ALSC AS4C16M16D1-5TIN Fully synchronous operation Datasheet

AS4C16M16D1
16M x 16 bit DDR Synchronous DRAM (SDRAM)
Alliance Memory Confidential
Features
Fast clock rate: 200MHz
Differential Clock CK & CK
Bi-directional DQS
DLL enable/disable by EMRS
Fully synchronous operation
Internal pipeline architecture
Four internal banks, 4M x 16-bit for each bank
Programmable Mode and Extended Mode registers
- CAS Latency: 2, 2.5, 3
- Burst length: 2, 4, 8
- Burst Type: Sequential & Interleaved
 Individual byte-write mask control
 DM Write Latency = 0
 Auto Refresh and Self Refresh
 8192 refresh cycles / 64ms
 Operating temperature range
- Commercial (0 ~ 70°C)
- Industrial (-40 ~ 85°C)
 Precharge & active power down
 Power supplies: VDD & VDDQ = 2.5V  0.2V
 Interface: SSTL_2 I/O Interface
 Package: 66 Pin TSOP II, 0.65mm pin pitch
- Pb free and Halogen free
 Package: 60-Ball, 8x13x1.2 mm (max) TFBGA
- Pb free and Halogen Free








Advanced (Rev. 1.1, Sep. /2011)
Overview
The AS4C16M16D1 SDRAM is a high-speed CMOS
double data rate synchronous DRAM containing 256 Mbits.
It is internally configured as a quad 4M x 16 DRAM with a
synchronous interface (all signals are registered on the
positive edge of the clock signal, CK). Data outputs occur
at both rising edges of CK and CK .d Read and write
accesses to the SDRAM are burst oriented; accesses start
at a selected location and continue for a programmed
number of locations in a programmed sequence. Accesses
begin with the registration of a BankActivate command
which is then followed by a Read or Write command. The
AS4C16M16D1 provides programmable Read or Write
burst lengths of 2, 4, or 8. An auto precharge function may
be enabled to provide a self-timed row precharge that is
initiated at the end of the burst sequence. The refresh
functions, either Auto or Self Refresh are easy to use. In
addition, AS4C16M16D1 features
programmable DLL
option. By having a programmable mode register and
extended mode register, the system can choose the most
suitable modes to maximize its performance. These
devices are well suited for applications requiring high
memory band-width, result in a device particularly well
suited to high performance main memory and graphics
applications.
Table 1.Ordering Information
Temperature Temp Range
Part Number
Clock
Data Rate
Package
0 ~ 70°C
AS4C16M16D1-5TCN 200MHz 400Mbps/pin 66pin TSOPII Commercial
Industrial
-40 ~ 85°C
AS4C16M16D1-5TIN 200MHz 400Mbps/pin 66pin TSOPII
0 ~ 70°C
AS4C16M16D1-5BCN 200MHz 400Mbps/pin 60ball TFBGA Commercial
Industrial
-40
~ 85°C
AS4C16M16D1-5BIN 200MHz 400Mbps/pin 60ball TFBGA
T: indicates TSOP II package
B: indicates TFBGA package
C: indicates Commercial temp.
I: indicates Industrial temp.
N: indicates lead free ROHS
Alliance Memory, Inc.
551 Taylor Way, San Carlos, CA 94070
TEL: (650) 610-6800
FAX: (650) 620-9211
Alliance Memory, Inc. reserves the right to change products or specification without notice.
AS4C16M16D1
Figure 1. Pin Assignment (Top View)
VDD
DQ0
VDDQ
DQ1
DQ2
VSSQ
DQ3
DQ4
VDDQ
DQ5
DQ6
VSSQ
DQ7
NC
VDDQ
LDQS
NC
VDD
NC
LDM
WE
CAS
RAS
CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
Figure 1.1 Ball Assignments (Top View)
VSS
DQ15
VSSQ
DQ14
DQ13
VDDQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VDDQ
DQ8
NC
VSSQ
UDQS
NC
VREF
VSS
UDM
CK
CK
CKE
NC
A12
A11
A9
A8
A7
A6
A5
A4
VSS
Alliance Memory, lnc. Confidential
2
1
2
3
A
VSSQ
DQ15
B
DQ14
C
…
7
8
VSS
VDD
DQ0
VDDQ
VDDQ
DQ13
DQ2
VSSQ
DQ1
DQ12
VSSQ
DQ11
DQ4
VDDQ
DQ3
D
DQ10
VDDQ
DQ9
DQ6
VSSQ
DQ5
E
DQ8
VSSQ
UDQS
LDQS
VDDQ
DQ7
F
VREF
VSS
UDM
LDM
VDD
NC
G
CK
CK
WE
CAS
H
A12
CKE
RAS
CS
J
A11
A9
BA1
BA0
K
A8
A7
A0
A10
L
A6
A5
A2
A1
M
A4
VSS
VDD
A3
Rev. 1.1
9
Sep. /2011
AS4C16M16D1
Figure 2. Block Diagram
CK
CK
DLL
CLOCK
BUFFER
CKE
COMMAND
DECODER
COLUMN
COUNTER
A10/AP
MODE
REGISTER
Row
Decoder
CONTROL
SIGNAL
GENERATOR
Column Decoder
4M x 16
CELL ARRAY
(BANK #1)
Row
Decoder
CS
RAS
CAS
WE
4M x 16
CELL ARRAY
(BANK #0)
Column Decoder
ADDRESS
BUFFER
A9
A11
A12
BA0
BA1
REFRESH
COUNTER
DATA
STROBE
BUFFER
LDQS
UDQS
DQ0
4M x 16
CELL ARRAY
(BANK #2)
Row
Decoder
~
A0
Column Decoder
DQ
Buffer
~
LDM
UDM
Alliance Memory, lnc. Confidential
4M x 16
CELL ARRAY
(BANK #3)
Row
Decoder
DQ15
3
Column Decoder
Rev. 1.1
Sep. /2011
AS4C16M16D1
Pin Descriptions
Table 2. Pin Details
Symbol
Type
Description
CK, CK
Input
Differential Clock: CK, CK are driven by the system clock. All SDRAM input signals
are sampled on the positive edge of CK. Both CK and CK increment the internal burst
counter and controls the output registers.
CKE
Input
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE
goes low synchronously with clock, the internal clock is suspended from the next clock
cycle and the state of output and burst address is frozen as long as the CKE remains
low. When all banks are in the idle state, deactivating the clock controls the entry to
the Power Down and Self Refresh modes.
BA0, BA1
Input
Bank Activate: BA0 and BA1 define to which bank the BankActivate, Read, Write, or
BankPrecharge command is being applied.
A0-A12
Input
Address Inputs: A0-A12 are sampled during the BankActivate command (row
address A0-A12) and Read/Write command (column address A0-A8 with A10 defining
Auto Precharge).
CS
Input
Chip Select: CS enables (sampled LOW) and disables (sampled HIGH) the
command decoder. All commands are masked when CS is sampled HIGH. CS
provides for external bank selection on systems with multiple banks. It is considered
part of the command code.
RAS
Input
Row Address Strobe: The RAS signal defines the operation commands in
conjunction with the CAS and WE signals and is latched at the positive edges of CK.
When RAS and CS are asserted "LOW" and CAS is asserted "HIGH," either the
BankActivate command or the Precharge command is selected by the WE signal.
When the WE is asserted "HIGH," the BankActivate command is selected and the
bank designated by BA is turned on to the active state. When the WE is asserted
"LOW," the Precharge command is selected and the bank designated by BA is
switched to the idle state after the precharge operation.
CAS
Input
Column Address Strobe: The CAS signal defines the operation commands in
conjunction with the RAS and WE signals and is latched at the positive edges of CK.
When RAS is held "HIGH" and CS is asserted "LOW," the column access is started
by asserting CAS "LOW." Then, the Read or Write command is selected by asserting
WE "HIGH" or “LOW”.
WE
Input
Write Enable: The WE signal defines the operation commands in conjunction with
the RAS and CAS signals and is latched at the positive edges of CK. The WE input
is used to select the BankActivate or Precharge command and Read or Write
command.
LDQS,
Input /
UDQS
Output
Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data
Strobe is edge triggered. Write Data Strobe provides a setup and hold time for data
and DQM. LDQS is for DQ0~7, UDQS is for DQ8~15.
LDM,
Input
Data Input Mask: Input data is masked when DM is sampled HIGH during a write
cycle. LDM masks DQ0-DQ7, UDM masks DQ8-DQ15.
Input /
Output
Data I/O: The DQ0-DQ15 input and output data are synchronized with the positive
edges of CK and CK The I/Os are byte-maskable during Writes.
UDM
DQ0 - DQ15
Alliance Memory, lnc. Confidential
4
Rev. 1.1
Sep. /2011
AS4C16M16D1
VDD
Supply
Power Supply: 2.5V ± 0.2V .
VSS
Supply
Ground
VDDQ
Supply
DQ Power: 2.5V ± 0.2V. Provide isolated power to DQs for improved noise immunity.
VSSQ
Supply
DQ Ground: Provide isolated ground to DQs for improved noise immunity.
VREF
Supply
Reference Voltage for Inputs: +0.5*VDDQ
NC
-
No Connect: These pins should be left unconnected.
Alliance Memory, lnc. Confidential
5
Rev. 1.1
Sep. /2011
AS4C16M16D1
Operation Mode
Fully synchronous operations are performed to latch the commands at the positive edges of CK. Table 3
shows the truth table for the operation commands.
Table 3. Truth Table (Note (1), (2))
Command
BankActivate
State
CKEn-1 CKEn DM BA0,1 A10
Idle(3)
H
X
X
V
BankPrecharge
Any
H
X
X
V
L
PrechargeAll
Any
H
X
X
X
Write
Active(3)
H
X
X
Write and AutoPrecharge
Active(3)
H
X
Read
Active(3)
H
Read and Autoprecharge
Active(3)
Mode Register Set
A0-9, 11-12
L
L
H
H
X
L
L
H
L
H
X
L
L
H
L
V
L
L
H
L
L
X
V
H
Column address
(A0 ~ A8)
L
H
L
L
X
X
V
L
L
H
L
H
H
X
X
V
H
Column address
(A0 ~ A8)
L
H
L
H
Idle
H
X
X
OP code
L
L
L
L
Extended MRS
Idle
H
X
X
OP code
L
L
L
L
No-Operation
Any
H
X
X
X
X
X
L
H
H
H
Active(4)
H
X
X
X
X
X
L
H
H
L
Device Deselect
Any
H
X
X
X
X
X
H
X
X
X
AutoRefresh
Idle
H
H
X
X
X
X
L
L
L
H
SelfRefresh Entry
Idle
H
L
X
X
X
X
L
L
L
H
SelfRefresh Exit
Idle
L
H
X
X
X
X
H
X
X
X
L
H
H
H
H
X
X
X
L
H
H
H
H
X
X
X
L
H
H
H
H
X
X
X
L
V
V
V
H
X
X
X
L
H
H
H
X
X
X
X
Data Input Mask Enable(5)
Active
H
X
H
X
X
X
X
Note: 1. V=Valid data, X=Don't Care, L=Low level, H=High level
2. CKEn signal is input level when commands are provided.
CKEn-1 signal is input level one clock cycle before the commands are provided.
3. These are states of bank designated by BA signal.
4. Device state is 2, 4, and 8 burst operation.
5. LDM and UDM can be enabled respectively.
X
X
X
Burst Stop
Row address
CS RAS CAS WE
(SelfRefresh)
Precharge Power Down
Mode Entry
Precharge Power Down
Mode Exit
Idle
Any
L
L
X
H
X
X
X
X
X
X
X
(PowerDown)
Active Power Down Mode
Entry
Active
Active Power Down Mode
Exit
Any
Data Input Mask Disable
H
H
L
L
X
H
X
X
X
X
X
X
X
(PowerDown)
Active
Alliance Memory, lnc. Confidential
H
X
L
6
X
X
X
Rev. 1.1
Sep. /2011
AS4C16M16D1
Mode Register Set (MRS)
The Mode Register stores the data for controlling various operating modes of a DDR SDRAM. It programs
CAS Latency, Burst Type, and Burst Length to make the DDR SDRAM useful for a variety of applications. The
default value of the Mode Register is not defined; therefore the Mode Register must be written by the user.
Values stored in the register will be retained until the register is reprogrammed. The Mode Register is written by
asserting Low on CS , RAS , CAS , WE , BA1 and BA0 (the device should have all banks idle with no bursts in
progress prior to writing into the mode register, and CKE should be High). The state of address pins A0~A12
and BA0, BA1 in the same cycle in which CS , RAS , CAS and WE are asserted Low is written into the Mode
Register. A minimum of two clock cycles, tMRD, are required to complete the write operation in the Mode
Register. The Mode Register is divided into various fields depending on functionality. The Burst Length uses
A0~A2, Burst Type uses A3, and CAS Latency (read latency from column address) uses A4~A6. A logic 0
should be programmed to all the undefined addresses to ensure future compatibility. Reserved states should not
be used to avoid unknown device operation or incompatibility with future versions. Refer to the table for specific
codes for various burst lengths, burst types and CAS latencies.
Table 4. Mode Register Bitmap
BA1 BA0 A12
0
A8
0
1
X
0
A11
A9
A8
RFU must be set to “0”
A7 Test Mode
0 Normal mode
0
DLL Reset
1
Test mode
BA0 Mode
0
MRS
1
EMRS
A10
A6
0
0
0
0
1
1
1
1
A5
0
0
1
1
0
0
1
1
A7
A6
T.M.
A5
A4
A3
CAS Latency
A4 CAS Latency
0
Reserved
1
Reserved
0
2
3
1
Reserved
0
Reserved
1
2.5
0
Reserved
1
A2
BT
A3 Burst Type
0 Sequential
1 Interleave
A1
A0
Burst Length
A2
0
0
0
0
1
1
1
1
A1
0
0
1
1
0
0
1
1
Address Field
Mode Register
A0 Burst Length
0
Reserved
1
2
0
4
1
8
0
Reserved
1
Reserved
0
Reserved
1
Reserved
 Burst Length Field (A2~A0)
This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be
2, 4, 8.
Table 5. Burst Length
A2
A1
A0
Burst Length
0
0
0
Reserved
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
Alliance Memory, lnc. Confidential
7
Rev. 1.1
Sep. /2011
AS4C16M16D1
 Addressing Mode Select Field (A3)
The Addressing Mode can be one of two modes, either Interleave Mode or Sequential Mode. Both Sequential
Mode and Interleave Mode support burst length of 2, 4 and 8.
Table 6. Addressing Mode
A3
Addressing Mode
0
Sequential
1
Interleave
 Burst Definition, Addressing Sequence of Sequential and Interleave Mode
Table 7. Burst Address ordering
Burst Length
A2
X
X
X
X
X
X
0
0
0
0
1
1
1
1
2
4
8
Start Address
A1
X
X
0
0
1
1
0
0
1
1
0
0
1
1
A0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Sequential
Interleave
0, 1
1, 0
0, 1, 2, 3
1, 2, 3, 0
2, 3, 0, 1
3, 0, 1, 2
0, 1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 7, 0
2, 3, 4, 5, 6, 7, 0, 1
3, 4, 5, 6, 7, 0, 1, 2
4, 5, 6, 7, 0, 1, 2, 3
5, 6, 7, 0, 1, 2, 3, 4
6, 7, 0, 1, 2, 3, 4, 5
7, 0, 1, 2, 3, 4, 5, 6
0, 1
1, 0
0, 1, 2, 3
1, 0, 3, 2
2, 3, 0, 1
3, 2, 1, 0
0, 1, 2, 3, 4, 5, 6, 7
1, 0, 3, 2, 5, 4, 7, 6
2, 3, 0, 1, 6, 7, 4, 5
3, 2, 1, 0, 7, 6, 5, 4
4, 5, 6, 7, 0, 1, 2, 3
5, 4, 7, 6, 1, 0, 3, 2
6, 7, 4, 5, 2, 3, 0, 1
7, 6, 5, 4, 3, 2, 1, 0
 CAS Latency Field (A6~A4)
This field specifies the number of clock cycles from the assertion of the Read command to the first read data.
The minimum whole value of CAS Latency depends on the frequency of CK. The minimum whole value
satisfying the following formula must be programmed into this field. tCAC(min)  CAS Latency X tCK
Table 8. CAS Latency
A6
A5
A4
CAS Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2 clocks
0
1
1
3 clocks
1
0
0
Reserved
1
0
1
Reserved
1
1
0
2.5 clocks
1
1
1
Reserved
Alliance Memory, lnc. Confidential
8
Rev. 1.1
Sep. /2011
AS4C16M16D1
 Test Mode field (A8~A7)
These two bits are used to enter the test mode and must be programmed to "00" in normal operation.
Table 9. Test Mode
A8
A7
Test Mode
0
0
Normal mode
1
0
DLL Reset
 (BA0, BA1)
Table 10. MRS/EMRS
BA1
BA0
RFU
0
MRS Cycle
RFU
1
Extended Functions (EMRS)
Alliance Memory, lnc. Confidential
A12 ~ A0
9
Rev. 1.1
Sep. /2011
AS4C16M16D1
Extended Mode Register Set (EMRS)
The Extended Mode Register Set stores the data for enabling or disabling DLL and selecting output driver
strength. The default value of the extended mode register is not defined, therefore must be written after power
up for proper operation. The extended mode register is written by asserting low on CS , RAS , CAS , and WE .
The state of A0 ~ A12, BA0 and BA1 is written in the mode register in the same cycle as CS , RAS , CAS , and
WE going low. (the device should have all banks idle with no bursts in progress prior to writing into the mode
register, and CKE should be High). A1 is used for setting driver strength to normal, or weak. Two clock cycles
are required to complete the write operation in the extended mode register. The mode register contents can be
changed using the same command and clock cycle requirements during operation as long as all banks are in
the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. Refer to the table for
specific codes.
Table 11. Extended Mode Register Bitmap
BA1 BA0 A12 A11 A10
0
BA0
0
1
1
Mode
MRS
EMRS
A9
A8
RFU must be set to “0”
A7
A6
A5
A4
A3
A2
A1
A0
DS1 RFU must be set to “0” DS0 DLL Extended Mode Register
A6 A1
Drive Strength
Comment
0
0
Full
0
1
Weak
1
0
RFU
Reserved For Future
1
1 Matched impedance Output driver matches impedance
Alliance Memory, lnc. Confidential
Address Field
10
Rev. 1.1
A0
0
1
DLL
Enable
Disable
Sep. /2011
AS4C16M16D1
Table 12. Absolute Maximum Rating
Symbol
Item
Rating
Unit
VIN, VOUT
Input, Output Voltage
- 0.5~ VDDQ + 0.5
V
VDD, VDDQ
Power Supply Voltage
- 1~3.6
V
Commercial
0~70
°C
Industrial
-40~85
°C
TA
Ambient Temperature
TSTG
Storage Temperature
- 65~150
°C
TSOLDER
Soldering Temperature
260
°C
PD
Power Dissipation
1
W
IOS
Short Circuit Output Current
50
mA
Note1: Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to
the device.
Note2: These voltages are relative to Vss
Table 13. Recommended D.C. Operating Conditions (TA = -40 ~ 85 C)
Parameter
Symbol
Min.
Max.
Unit
Power Supply Voltage
VDD
2.3
2.7
V
Power Supply Voltage (for I/O Buffer)
VDDQ
2.3
2.7
V
Input Reference Voltage
VREF
0.49*VDDQ
0.51* VDDQ
V
Input High Voltage (DC)
VIH (DC)
VREF + 0.15
VDDQ + 0.3
V
Input Low Voltage (DC)
VIL (DC)
-0.3
VREF – 0.15
V
VTT
VREF - 0.04
VREF + 0.04
V
Input Voltage Level, CK and CK inputs
VIN (DC)
-0.3
VDDQ + 0.3
V
Input Different Voltage, CK and CK inputs
VID (DC)
-0.36
VDDQ + 0.6
V
II
-2
2
A
Output leakage current
IOZ
-5
5
A
Output High Current
IOH
-16.2
-
mA
VOH = 1.95V
Output Low Current
Note: All voltages are referenced to VSS.
IOL
16.2
-
mA
VOL = 0.35V
Termination Voltage
Input leakage current
Note
Table 14. Capacitance (VDD = 2.5V, f = 1MHz, TA = 25 C)
Symbol
Parameter
Min.
Max.
Unit
CIN1
Input Capacitance (CK, CK )
2
3
pF
CIN2
Input Capacitance (All other input-only pins)
2
3
pF
CI/O
DQ, DQS, DM Input/Output Capacitance
4
5
pF
Note: These parameters are guaranteed by design, periodically sampled and are not 100% tested
Alliance Memory, lnc. Confidential
11
Rev. 1.1
Sep. /2011
AS4C16M16D1
Table 15. D.C. Characteristics (VDD = 2.5V  0.2V, TA = -40~85 C)
Parameter & Test Condition
OPERATING CURRENT: One bank; Active-Precharge;
tRC=tRC(min); tCK=tCK(min); DQ,DM and DQS inputs
changing once per clock cycle; Address and control inputs
changing once every two clock cycles.
OPERATING CURRENT : One bank; Active-ReadPrecharge; BL=4; tRC=tRC(min); tCK=tCK(min); lout=0mA;
Address and control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All
banks idle; power-down mode; tCK=tCK(min); CKE=LOW
IDLE STANDBY CURRENT : CKE = HIGH;
CS =HIGH(DESELECT); All banks idle; tCK=tCK(min);
Address and control inputs changing once per clock cycle;
VIN=VREF for DQ, DQS and DM
ACTIVE POWER-DOWN STANDBY CURRENT : one bank
active; power-down mode; CKE=LOW; tCK=tCK(min)
ACTIVE STANDBY CURRENT : CS =HIGH;CKE=HIGH; one
bank active ; tRC=tRC(max);tCK=tCK(min);Address and control
inputs changing once per clock cycle; DQ,DQS,and DM inputs
changing twice per clock cycle
OPERATING CURRENT BURST READ : BL=2; READS;
Continuous burst; one bank active; Address and control
inputs changing once per clock cycle; tCK=tCK(min);
lout=0mA;50% of data changing on every transfer
OPERATING CURRENT BURST Write : BL=2; WRITES;
Continuous Burst ;one bank active; address and control
inputs changing once per clock cycle; tCK=tCK(min);
DQ,DQS,and DM changing twice per clock cycle; 50% of data
changing on every transfer
AUTO REFRESH CURRENT : tRC=tRFC(min); tCK=tCK(min)
SELF REFRESH CURRENT: Sell Refresh Mode ; CKE≦
0.2V;tCK=tCK(min)
BURST OPERATING CURRENT 4 bank operation:
Four bank interleaving READs; BL=4;with Auto Precharge;
tRC=tRC(min); tCK=tCK(min); Address and control inputs
change only during Active, READ , or WRITE command
Alliance Memory, lnc. Confidential
12
Symbol
-5
Max.
Unit Note
IDD0
115
mA
IDD1
135
mA
IDD2P
40
mA
IDD2N
70
mA
IDD3P
45
mA
IDD3N
105
mA
IDD4R
190
mA
IDD4W
190
mA
IDD5
155
mA
IDD6
6
mA
IDD7
235
mA
Rev. 1.1
1
Sep. /2011
AS4C16M16D1
Table 16. Electrical Characteristics and Recommended A.C.Operating Condition
(VDD = 2.5V ± 0.2V, TA = -40~85 C)
Symbol
-5
Parameter
Min.
Max.
7.5
12
CL = 2.5
6
12
CL = 3
5
10
Unit Note
tCH
tCL
tHP
Clock high level width
0.45
0.55
Clock low level width
0.45
0.55
tCLMIN or tCHMIN
-
ns
ns
ns
tCK
tCK
ns
tHZ
Data-out-high impedance time from CK,
-
0.7
ns
3
tLZ
Data-out-low impedance time from CK,
-0.7
0.7
ns
3
tDQSCK
DQS-out access time from CK, CK
-0.6
0.6
ns
tAC
Output access time from CK, CK
-0.7
0.7
ns
tDQSQ
tRPRE
tRPST
tDQSS
tWPRES
tWPRE
tWPST
tDQSH
tDQSL
DQS-DQ Skew
-
0.4
Read preamble
0.9
1.1
Read postamble
0.4
0.6
CK to valid DQS-in
0.72
1.25
DQS-in setup time
0
-
DQS write preamble
0.25
-
DQS write postamble
0.4
0.6
DQS in high level pulse width
0.35
-
DQS in low level pulse width
0.35
-
tIS
Address and Control input setup time
Fast slew rate
0.6
-
ns
tCK
tCK
tCK
ns
tCK
tCK
tCK
tCK
ns
Slow slew rate
0.7
-
tIH
Address and Control input hold time
Fast slew rate
0.6
-
Slow slew rate
0.7
-
tDS
tDH
tQH
tRC
tRFC
tRAS
tRCD
tRP
tRRD
tWR
tWTR
tMRD
tREFI
tXSRD
tXSNR
tDAL
tDIPW
tIPW
tQHS
tDSS
tDSH
DQ & DM setup time to DQS
0.4
-
CL = 2
tCK
Clock cycle time
Clock half period
CK
CK
DQ & DM hold time to DQS
0.4
-
tHP - tQHS
-
Row cycle time
55
-
Refresh row cycle time
72
-
Row active time
40
120K
Active to Read or Write delay
15
-
Row precharge time
15
-
Row active to Row active delay
10
-
Write recovery time
15
-
Internal Write to Read Command Delay
2
-
Mode register set cycle time
10
-
DQ/DQS output hold time from DQS
Average Periodic Refresh interval
-
7.8
Self refresh exit to read command delay
200
-
Self refresh exit to non-read command delay
75
-
Auto Precharge write recovery + precharge time
35
-
DQ and DM input puls width
1.75
-
Cntrol and Address input pulse width
2.2
-
Data Hold Skew Factor
-
0.5
DQS falling edge to CK setup time
0.2
-
DQS falling edge hold time from CK
0.2
-
Alliance Memory, lnc. Confidential
13
Rev. 1.1
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tCK
ns
s
tCK
ns
ns
ns
ns
ns
tCK
tCK
2
4
5
6
6
7
Sep. /2011
AS4C16M16D1
Table 17. Recommended A.C. Operating Conditions (VDD = 2.5V ± 0.2V, TA = -40~85 C)
Parameter
Input High Voltage (AC)
Symbol
Min.
Max.
Unit
VIH (AC)
VREF + 0.31
-
V
Input Low Voltage (AC)
VIL (AC)
-
VREF – 0.31
V
Input Different Voltage, CK and CK inputs
VID (AC)
0.7
VDDQ + 0.6
V
Input Crossing Point Voltage, CK and CK inputs
VIX (AC)
0.5*VDDQ-0.2
0.5*VDDQ+0.2
V
Note:
1) Enables on-chip refresh and address counters.
2) Min(tCL, tCH) refers to ther smaller of the actual clock low time and actual clock high time as provided to the
device.
3) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters
are not referenced to a specific voltage level, but specify when the device output is no longer driving(HZ), or
begins driving(LZ).
4) The specific requirement is that DQS be valid (High, Low, or at some point on a valid transition) on or before
this CK edge. A valid transition is defined as monotonic, and meeting the input slew rate specifications of the
device. When no writes were previously in progress on the bus, DQS will be transitioning from High-Z to
logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to
LOW at this time, depending on tDQSS.
5) The maximum limit for this parameter is not a device limit. The device will operate with a greater value for
this parameter, but system performance (bus turnaround) will degrade accordingly.
6) For command/address and CK & CK slew rate ≧ 1.0V/ns.
7) A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.
8) Power-up sequence is described in Note 10
9) A.C. Test Conditions
Table 18. SSTL _2 Interface
Reference Level of Output Signals (VREF)
0.5 * VDDQ
Output Load
Reference to the Test Load
Input Signal Levels
VREF+0.31 V / VREF-0.31 V
Input Signals Slew Rate
1 V/ns
Reference Level of Input Signals
0.5 * VDDQ
Alliance Memory, lnc. Confidential
14
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 3. SSTL_2 A.C. Test Load
0.5 * VDDQ
50Ω
DQ, DQS
Z0=50Ω
30pF
10) Power up Sequence
Power up must be performed in the following sequence.
1) Apply power to VDD before or at the same time as VDDQ, VTT and VREF when all input signals are held
"NOP" state and maintain CKE “LOW”.
2) Start clock and maintain stable condition for minimum 200s.
3) Issue a “NOP” command and keep CKE “HIGH”
4) Issue a “Precharge All” command.
5) Issue EMRS – enable DLL.
6) Issue MRS – reset DLL. (An additional 200 clock cycles are required to lock the DLL).
7) Precharge all banks of the device.
8) Issue two or more Auto Refresh commands.
9) Issue MRS – with A8 to low to initialize the mode register.
Alliance Memory, lnc. Confidential
15
Rev. 1.1
Sep. /2011
AS4C16M16D1
Timing Waveforms
Figure 4. Activating a Specific Row in a Specific Bank
CK
CK
CKE
HIGH
CS
RAS
CAS
WE
Address
RA
BA0,1
BA
RA=Row Address
BA=Bank Address
Don’t Care
Alliance Memory, lnc. Confidential
16
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 5. tRCD and tRRD Definition
CK
CK
RD/
WR
COMMAND
ACT
Address
Row
Row
Col
BA0,BA1
Bank A
Bank B
Bank B
NOP
NOP
ACT
tRRD
NOP
NOP
NOP
tRCD
Don’t Care
Figure 6. READ Command
CK
CK
CKE
HIGH
CS
RAS
CAS
WE
A0 - A8
CA
EN AP
A10
DIS AP
BA0,1
BA
CA=Column Address
BA=Bank Address
EN AP=Enable Autoprecharge
DIS AP=Disable Autoprecharge
Don’t Care
Alliance Memory, lnc. Confidential
17
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 7. Read Burst Required CAS Latencies (CL=2)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
NOP
NOP
NOP
NOP
CL=2
DQS
DO
n
DQ
DO n=Data Out from column n
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order
following DO n
Don’t Care
Read Burst Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
NOP
NOP
NOP
NOP
CL=2.5
DQS
DO
n
DQ
DO n=Data Out from column n
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order following DO n
Don’t Care
Alliance Memory, lnc. Confidential
18
Rev. 1.1
Sep. /2011
AS4C16M16D1
Read Burst Required CAS Latencies (CL=3)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
NOP
NOP
NOP
NOP
CL=3
DQS
DO
n
DQ
DO n=Data Out from column n
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order
following DO n
Don’t Care
Alliance Memory, lnc. Confidential
19
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 8. Consecutive Read Bursts Required CAS Latencies (CL=2)
CK
CK
COMMAND
ADDRESS
READ
NOP
READ
NOP
NOP
NOP
Bank,
Col o
Bank,
Col n
CL=2
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)
3 subsequent elements of Data Out appear in the programmed order following DO n
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o
Read commands shown must be to the same device
Don’t Care
Alliance Memory, lnc. Confidential
20
Rev. 1.1
Sep. /2011
AS4C16M16D1
Consecutive Read Bursts Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
ADDRESS
READ
NOP
READ
NOP
NOP
NOP
Bank,
Col o
Bank,
Col n
CL=2.5
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)
3 subsequent elements of Data Out appear in the programmed order following DO n
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o
Read commands shown must be to the same device
Don’t Care
Alliance Memory, lnc. Confidential
21
Rev. 1.1
Sep. /2011
AS4C16M16D1
Consecutive Read Bursts Required CAS Latencies (CL=3)
CK
CK
COMMAND
ADDRESS
READ
NOP
Bank,
Col n
READ
NOP
NOP
NOP
Bank,
Col o
CL=3
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first)
3 subsequent elements of Data Out appear in the programmed order following DO n
3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o
Read commands shown must be to the same device
Don’t Care
Alliance Memory, lnc. Confidential
22
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 9. Non-Consecutive Read Bursts Required CAS Latencies (CL=2)
CK
CK
COMMAND
ADDRESS
READ
NOP
NOP
READ
NOP
NOP
Bank,
Col o
Bank,
Col n
CL=2
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order following DO n
(and following DO o)
Don’t Care
Alliance Memory, lnc. Confidential
23
Rev. 1.1
Sep. /2011
AS4C16M16D1
Non-Consecutive Read Bursts Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
ADDRESS
READ
NOP
NOP
READ
NOP
NOP
NOP
Bank,
Col o
Bank,
Col n
CL=2.5
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order following DO n
(and following DO o)
Don’t Care
Alliance Memory, lnc. Confidential
24
Rev. 1.1
Sep. /2011
AS4C16M16D1
Non-Consecutive Read Bursts Required CAS Latencies (CL=3)
CK
CK
COMMAND
ADDRESS
READ
NOP
NOP
READ
NOP
NOP
NOP
Bank,
Col o
Bank,
Col n
CL=3
DQS
DO
n
DQ
DO
o
DO n (or o)=Data Out from column n (or column o)
Burst Length=4
3 subsequent elements of Data Out appear in the programmed order following DO n
(and following DO o)
Alliance Memory, lnc. Confidential
25
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 10. Random Read Accesses Required CAS Latencies (CL=2)
CK
CK
COMMAND
ADDRESS
READ
READ
READ
READ
Bank,
Col n
Bank,
Col o
Bank,
Col p
Bank,
Col q
NOP
NOP
CL=2
DQS
DO
n
DQ
DO
n'
DO
o
DO
o'
DO
p
DO
p'
DO
q
DO n, etc. =Data Out from column n, etc.
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted
Reads are to active rows in any banks
Don’t Care
Alliance Memory, lnc. Confidential
26
Rev. 1.1
Sep. /2011
AS4C16M16D1
Random Read Accesses Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
ADDRESS
READ
READ
READ
READ
Bank,
Col n
Bank,
Col o
Bank,
Col p
Bank,
Col q
NOP
NOP
CL=2.5
DQS
DO
n
DQ
DO
n'
DO
o
DO
o'
DO
p
DO
p'
DO n, etc. =Data Out from column n, etc.
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted
Reads are to active rows in any banks
Don’t Care
Alliance Memory, lnc. Confidential
27
Rev. 1.1
Sep. /2011
AS4C16M16D1
Random Read Accesses Required CAS Latencies (CL=3)
CK
CK
COMMAND
ADDRESS
READ
READ
READ
READ
Bank,
Col n
Bank,
Col o
Bank,
Col p
Bank,
Col q
NOP
NOP
CL=3
DQS
DO
n
DQ
DO
n'
DO
o
DO
o'
DO
p
DO n, etc. =Data Out from column n, etc.
n', etc. =the next Data Out following DO n, etc. according to the programmed burst order
Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted
Reads are to active rows in any banks
Don’t Care
Alliance Memory, lnc. Confidential
28
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 11. Terminating a Read Burst Required CAS Latencies (CL=2)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
BST
NOP
NOP
NOP
CL=2
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are bursts of 8 terminated after 4 data elements
3 subsequent elements of Data Out appear in the programmed order following DO n
Don’t Care
Alliance Memory, lnc. Confidential
29
Rev. 1.1
Sep. /2011
AS4C16M16D1
Terminating a Read Burst Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
BST
NOP
NOP
NOP
CL=2.5
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are bursts of 8 terminated after 4 data elements
3 subsequent elements of Data Out appear in the programmed order following DO n
Don’t Care
Alliance Memory, lnc. Confidential
30
Rev. 1.1
Sep. /2011
AS4C16M16D1
Terminating a Read Burst Required CAS Latencies (CL=3)
CK
CK
COMMAND
READ
ADDRESS
Bank A,
Col n
NOP
BST
NOP
NOP
NOP
CL=3
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are bursts of 8 terminated after 4 data elements
3 subsequent elements of Data Out appear in the programmed order following DO n
Don’t Care
Alliance Memory, lnc. Confidential
31
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 12. Read to Write Required CAS Latencies (CL=2)
CK
CK
COMMAND
ADDRESS
READ
BST
NOP
NOP
WRITE
NOP
Bank,
Col o
Bank,
Col n
tDQSS
min
CL=2
DQS
DO
n
DQ
DI
o
DM
DO n (or o)= Data Out from column n (or column o)
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST
command shown can be NOP)
1 subsequent element of Data Out appears in the programmed order following DO n
Data in elements are applied following DI o in the programmed order
Don’t Care
Alliance Memory, lnc. Confidential
32
Rev. 1.1
Sep. /2011
AS4C16M16D1
Read to Write Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
ADDRESS
READ
BST
NOP
NOP
NOP
WRITE
Bank,
Col o
Bank,
Col n
CL=2.5
tDQSS
min
DQS
DO
n
DQ
DI
o
DM
DO n (or o)= Data Out from column n (or column o)
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST
command shown can be NOP)
1 subsequent element of Data Out appears in the programmed order following DO n
Data in elements are applied following DI o in the programmed order
Don’t Care
Alliance Memory, lnc. Confidential
33
Rev. 1.1
Sep. /2011
AS4C16M16D1
Read to Write Required CAS Latencies (CL=3)
CK
CK
COMMAND
ADDRESS
READ
BST
NOP
NOP
NOP
WRITE
Bank,
Col o
Bank,
Col n
tDQSS
min
CL=3
DQS
DO
n
DQ
DI
o
DM
DO n (or o)= Data Out from column n (or column o)
Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST
command shown can be NOP)
1 subsequent element of Data Out appears in the programmed order following DO n
Data in elements are applied following DI o in the programmed order
Don’t Care
Alliance Memory, lnc. Confidential
34
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 13. Read to Precharge Required CAS Latencies (CL=2)
CK
CK
COMMAND
READ
NOP
PRE
NOP
NOP
ACT
tRP
ADDRESS
Bank A,
Col n
Bank
(a or all)
Bank A,
Row
CL=2
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8
3 subsequent elements of Data Out appear in the programmed order
following DO n
Precharge may be applied at (BL/2) tCK after the READ command
Note that Precharge may not be issued before tRAS ns after the ACTIVE
command for applicable banks
The Active command may be applied if tRC has been met
Don’t Care
Alliance Memory, lnc. Confidential
35
Rev. 1.1
Sep. /2011
AS4C16M16D1
Read to Precharge Required CAS Latencies (CL=2.5)
CK
CK
COMMAND
READ
NOP
PRE
NOP
NOP
ACT
tRP
ADDRESS
Bank A,
Col n
Bank
(a or all)
Bank A,
Row
CL=2.5
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8
3 subsequent elements of Data Out appear in the programmed order
following DO n
Precharge may be applied at (BL/2) tCK after the READ command
Note that Precharge may not be issued before tRAS ns after the ACTIVE
command for applicable banks
The Active command may be applied if tRC has been met
Don’t Care
Alliance Memory, lnc. Confidential
36
Rev. 1.1
Sep. /2011
AS4C16M16D1
Read to Precharge Required CAS Latencies (CL=3)
CK
CK
COMMAND
READ
NOP
PRE
NOP
NOP
ACT
tRP
ADDRESS
Bank A,
Col n
Bank
(a or all)
Bank A,
Row
CL=3
DQS
DO
n
DQ
DO n = Data Out from column n
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8
3 subsequent elements of Data Out appear in the programmed order
following DO n
Precharge may be applied at (BL/2) tCK after the READ command
Note that Precharge may not be issued before tRAS ns after the ACTIVE
command for applicable banks
The Active command may be applied if tRC has been met
Don’t Care
Alliance Memory, lnc. Confidential
37
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 14. Write Command
CK
CK
CKE
HIGH
CS
RAS
CAS
WE
A0 - A8
CA
EN AP
A10
DIS AP
BA0,1
BA
CA=Column Address
BA=Bank Address
EN AP=Enable Autoprecharge
DIS AP=Disable Autoprecharge
Don’t Care
Alliance Memory, lnc. Confidential
38
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 15. Write Max DQSS
CK
T0
T1
T2
T3
T4
T5
T6
T7
CK
COMMAND
WRITE
ADDRESS
Bank A,
Col n
NOP
NOP
NOP
tDQSS
max
DQS
DI
n
DQ
DM
DI n = Data In for column n
3 subsequent elements of Data In are applied in the programmed
order following DI n
A non-interrupted burst of 4 is shown
A10 is LOW with the WRITE command (AUTO PRECHARGE
disabled)
Don’t Care
Alliance Memory, lnc. Confidential
39
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 16. Write Min DQSS
CK
T0
T1
T2
T3
T4
T5
T6
CK
COMMAND
ADDRESS
NOP
WRITE
NOP
NOP
Bank A,
Col n
tDQSS
min
DQS
DQ
DI
n
DM
DI n = Data In for column n
3 subsequent elements of Data In are applied in the programmed
order following DI n
A non-interrupted burst of 4 is shown
A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)
Don’t Care
Alliance Memory, lnc. Confidential
40
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 17. Write Burst Nom, Min, and Max tDQSS
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
CK
COMMAND
ADDRESS
NOP
WRITE
NOP
NOP
NOP
NOP
Bank ,
Col n
tDQSS (nom)
DQS
DI
n
DQ
DM
tDQSS (min)
DQS
DQ
DI
n
DM
tDQSS (max)
DQS
DI
n
DQ
DM
DI n = Data In for column n
3 subsequent elements of Data are applied in the programmed order following DI n
A non-interrupted burst of 4 is shown
A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)
DM=UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
41
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 18. Write to Write Max tDQSS
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
CK
COMMAND
ADDRESS
WRITE
NOP
WRITE
NOP
NOP
NOP
Bank ,
Col o
Bank ,
Col n
tDQSS (max)
DQS
DI
n
DQ
DI
o
DM
DI n , etc. = Data In for column n,etc.
3 subsequent elements of Data In are applied in the programmed order following DI n
3 subsequent elements of Data In are applied in the programmed order following DI o
Non-interrupted bursts of 4 are shown
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
42
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 19. Write to Write Max tDQSS, Non Consecutive
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
CK
COMMAND
ADDRESS
WRITE
NOP
NOP
Bank
Col n
WRITE
NOP
NOP
Bank
Col o
tDQSS (max)
DQS
DI
n
DQ
DI
o
DM
DI n, etc. = Data In for column n, etc.
3 subsequent elements of Data In are applied in the programmed order following DI n
3 subsequent elements of Data In are applied in the programmed order following DI o
Non-interrupted bursts of 4 are shown
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
43
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 20. Random Write Cycles Max tDQSS
CK
T0
T1
T2
T4
T3
T5
T6
T8
T7
T9
CK
COMMAND
ADDRESS
WRITE
WRITE
WRITE
WRITE
WRITE
Bank
Col n
Bank
Col o
Bank
Col p
Bank
Col q
Bank
Col r
tDQSS (max)
DQS
DI
n
DQ
DI
n'
DI
o
DI
o'
DI
p
DI
p'
DI
q
DI
q'
DM
DI n, etc. = Data In for column n, etc.
n', etc. = the next Data In following DI n, etc. according to the programmed burst order
Programmed Burst Length 2, 4, or 8 in cases shown
If burst of 4 or 8, the burst would be truncated
Each WRITE command may be to any bank and may be to the same or different devices
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
44
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 21. Write to Read Max tDQSS Non Interrupting
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
CK
COMMAND
WRITE
NOP
NOP
NOP
NOP
READ
NOP
tWTR
ADDRESS
Bank
Col o
Bank
Col n
CL=3
tDQSS (max)
DQS
DI
n
DQ
DM
DI n, etc. = Data In for column n, etc.
1 subsequent elements of Data In are applied in the programmed order following DI n
A non-interrupted burst of 2 is shown
tWTR is referenced from the first positive CK edge after the last Data In Pair
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
The READ and WRITE commands are to the same devices but not necessarily to the same bank
DM= UDM & LDM
Alliance Memory, lnc. Confidential
Don’t Care
45
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 22. Write to Read Max tDQSS Interrupting
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
CK
COMMAND
WRITE
NOP
NOP
NOP
READ
NOP
tWTR
ADDRESS
Bank
Col o
Bank
Col n
CL=3
tDQSS (max)
DQS
DI
n
DQ
DM
DI n, etc. = Data In for column n, etc.
1 subsequent elements of Data In are applied in the programmed order following DI n
An interrupted burst of 8 is shown, 2 data elements are written
tWTR is referenced from the first positive CK edge after the last Data In Pair
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
The READ and WRITE commands are to the same devices but not necessarily to the same bank
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
46
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 23. Write to Read Max tDQSS, ODD Number of Data, Interrupting
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
CK
CK
COMMAND
WRITE
NOP
NOP
NOP
READ
NOP
tWTR
ADDRESS
Bank
Col o
Bank
Col n
CL=3
tDQSS (max)
DQS
DI
n
DQ
DM
DI n = Data In for column n
An interrupted burst of 8 is shown, 1 data elements are written
tWTR is referenced from the first positive CK edge after the last Data In Pair (not the last desired
Data In element)
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
The READ and WRITE commands are to the same devices but not necessarily to the same bank
DM= LDM & UDM
Don’t Care
Alliance Memory, lnc. Confidential
47
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 24. Write to Precharge Max tDQSS, NON- Interrupting
CK
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
CK
COMMAND
WRITE
NOP
NOP
NOP
NOP
PRE
tWR
ADDRESS
Bank a,
Col n
Bank
(a or al)
tRP
tDQSS (max)
DQS
DI
n
DQ
DM
DI n = Data In for column n
1 subsequent elements of Data In are applied in the programmed order following DI n
A non-interrupted burst of 2 is shown
tWR is referenced from the first positive CK edge after the last Data In Pair
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
48
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 25. Write to Precharge Max tDQSS, Interrupting
CK
T0
T1
T2
T3
T4
T5
T6
T8
T7
T9
T10
T11
CK
COMMAND
WRITE
NOP
NOP
NOP
PRE
NOP
tWR
ADDRESS
Bank a,
Col n
Bank
(a or all)
tDQSS (max)
tRP
*2
DQS
DI
n
DQ
DM
*1
*1
*1
*1
DI n = Data In for column n
An interrupted burst of 4 or 8 is shown, 2 data elements are written
tWR is referenced from the first positive CK edge after the last Data In Pair
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
*1 = can be don't care for programmed burst length of 4
*2 = for programmed burst length of 4, DQS becomes don't care at this point
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
49
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 26. Write to Precharge Max tDQSS ODD Number of Data Interrupting
CK
T0
T1
T2
T3
T4
T5
T6
T8
T7
T9
T10
T11
CK
COMMAND
WRITE
NOP
NOP
NOP
NOP
PRE
tWR
ADDRESS
Bank a,
Col n
Bank
(a or all)
tDQSS (max)
tRP
*2
DQS
DI
n
DQ
DM
*1
*1
*1
*1
DI n = Data In for column n
An interrupted burst of 4 or 8 is shown, 1 data element is written
tWR is referenced from the first positive CK edge after the last Data In Pair
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)
*1 = can be don't care for programmed burst length of 4
*2 = for programmed burst length of 4, DQS becomes don't care at this point
DM= UDM & LDM
Don’t Care
Alliance Memory, lnc. Confidential
50
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 27. Precharge Command
CK
CK
CKE
HIGH
CS
RAS
CAS
WE
A0-A9,
A11,A12
ALL BANKS
A10
ONE BANK
BA0,1
BA
BA= Bank Address (if A10 is
LOW, otherwise don't care)
Don’t Care
Alliance Memory, lnc. Confidential
51
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 28. Power-Down
T0
T1
T2
T3
T4
Tn
Tn+3 Tn+4 Tn+5 Tn+6
Tn+1 Tn+2
CK
CK
tIS
tIS
CKE
COMMAND
NOP
NOP
VALID
No column access
in progress
VALID
Exit power-down
mode
Enter power-down
mode
Don’t Care
Figure 29. Clock Frequency Change in Precharge
CK
CK
T0
CMD
CKE
T1
NOP
T2
T4
Tx
Tx+1
NOP
Ty
Ty+1
Ty+2
NOP
DLL
RESET
Ty+4
NOP
Tz
NOP
Valid
tIS
Frequency Change
Occurs here
tRP
Stable new clock
Before power down
exit
Minmum 2 clocks
Required before
Changing frequency
Alliance Memory, lnc. Confidential
Ty+3
52
200 Clocks
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 30. Data input (Write) Timing
tDQSH
tDQSL
DQS
tDS
DQ
tDH
tDS
DI
n
DM
tDH
DI n = Data In for column n
Burst Length = 4 in the case shown
3 subsequent elements of Data In are applied in the programmed order
following DI n
Don’t Care
Figure 31. Data Output (Read) Timing
tCH
tCL
CK
CK
DQS
DQ
tDQSQ
max
tDQSQ
max
tQH
tQH
Burst Length = 4 in the case shown
Alliance Memory, lnc. Confidential
53
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 32. Initialize and Mode Register Sets
VDD
VDDQ
tVDT>=0
VTT
(system*)
tCK
tCH tCL
VREF
CK
CK
tIS tIH
CKE
LVCMOS LOW LEVEL
tIS tIH
NOP
COMMAND
PRE
MRS
EMRS
PRE
AR
AR
MRS
ACT
CODE
RA
CODE
RA
BA0=L
BA1=L
BA
DM
tIS tIH
A0-A9,
A11,A12
CODE
ALL BANKS
A10
tIS tIH
CODE
tIS tIH
ALL BANKS
CODE
CODE
tIS tIH
tIS tIH
BA0=H
BA1=L
BA0,BA1
BA0=L
BA1=L
High-Z
DQS
High-Z
DQ
T=200µs
**tMRD
**tMRD
Extended mode
Register set
Power-up:
VDD and
CLK stable
tRP
tRFC
tRFC
**tMRD
200 cycles of CK**
Load Mode
Register,
(with A8=L)
Load Mode
Register,
Reset DLL (with A8=H)
*=VTT is not applied directly to the device, however tVTD must be greater than or equal to zero to avoid device latch-up.
** = tMRD is required before any command can be applied, and 200 cycles of CK are required before any executable
command can be applied the two auto Refresh commands may be moved to follow the first MRS but precede the second
PRECHARGE ALL command.
Don’t Care
Alliance Memory, lnc. Confidential
54
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 33. Power Down Mode
tCK
tCH
tCL
CK
CK
tIS tIH
CKE
tIS
tIS
tIS tIH
COMMAND
VALID*
NOP
NOP
VALID
tIS tIH
ADDR
VALID
VALID
DQS
DQ
DM
Enter
power-down mode
Exit
power-down mode
No column accesses are allowed to be in progress at the time Power-Down is entered
*=If this command is a PRECHARGE ALL (or if the device is already in the idle state) then the Power-Down
mode shown is Precharge Power Down. If this command is an ACTIVE (or if at least one row is already active)
then the Power-Down mode shown is active Power Down.
Don’t Care
Alliance Memory, lnc. Confidential
55
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 34. Auto Refresh Mode
tCK
tCH tCL
CK
CK
tIS tIH
CKE
VALID
VALID
tIS tIH
COMMAND
NOP
PRE
NOP
NOP
AR
NOP
AR
NOP
NOP
ACT
A0-A8
RA
A9,A11,A12
RA
ALL BANKS
RA
A10
ONE BANKS
tIS
BA0,BA1
tIH
BA
*Bank(s)
DQS
DQ
DM
tRP
tRFC
tRFC
* = “Don't Care”, if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all active banks)
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH
NOP commands are shown for ease of illustration; other valid commands may be possible after tRFC
DM, DQ and DQS signals are all “Don't Care”/High-Z for operations shown
Don’t Care
Alliance Memory, lnc. Confidential
56
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 35. Self Refresh Mode
tCK
tCH
CK
Clock must be stable before
Exiting Self Refresh mode
tCL
CK
tIS tIH
CKE
tIS
tIS
tIS tIH
COMMAND
NOP
NOP
AR
VALID
tIS tIH
VALID
ADDR
DQS
DQ
DM
tRP*
tXSNR/
tXSRD**
Enter Self Refresh
mode
Exit Self Refresh
mode
* = Device must be in the “All banks idle” state prior to entering Self Refresh mode
** = tXSNR is required before any non-READ command can be applied, and tXSRD (200 cycles of CK) is
required before a READ command can be applied.
Don’t Care
Alliance Memory, lnc. Confidential
57
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 36. Read without Auto Precharge
tCK
tCH tCL
CK
CK
tIH
tIS tIH
CKE
VALID
VALID
VALID
NOP
NOP
NOP
tIS tIH
NOP
COMMAND
READ
PRE
NOP
NOP
NOP
ACT
tIS tIH
Col n
A0-A8
RA
RA
A9,A11,A12
tIS
tIH
ALL BANKS
RA
A10
ONE BANKS
DIS AP
tIS tIH
Bank X
BA0,BA1
Bank X
*Bank X
CL=3
tRP
DM
Case 1:
tAC/tDQSCK=min
tDQSCK
min
tRPRE
tRPST
DQS
tLZ
min
DQ
DO
n
tLZ
tAC
min
Case 2:
tAC/tDQSCK=max
min
tDQSCK
max
tRPRE
tRPST
DQS
tLZ
max
DQ
tLZ
max
tHZ
max
DO
n
tAC
max
DO n = Data Out from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data Out are provided in the programmed order following DO n
DIS AP = Disable Autoprecharge
* =“Don't Care”, if A10 is HIGH at this point
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH
NOP commands are shown for ease of illustration; other commands may be valid at these times
Don’t Care
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks
Alliance Memory, lnc. Confidential
58
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 37. Read with Auto Precharge
tCK
tCH tCL
CK
CK
tIH
tIS tIH
CKE
VALID
VALID
VALID
NOP
NOP
NOP
tIS tIH
NOP
COMMAND
READ
NOP
NOP
NOP
NOP
ACT
tIS tIH
Col n
A0-A8
RA
RA
A9,A11,A12
EN AP
RA
A10
tIS tIH
tIS tIH
Bank X
BA0,BA1
Bank X
CL=3
tRP
DM
Case 1:
tAC/tDQSCK=min
tDQSCK
min
tRPRE
DQS
tRPST
tLZ
min
DO
n
DQ
tLZ
tAC
min
min
Case 2:
tAC/tDQSCK=max
tDQSCK
max
tRPRE
tRPST
DQS
tLZ
max
DQ
tHZ
max
DO
n
tLZ
max
tAC
max
DO n = Data Out from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data Out are provided in the programmed order following DO n
EN AP = Enable Autoprecharge
ACT = ACTIVE, RA = Row Address
NOP commands are shown for ease of illustration; other commands may be valid at these times
The READ command may not be issued until tRAP has been satisfied. If Fast Autoprecharge is supported, tRAP = tRCD, else the READ
may not be issued prior to tRASmin – (BL*tCK/2)
Don’t Care
Alliance Memory, lnc. Confidential
59
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 38. Bank Read Access
tCK
tCH tCL
CK
CK
tIS tIH
CKE
tIS tIH
NOP
COMMAND
ACT
NOP
NOP
NOP
READ
NOP
PRE
NOP
NOP
ACT
tIS tIH
A0-A8
RA
A9,A11,A12
RA
Col n
RA
tIS
A10
tIH
ALL BANKS
RA
RA
tIS tIH
BA0,BA1
RA
Bank X
DIS AP
ONE BANKS
Bank X
*Bank X
Bank X
tRC
tRAS
tRCD
tRP
CL=3
DM
Case 1:
tAC/tDQSCK=min
tDQSCK
min
tRPRE
DQS
tLZ
DO
n
min
DQ
tLZ
tAC
tDQSCK
min
Case 2:
tAC/tDQSCK=max
min
max
tRPRE
DQS
tRPST
tHZ
tLZ
max
max
DQ
tRPST
DO
n
tLZ
max
DO n = Data Out from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data Out are provided in the programmed order following DO n
tAC
max
DIS AP = Disable Autoprecharge
* = ”Don't Care”, if A10 is HIGH at this point
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address
NOP commands are shown for ease of illustration; other commands may be valid at these times
Note that tRCD > tRCD MIN so that the same timing applies if Autoprecharge is enabled (in which case tRAS
would be limiting)
Alliance Memory, lnc. Confidential
60
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 39. Write without Auto Precharge
tCK
tCH tCL
CK
CK
tIH
tIS tIH
CKE
VALID
tIS tIH
COMMAND
NOP
NOP
NOP
NOP
WRITE
NOP
PRE
NOP
NOP
ACT
tIS tIH
A0-A8
RA
Col n
RA
A9,A11,A12
tIS tIH
ALL BANKS
RA
A10
ONE BANKS
DIS AP
tIS tIH
BA0,BA1
Bank X
Case 1:
tDQSS=min
tDQSS
BA
*Bank X
tDSH
tDQSH
tRP
tDSH
tWR
tWPST
DQS
tDQSL
tWPRES
tWPRE
DI
n
DQ
DM
tDSS
Case 2:
tDQSS=max
tDQSS
tDQSH
tDSS
tWPST
DQS
tWPRES
tDQSL
tWPRE
DI
n
DQ
DM
DI n = Data In from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data In are provided in the programmed order following DI n
DIS AP = Disable Autoprecharge
*=”Don't Care”, if A10 is HIGH at this point
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH
NOP commands are shown for ease of illustration; other commands may be valid at these times
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the +
25% window of the corresponding positive clock edge
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks
Alliance Memory, lnc. Confidential
61
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 40. Write with Auto Precharge
tCK
tCH tCL
CK
CK
tIS tIH
CKE
VALID
VALID
VALID
NOP
NOP
NOP
tIS tIH
COMMAND
NOP
NOP
NOP
NOP
WRITE
NOP
ACT
tIS tIH
A0-A8
RA
Col n
RA
A9,A11,A12
DIS AP
RA
A10
tIS tIH
BA0,BA1
Bank X
BA
tDAL
Case 1:
tDQSS=min
tDQSS
tDSH
tDQSH
tDSH
tWPST
DQS
tWPRES
tDQSL
tWPRE
DI
n
DQ
DM
Case 2:
tDQSS=max
tDQSS
tDSS
tDQSH
tDSS
tWPST
DQS
tWPRES
tDQSL
tWPRE
DI
n
DQ
DM
DI n = Data In from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data Out are provided in the programmed order following DI n
EN AP = Enable Autoprecharge
ACT = ACTIVE, RA = Row Address, BA = Bank Address
NOP commands are shown for ease of illustration; other commands may be valid at these times
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%
window of the corresponding positive clock edge
Alliance Memory, lnc. Confidential
62
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 41. Bank Write Access
tCK
tCH tCL
CK
CK
tIS tIH
CKE
tIS tIH
NOP
COMMAND
ACT
NOP
NOP
WRITE
NOP
NOP
NOP
NOP
PRE
tIS tIH
RA
A0-A8
Col n
RA
A9,A11,A12
tIS tIH
ALL BANKS
DIS AP
ONE BANK
RA
A10
tIS tIH
Bank X
BA0,BA1
Bank X
*Bank X
tRAS
tRCD
Case 1:
tDQSS=min
tWR
tDQSS
tDSH
tDQSH
tDSH
tWPST
DQS
tWPRES
tWPRE
tDQSL
DI
n
DQ
DM
tDSS
Case 2:
tDQSS=max
tDQSS
tDQSH
tDSS
tWPST
DQS
tWPRES
tDQSL
tWPRE
DI
n
DQ
DM
DI n = Data In from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data Out are provided in the programmed order following DI n
DIS AP = Disable Autoprecharge
*=”Don't Care”, if A10 is HIGH at this point
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address
NOP commands are shown for ease of illustration; other commands may be valid at these times
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%
window of the corresponding positive clock edge
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks
Alliance Memory, lnc. Confidential
63
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 42. Write DM Operation
tCK
tCH tCL
CK
CK
tIS tIH
CKE
VALID
tIS tIH
COMMAND
NOP
NOP
NOP
NOP
WRITE
NOP
PRE
NOP
NOP
ACT
tIS tIH
A0-A8
RA
Col n
RA
A9,A11,A12
tIS
tIH
ALL BANKS
RA
A10
ONE BANKS
DIS AP
tIS tIH
BA0,BA1
Bank X
Case 1:
tDQSS=min
tDQSS
BA
*Bank X
tDSH
tDQSH
tRP
tDSH
tWR
tWPST
DQS
tDQSL
tWPRES
tWPRE
DI
n
DQ
DM
tDSS
Case 2:
tDQSS=max
tDQSS
tDSS
tDQSH
tWPST
DQS
tWPRES
tDQSL
tWPRE
DI
n
DQ
DM
DI n = Data In from column n
Burst Length = 4 in the case shown
3 subsequent elements of Data In are provided in the programmed order following DI n
DIS AP = Disable Autoprecharge
*=”Don't Care”, if A10 is HIGH at this point
PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address
NOP commands are shown for ease of illustration; other commands may be valid at these times
Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the + 25%
window of the corresponding positive clock edge
Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks
Alliance Memory, lnc. Confidential
64
Rev. 1.1
Don’t Care
Sep. /2011
AS4C16M16D1
Figure 43. 66 Pin TSOP II Package Outline Drawing Information
Units: mm
D
D
C
A2
L
HE
E
L1
C
A
θ
b
e
A1
S
F
(TYP)
Symbol
A
A1
A2
b
e
C
D
E
HE
L
L1
F
θ
S
D
y
Dimension in mm
Min
Nom
Max
--0.05
0.9
0.22
--0.095
22.09
10.03
11.56
0.40
----0°
-----
----1.0
--0.65
0.125
22.22
10.16
11.76
0.5
0.8
0.25
--0.71
---
Alliance Memory, lnc. Confidential
1.2
0.2
1.1
0.45
--0.21
22.35
10.29
11.96
0.6
----8°
--0.10
Dimension in inch
Min
Nom
Max
--0.002
0.035
0.009
--0.004
0.87
0.395
0.455
0.016
----0°
-----
65
----0.039
--0.026
0.005
0.875
0.4
0.463
0.02
0.032
0.01
--0.028
---
0.047
0.008
0.043
0.018
--0.008
0.88
0.405
0.471
0.024
----8°
--0.004
Rev. 1.1
Sep. /2011
AS4C16M16D1
Figure 44. BGA 60ball package Outline Drawing Information
Pin A1 index
Top View
Bottom View
Side View
Symbol
A
A1
A2
A3
D
E
D1
E1
e1
e2
b
F
SD
SE
D2
DETAIL : "A"
Dimension (inch)
Min
Nom
Max
--0.047
0.012 0.014 0.016
--0.031
0.005 0.007 0.009
0.311 0.315 0.319
0.508 0.512 0.516
-0.252
--0.433
--0.039
--0.031
-0.016 0.018 0.020
-0.126
--0.031
--0.02
---0.081
Alliance Memory, lnc. Confidential
Dimension (mm)
Min
Nom
Max
--1.20
0.30
0.35
0.40
--0.8
0.13
0.18
0.23
7.90
8.00
8.10
12.90 13.00 13.10
-6.40
--11.00
--1.00
--0.80
-0.40
0.45
0.50
-3.20
--0.80
--0.50
---2.05
66
Rev. 1.1
Sep. /2011
AS4C16M16D1
Alliance Memory, lnc. Confidential
67
Rev. 1.1
Sep. /2011
Similar pages