
-60
-80
A
VDD = 2.5V, VS = 2.0V
ISR21
-24
-28
-32
mA
VDD = 4.5V, VS = 2.4V
ISR22
-4
-6
-8
mA
VDD = 2.7V, VS = 2.2V
ISR22
-3
-5
-7
mA
VDD = 2.5V, VS = 2.0V
ISK1
10
16
20
mA
VDD = 4.5V, VS = 0.45V
ISK1
7
10
13
mA
VDD = 2.7V, VS = 0.45V
ISK1
6
9
12
mA
VDD = 2.5V, VS = 0.45V
Brown-out voltage with
BOV_VL [1:0] =00b
VBO2.2
2.1
2.2
2.3
V
Brown-out voltage with
BOV_VL [1:0] =01b
VBO2.7
2.6
2.7
2.8
V
Brown-out voltage with
BOV_VL [1:0] =10b
VBO3.8
3.5
3.7
3.9
V
Brown-out voltage with
BOV_VL [1:0] =11b
VBO4.5
4.2
4.4
4.6
V
VBH
30
-
150
mV
Source Current PA, PB, PC, PD,
PE, PF (Quasi-bidirectional Mode)
Source Current PA, PB, PC, PD,
PE, PF (Push-pull Mode)
Sink Current PA, PB, PC, PD, PE,
PF (Quasi-bidirectional and Pushpull Mode)
Hysteresis range of BOD voltage
VDD = 2.5V - 5.5V
Notes:
1. nRESET pin is a Schmitt trigger input.
NUC123 SERIES DATASHEET
2. Crystal Input is a CMOS input.
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2V.
May 3, 2017
Page 84 of 99
Rev.2.04
NUC123
8.3
AC Electrical Characteristics
8.3.1
External 4~24 MHz High Speed Oscillator
tCLCL
tCLCH
0.7 VDD
90%
tCLCX
10%
0.3 VDD
tCHCL
tCHCX
Note: Duty cycle is 50%.
SYMBOL
PARAMETER
tCHCX
MIN
TYP
MAX
UNIT
Clock High Time
10
-
-
nS
tCLCX
Clock Low Time
10
-
-
nS
tCLCH
Clock Rise Time
2
-
15
nS
tCHCL
Clock Fall Time
2
-
15
nS
CONDITIONS
MIN
TYP
MAX
UNIT
External crystal
4
-
24
MHz
Temperature
-
-40
-
105
℃
VDD
-
2.5
-
5.5
V
8.3.2
CONDITIONS
External 4~24 MHz High Speed Crystal
PARAMETER
Input clock frequency
Typical Crystal Application Circuits
CRYSTAL
C1
C2
R
4 MHz ~ 24 MHz
10~20pF
10~20pF
without
XT1_OUT
C2
XT1_IN
R
C1
Figure 8-1 Typical Crystal Application Circuit
May 3, 2017
Page 85 of 99
Rev.2.04
NUC123 SERIES DATASHEET
8.3.2.1
NUC123
8.3.3
Internal 22.1184 MHz High Speed Oscillator
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Supply voltage[1]
-
2.5
-
5.5
V
Center Frequency
-
-
22.1184
-
MHz
+25℃; VDD =5 V
-1
-
+1
%
-3
-
+3
%
VDD =5 V
-
500
-
uA
CONDITIONS
MIN
TYP
MAX
UNIT
Supply voltage[1]
-
2.5
-
5.5
V
Center Frequency
-
-
10
-
kHz
+25℃; VDD =5 V
-30
-
+30
%
-50
-
+50
%
Calibrated Internal Oscillator Frequency
-40℃~+105℃;
VDD=2.5 V~5.5 V
Operation Current
8.3.4
Internal 10 kHz Low Speed Oscillator
PARAMETER
Calibrated Internal Oscillator Frequency
-40℃~+105℃;
VDD=2.5 V~5.5 V
Note: Internal operation voltage comes from LDO.
NUC123 SERIES DATASHEET
May 3, 2017
Page 86 of 99
Rev.2.04
NUC123
8.4
8.4.1
Analog Characteristics
10-bit SARADC Specifications
Specification
PARAMETER
Sym.
TEST CONDITIONS
Min.
TYP.
Unit
5.5
V
Operating voltage
AVDD
Operating current
IADC
1.5
mA
Resolution
RADC
10
bit
Reference voltage
VREF
ADC input voltage
VIN
0
Sampling rate
FSPS
200K
Integral non-linearity error
2.7
Max.
AVDD
V
AVDD
Hz
±1
LSB
DNL
±1
LSB
Gain error
EG
±2
LSB
Offset error
EOFFSET
3
LSB
Absolute error
EABS
4
LSB
ADC clock frequency
FADC
100K
ADCYC
16
Differential non-linearity
(DNL)
Clock cycle
3M
AVDD = VDD = 5V, FSPS = 200K
VREF connected to AVDD in chip
V
INL
(INL)
AVDD = VDD
Hz
VDD = 5V, ADC clock = 3MHz
Free running conversion
VDD = 5V
Cycle
NUC123 SERIES DATASHEET
May 3, 2017
Page 87 of 99
Rev.2.04
NUC123
8.4.2
LDO and Power Management Specifications
PARAMETER
MIN
TYP
MAX
UNIT
NOTE
Input Voltage
2.5
5
5.5
V
VDD input voltage
Output Voltage
1.62
1.8
1.98
V
VDD > 2.5V
Temperature
-40
25
105
℃
Cbp
-
1
-
uF
Resr = 1Ω
Notes:
1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between V DD and the
closest VSS pin of the device.
2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest VSS pin
of the device.
8.4.3
Low Voltage Reset Specifications
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Operation voltage
-
1.7
-
5.5
V
Quiescent current
VDD = 5.5 V
-
-
5
uA
Temperature
-
-40
25
105
℃
Temperature = 25℃
1.7
2.0
2.3
V
Temperature = -40℃
-
1.8
-
V
Temperature = 85℃
-
2.2
-
V
-
0
0
0
V
Threshold voltage
NUC123 SERIES DATASHEET
Hysteresis
May 3, 2017
Page 88 of 99
Rev.2.04
NUC123
8.4.4
Brown-out Detector Specifications
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Operation voltage
-
2.5
-
5.5
V
Quiescent current
AVDD = 5.5 V
-
-
125
μA
Temperature
-
-40
25
105
℃
BOV_VL[1:0] = 11
4.2
4.4
4.6
V
BOV_VL [1:0] = 10
3.5
3.7
3.9
V
BOV_VL [1:0] = 01
2.6
2.7
2.8
V
BOV_VL [1:0] = 00
2.1
2.2
2.3
V
-
30
-
150
mV
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
Temperature
-
-40
25
105
℃
Reset voltage
V+
-
2
-
V
Quiescent current
Vin>reset voltage
-
1
-
nA
Brown-out voltage
Hysteresis
8.4.5
Power-On Reset (5V) Specifications
NUC123 SERIES DATASHEET
May 3, 2017
Page 89 of 99
Rev.2.04
NUC123
8.4.6
USB PHY Specifications
8.4.6.1
USB DC Electrical Characteristics
SYMBOL
PARAMETER
VIH
Input high (driven)
VIL
Input low
VDI
Differential input sensitivity
VCM
VSE
CONDITIONS
MIN
TYP
MAX
UNIT
2.0
V
0.8
Differential
common-mode range
V
|PADP-PADM|
0.2
Includes VDI range
0.8
2.5
V
0.8
2.0
V
Single-ended receiver threshold
Receiver hysteresis
V
200
mV
VOL
Output low (driven)
0
0.3
V
VOH
Output high (driven)
2.8
3.6
V
VCRS
Output signal cross voltage
1.3
2.0
V
RPU
Pull-up resistor
1.425
1.575
kΩ
RPD
Pull-down resistor
14.25
15.75
kΩ
VTRM
Termination Voltage for upstream port
pull up (RPU)
3.0
3.6
V
ZDRV
Driver output resistance
Steady state drive*
CIN
Transceiver capacitance
Pin to GND
Ω
10
20
pF
MAX
UNIT
Note: Driver output resistance doesn’t include series resistor resistance.
NUC123 SERIES DATASHEET
8.4.6.2
USB Full-Speed Driver Electrical Characteristics
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
TFR
Rising time
CL = 50p
4
20
ns
TFF
Falling time
CL = 50p
4
20
ns
TFRFF
Rising and falling time matching
TFRFF = TFR/TFF
90
111.11
%
CONDITIONS
MIN
MAX
UNIT
8.4.6.3
USB Power Dissipation
SYMBOL
IVBUS
PARAMETER
VBUS current
Standby
(steady state)
8.4.6.4
SYMBOL
TYP
50
uA
USB LDO Specification
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VBUS
VBUS Pin Input Voltage
4.0
5.0
5.5
V
VDD33
LDO Output Voltage
3.0
3.3
3.6
V
May 3, 2017
Page 90 of 99
Rev.2.04
NUC123
Cbp
External Bypass Capacitor
1.0
-
uF
NUC123 SERIES DATASHEET
May 3, 2017
Page 91 of 99
Rev.2.04
NUC123
8.5
Flash DC Electrical Characteristics
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1.62
1.8
1.98
V[1]
VDD
Supply Voltage
NENDUR
Endurance
TRET
Data Retention
TERASE
Page Erase Time
20
ms
TMER
Mass Erase Time
40
ms
TPROG
Program Time
35
μs
IDD1
Read Current
TBD
mA/MHz
IDD2
Program/Erase Current
IPD
Power Down Current
At 25℃
20000
cycles[2]
100
year
-
-
1
7
mA
20
μA
Note1: VDD is source from chip LDO output voltage.
Note2: Number of program/erase cycles.
Note3: This table is guaranteed by design, not test in production.
NUC123 SERIES DATASHEET
May 3, 2017
Page 92 of 99
Rev.2.04
NUC123
8.6
SPI Dynamic Characteristics
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
SPI Master mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)
tDS
Data setup time
4
2
-
ns
tDH
Data hold time
0
-
-
ns
tV
Data output valid time
-
7
11
ns
SPI Master mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)
tDS
Data setup time
5
3
-
ns
tDH
Data hold time
0
-
-
ns
tV
Data output valid time
-
13
18
ns
SPI Slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)
tDS
Data setup time
0
-
-
ns
tDH
Data hold time
2*PCLK+4
-
-
ns
tV
Data output valid time
-
2*PCLK+11
2*PCLK+19
ns
SPI Slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)
tDS
Data setup time
0
-
-
ns
tDH
Data hold time
2*PCLK+6
-
-
ns
tV
Data output valid time
-
2*PCLK+19
2*PCLK+25
ns
CLKP=1
tV
MOSI
Data Valid
Data Valid
tDS
MISO
Data Valid
CLKP=0, TX_NEG=1, RX_NEG=0
or
CLKP=1, TX_NEG=0, RX_NEG=1
tDH
Data Valid
tV
Data Valid
MOSI
tDS
MISO
Data Valid
CLKP=0, TX_NEG=0, RX_NEG=1
or
CLKP=1, TX_NEG=1, RX_NEG=0
tDH
Data Valid
Data Valid
Figure 8-2 SPI Master Dynamic Characteristics timing
May 3, 2017
Page 93 of 99
Rev.2.04
NUC123 SERIES DATASHEET
CLKP=0
SPICLK
NUC123
CLKP=0
SPICLK
CLKP=1
tDS
MOSI
Data Valid
tDH
Data Valid
CLKP=0, TX_NEG=1, RX_NEG=0
or
CLKP=1, TX_NEG=0, RX_NEG=1
tv
MISO
Data Valid
tDS
MOSI
Data Valid
tDH
Data Valid
Data Valid
Data Valid
Data Valid
tv
MISO
CLKP=0, TX_NEG=0, RX_NEG=1
or
CLKP=1, TX_NEG=1, RX_NEG=0
Figure 8-3 SPI Slave Dynamic Characteristics Timing
NUC123 SERIES DATASHEET
May 3, 2017
Page 94 of 99
Rev.2.04
NUC123
9
9.1
PACKAGE DIMENSIONS
64L LQFP (7x7x1.4 mm footprint 2.0 mm)
NUC123 SERIES DATASHEET
May 3, 2017
Page 95 of 99
Rev.2.04
NUC123
9.2
48L LQFP (7x7x1.4 mm footprint 2.0 mm)
NUC123 SERIES DATASHEET
May 3, 2017
Page 96 of 99
Rev.2.04
NUC123
9.3
33L QFN (5x5x0.8 mm)
32
25
1
24
8
17
9
16
25
32
24
1
17
8
May 3, 2017
9
NUC123 SERIES DATASHEET
16
Page 97 of 99
Rev.2.04
NUC123
10 REVISION HISTORY
Date
Revision
Description
2012.04.01
1.00
Preliminary version.
2015.05.29
2.00
1. Merged NUC123xxxANx & NUC123xxxAEx into this document.
2015.11.04
2.01
1. Removed ADC function pins of NUC123 QFN33 package type in section 4.3.1.3,
4.3.2.3 and 4.4.1.
2016.01.12
2.02
1. Revised section 8.2 Source Current PA, PB, PC, PD, PE, PF (Push-pull Mode).
2016.07.06
2.03
1. Updated ADC function pins of NUC123 QFN33 package type in section 4.3.1.3,
4.3.2.3 and 4.4.1.
2017.05.03
2.04
1. Updated Typical Crystal Application Circuit for External 4~24 MHz High Speed
Crystal in section 7.3.2.1.
NUC123 SERIES DATASHEET
May 3, 2017
Page 98 of 99
Rev.2.04
NUC123
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property
damage. Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.
May 3, 2017
Page 99 of 99
Rev.2.04
NUC123 SERIES DATASHEET
Important Notice
Similar pages