ON NCP170AXV330T2G Ultraâ low iq 150 ma cmos ldo regulator Datasheet

NCP170
Ultra‐Low IQ 150 mA
CMOS LDO Regulator
The NCP170 series of CMOS low dropout regulators are designed
specifically for portable battery-powered applications which require
ultra-low quiescent current. The ultra-low consumption of typ. 500 nA
ensures long battery life and dynamic transient boost feature improves
device transient response for wireless communication applications.
The device is available in small 1 × 1 mm xDFN4 and SOT-563
packages.
www.onsemi.com
6
1
Features
•
•
•
•
•
•
•
•
•
•
•
Operating Input Voltage Range: 2.2 V to 5.5 V
Output Voltage Range: 1.2 V to 3.6 V (0.1 V Steps)
Ultra-Low Quiescent Current Typ. 0.5 mA
Low Dropout: 170 mV Typ. at 150 mA
High Output Voltage Accuracy ±1%
Stable with Ceramic Capacitors 1 mF
Over-Current Protection
Thermal Shutdown Protection
NCP170A for Active Discharge Option
Available in Small 1 × 1 mm xDFN4 and SOT-563 Packages
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
1
XDFN4
MX SUFFIX
CASE 711AJ
MARKING DIAGRAMS
XDFN4
XX M
1
XX = Specific Device Code
M = Date Code
SOT−563
Typical Applications
XX MG
• Battery Powered Equipments
• Portable Communication Equipments
• Cameras, Image Sensors and Camcorders
1
XX = Specific Device Code
M = Month Code
G
= Pb-Free Package
VIN
VOUT
IN
OUT
NCP170
CIN
1 mF
COUT
EN
SOT−563
XV SUFFIX
CASE 463A
*Pb-Free indicator, “G” or microdot “G”,
may or may not be present.
1 mF
GND
ORDERING INFORMATION
See detailed ordering, marking and shipping information on
page 18 of this data sheet.
Figure 1. Typical Application Schematic
© Semiconductor Components Industries, LLC, 2015
February, 2015 − Rev. 6
1
Publication Order Number:
NCP170/D
NCP170
PIN FUNCTION DESCRIPTION
Pin No.
XDFN4
Pin No.
SOT−563
Pin Name
4
1
IN
2
2
GND
3
6
EN
1
3
OUT
Output Pin
EPAD
Internally Connected to GND
EPAD
Description
Power Supply Input Voltage
Power Supply Ground
Chip Enable Pin (Active “H”)
4
NC
No Connect
5
GND
Power Supply Ground
ABSOLUTE MAXIMUM RATINGS
Symbol
VIN
Rating
Input Voltage (Note 1)
VOUT
Output Voltage
VCE
Chip Enable Input
TJ(MAX)
TSTG
Maximum Junction Temperature
Storage Temperature
Value
Unit
6.0
V
−0.3 to VIN + 0.3
V
−0.3 to 6.0
V
150
°C
−55 to 150
°C
ESDHBM
ESD Capability, Human Body Model (Note 2)
2000
V
ESDMM
ESD Capability, Machine Model (Note 2)
200
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78
THERMAL CHARACTERISTICS
Symbol
RqJA
Rating
Value
Thermal Characteristics, Thermal Resistance, Junction-to-Air
XDFN4 1 × 1 mm
SOT−563
Figure 2. Simplified Block Diagram
www.onsemi.com
2
Unit
°C/W
250
200
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 1.2 V
(−40°C ≤ TJ ≤ 85°C; VIN = 2.5 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
1.188
1.2
1.212
V
−40°C ≤ TJ ≤ 85°C
1.176
1.2
1.224
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
2.5 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 2.5 V
VDO
Dropout Voltage
IOUT
−
0.05
0.20
%/V
−20
1
20
mV
(Note 4)
−
−
−
mV
Output Current
(Note 5)
150
−
−
mA
ISC
Short Circuit Current Limit
VOUT = 0 V
−
225
−
mA
IQ
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pin Current
VEN ≤ VIN ≤ 5.5 V (Note 6)
−
10
−
nA
Power Supply Rejection Ratio
f = 1 kHz, VIN = 2.2 V + 200 mVpp Modulation
IOUT = 150 mA
IOUT = 10 mA
−
−
57
63
−
−
IEN
PSRR
dB
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA,
f = 100 Hz to 1 MHz, COUT = 1 mF
−
85
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 6)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 6)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 6)
−
25
−
°C
VNOISE
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
4. Not Characterized at VIN = 2.2 V, VOUT = 1.2 V, IOUT = 150 mA.
5. Respect SOA.
6. Guaranteed by design and characterization.
www.onsemi.com
3
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 1.5 V
(−40°C ≤ TJ ≤ 85°C; VIN = 2.5 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 7)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
1.485
1.5
1.515
V
−40°C ≤ TJ ≤ 85°C
1.470
1.5
1.530
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
4.3 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 4.3 V
VDO
Dropout Voltage
IOUT = 150 mA (Note 8)
IOUT
Output Current
(Note 9)
ISC
Short Circuit Current Limit
IQ
−
0.05
0.20
%/V
−20
−
20
mV
−
−
−
mV
150
−
−
mA
VOUT = 0 V
−
225
−
mA
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pin Current
VEN ≤ VIN ≤ 5.5 V (Note 10)
−
10
−
nA
Power Supply Rejection Ratio
f = 1 kHz, VIN = 2.5 V + 200 mVpp Modulation
IOUT = 150 mA
−
57
−
IEN
PSRR
dB
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA,
f = 100 Hz to 1 MHz, COUT = 1 mF
−
90
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 10)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 10)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 10)
−
25
−
°C
VNOISE
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
7. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
8. Not Characterized at VIN = 2.2 V, VOUT = 1.5 V, IOUT = 150 mA.
9. Respect SOA.
10. Guaranteed by design and characterization.
www.onsemi.com
4
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 1.8 V
(−40°C ≤ TJ ≤ 85°C; VIN = 2.8 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 11)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
1.782
1.8
1.818
V
−40°C ≤ TJ ≤ 85°C
1.764
1.8
1.836
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
2.8 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 2.8 V
VDO
Dropout Voltage
IOUT = 150 mA (Note 12)
IOUT
Output Current
(Note 13)
ISC
Short Circuit Current Limit
IQ
−
0.05
0.20
%/V
−20
1
20
mV
−
350
480
mV
150
−
−
mA
VOUT = 0 V
−
225
−
mA
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pull Down Current
VEN ≤ VIN ≤ 5.5 V (Note 14)
−
10
−
nA
PSRR
Power Supply Rejection Ratio
f = 1 kHz, VIN = 2.8 V + 200 mVpp Modulation
IOUT = 150 mA
−
57
−
dB
VNOISE
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA
f = 100 Hz to 1 MHz, COUT = 1 mF
−
95
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 14)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 14)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 14)
−
25
−
°C
IEN
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
11. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
12. Characterized when VOUT falls 54 mV below the regulated voltage and only for devices with VOUT = 1.8 V.
13. Respect SOA.
14. Guaranteed by design and characterization.
www.onsemi.com
5
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 2.5 V
(−40°C ≤ TJ ≤ 85°C; VIN = 3.5 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 15)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
2.475
2.5
2.525
V
−40°C ≤ TJ ≤ 85°C
2.450
2.5
2.550
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
3.5 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 3.5 V
VDO
Dropout Voltage
IOUT = 150 mA (Note 16)
IOUT
Output Current
(Note 17)
ISC
Short Circuit Current Limit
IQ
−
0.05
0.20
%/V
−20
1
20
mV
−
240
330
mV
150
−
−
mA
VOUT = 0 V
−
225
−
mA
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pull Down Current
VEN ≤ VIN ≤ 5.5 V (Note 18)
−
10
−
nA
PSRR
Power Supply Rejection Ratio
f = 1 kHz, VIN = 3.5 V + 200 mVpp Modulation
IOUT = 150 mA
−
57
−
dB
VNOISE
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA
f = 100 Hz to 1 MHz, COUT = 1 mF
−
125
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 18)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 18)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 18)
−
25
−
°C
IEN
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
15. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
16. Characterized when VOUT falls 75 mV below the regulated voltage and only for devices with VOUT = 2.5 V.
17. Respect SOA.
18. Guaranteed by design and characterization.
www.onsemi.com
6
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 2.8 V
(−40°C ≤ TJ ≤ 85°C; VIN = 3.8 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 19)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
2.772
2.8
2.828
V
−40°C ≤ TJ ≤ 85°C
2.744
2.8
2.856
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
3.8 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 3.8 V
VDO
Dropout Voltage
IOUT = 150 mA (Note 20)
IOUT
Output Current
(Note 21)
ISC
Short Circuit Current Limit
IQ
−
0.05
0.20
%/V
−20
1
20
mV
−
210
300
mV
150
−
−
mA
VOUT = 0 V
−
195
−
mA
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pull Down Current
VEN ≤ VIN ≤ 5.5 V (Note 22)
−
10
−
nA
PSRR
Power Supply Rejection Ratio
f = 1 kHz, VIN = 3.8 V + 200 mVpp Modulation
IOUT = 150 mA
−
40
−
dB
VNOISE
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA
f = 100 Hz to 1 MHz, COUT = 1 mF
−
125
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 22)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 22)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 22)
−
25
−
°C
IEN
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
19. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
20. Characterized when VOUT falls 84 mV below the regulated voltage and only for devices with VOUT = 2.8 V.
21. Respect SOA.
22. Guaranteed by design and characterization.
www.onsemi.com
7
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 3.0 V
(−40°C ≤ TJ ≤ 85°C; VIN = 4.0 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 23)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
2.97
3.0
3.03
V
−40°C ≤ TJ ≤ 85°C
2.94
3.0
3.06
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
4.0 V < VIN ≤ 5.5 V, IOUT = 1 mA
−
0.05
0.20
%/V
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 4 V
−20
1
20
mV
VDO
Dropout Voltage
IOUT = 150 mA (Note 24)
−
190
260
mV
IOUT
Output Current
(Note 25)
150
−
−
mA
ISC
Short Circuit Current Limit
VOUT = 0 V
−
195
−
mA
IQ
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pull Down Current
VEN ≤ VIN ≤ 5.5 V (Note 26)
−
10
−
nA
PSRR
Power Supply Rejection Ratio
f = 1 kHz, VIN = 4.0 V + 200 mVpp Modulation
IOUT = 150 mA
−
47
−
dB
VNOISE
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA
f = 100 Hz to 1 MHz, COUT = 1 mF
−
120
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 26)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 26)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 26)
−
25
−
°C
IEN
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
23. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
24. Characterized when VOUT falls 90 mV below the regulated voltage and only for devices with VOUT = 3.0 V.
25. Respect SOA.
26. Guaranteed by design and characterization.
www.onsemi.com
8
NCP170
ELECTRICAL CHARACTERISTICS − VOLTAGE VERSION 3.3 V
(−40°C ≤ TJ ≤ 85°C; VIN = 4.3 V; IOUT = 1 mA, CIN = COUT = 1.0 mF, unless otherwise noted. Typical values are at TA = +25°C.) (Note 27)
Symbol
VIN
VOUT
Parameter
Test Conditions
Min
Typ
Max
Unit
2.2
−
5.5
V
TA = +25°C
3.267
3.3
3.333
V
−40°C ≤ TJ ≤ 85°C
3.234
3.3
3.366
Operating Input Voltage
Output Voltage
LineReg
Line Regulation
4.3 V < VIN ≤ 5.5 V, IOUT = 1 mA
LoadReg
Load Regulation
0 mA < IOUT ≤ 150 mA, VIN = 4.3 V
VDO
Dropout Voltage
IOUT = 150 mA (Note 28)
IOUT
Output Current
(Note 29)
ISC
Short Circuit Current Limit
IQ
−
0.05
0.20
%/V
−20
1
20
mV
−
180
250
mV
150
−
−
mA
VOUT = 0 V
−
195
−
mA
Quiescent Current
IOUT = 0 mA
−
0.5
0.9
mA
ISTB
Standby Current
VEN = 0 V, TJ = 25°C
−
0.1
0.5
mA
VENH
EN Pin Threshold Voltage
EN Input Voltage “H”
1.2
−
−
V
VENL
EN Pin Threshold Voltage
EN Input Voltage “L”
−
−
0.4
V
EN Pull Down Current
VEN ≤ VIN ≤ 5.5 V (Note 30)
−
10
−
nA
PSRR
Power Supply Rejection Ratio
f = 1 kHz, VIN = 4.3 V + 200 mVpp Modulation
IOUT = 150 mA
−
41
−
dB
VNOISE
Output Noise Voltage
VIN = 5.5 V, IOUT = 1 mA
f = 100 Hz to 1 MHz, COUT = 1 mF
−
125
−
mVrms
Active Output Discharge
Resistance (A option only)
VIN = 5.5 V, VEN = 0 V (Note 30)
−
100
−
W
TSD
Thermal Shutdown Temperature
Temperature Increasing from TJ = +25°C
(Note 30)
−
175
−
°C
TSDH
Thermal Shutdown Hysteresis
Temperature Falling from TSD (Note 30)
−
25
−
°C
IEN
RLOW
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
27. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at
TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
28. Characterized when VOUT falls 99 mV below the regulated voltage and only for devices with VOUT = 3.3 V.
29. Respect SOA.
30. Guaranteed by design and characterization.
TYPICAL CHARACTERISTICS
1.202
1.802
Vin = 5.5 V
Vin = 5.5 V
1.800
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1.200
Vin = 3.0 V
1.198
1.798
Vin = 2.2 V
1.196
Vin = 3.5 V
1.796
1.194
1.794
NCP170xxx120TyG
Cin = Cout = 1 mF
Iout = 1 mA
1.192
1.190
−40
Vin = 2.8 V
−20
0
20
40
60
NCP170xxx180TyG
Cin = Cout = 1 mF
Iout = 1 mA
1.792
1.790
−40
80
−20
0
20
40
60
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 3. Output Voltage vs. Temperature,
Vout = 1.2 V
Figure 4. Output Voltage vs. Temperature,
Vout = 1.8 V
www.onsemi.com
9
80
NCP170
TYPICAL CHARACTERISTICS
3.008
3.604
Vin = 5.5 V
3.000
Vin = 3.3 − 4.5 V
2.996
Vin = 5.0 V
2.992
NCP170xxx300TyG
Cin = Cout = 1 mF
Iout = 1 mA
2.988
2.984
−40
−20
0
20
40
60
3.596
Vin = 3.8 − 4.5 V
Vin = 5.0 V
3.592
3.588
NCP170xxx360TyG
Cin = Cout = 1 mF
Iout = 1 mA
3.584
3.580
−40
80
−20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 5. Output Voltage vs. Temperature,
Vout = 3.0 V
Figure 6. Output Voltage vs. Temperature,
Vout = 3.6 V
1.802
1.200
1.800
Vin = 2.5 V
1.198
Vin = 3.0 V
1.197
Vin = 4.0 V
1.196
NCP170xxx120TyG
Cin = Cout = 1 mF
TA = 25°C
1.195
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1.199
Vin = 5.5 V
Vin = 2.8 V
1.798
Vin = 4.0 V
1.796
Vin = 4.5 V
1.794
NCP170xxx180TyG
Cin = Cout = 1 mF
TA = 25°C
1.792
Vin = 5.5 V
1.790
1.194
0
20
40
60
80
100
120
0
140
20
40
60
80
100
120
140
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 7. Output Voltage vs. Output Current,
Vout = 1.2 V
Figure 8. Output Voltage vs. Output Current,
Vout = 1.8 V
3.002
3.599
3.598
OUTPUT VOLTAGE (V)
3.001
OUTPUT VOLTAGE (V)
Vin = 5.5 V
3.600
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.004
Vin = 4.0 V
3.000
Vin = 4.5 V
2.999
Vin = 5.0 V
2.998
NCP170xxx300TyG
Cin = Cout = 1 mF
TA = 25°C
2.997
20
40
60
Vin = 4.3 V
3.596
Vin = 4.6 V
3.595
Vin = 5.5 V
80
100
120
Vin = 5.0 V
NCP170xxx360TyG
Cin = Cout = 1 mF
TA = 25°C
3.594
2.996
0
3.597
Vin = 5.5 V
3.593
140
0
20
40
60
80
100
120
140
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 9. Output Voltage vs. Output Current,
Vout = 3.0 V
Figure 10. Output Voltage vs. Output Current,
Vout = 3.6 V
www.onsemi.com
10
NCP170
TYPICAL CHARACTERISTICS
450
300
NCP170xxx180TyG
Cin = Cout = 1 mF
TA = 85°C
DROPOUT VOLTAGE (mV)
DROPOUT VOLTAGE (mV)
400
TA = 25°C
350
300
250
TA = −40°C
200
150
100
NCP170xxx250TyG
Cin = Cout = 1 mF
250
TA = 85°C
TA = 25°C
200
150
TA = −40°C
100
50
50
0
0
0
20
40
60
80
100
120
140
0
40
60
80
100
120
140
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 11. Dropout Voltage vs. Output Current,
Vout = 1.8 V
Figure 12. Dropout Voltage vs. Output Current,
Vout = 2.5 V
200
250
NCP170xxx300TyG
Cin = Cout = 1 mF
200
TA = 85°C
TA = 25°C
150
TA = −40°C
100
50
TA = 85°C
NCP170xxx360TyG
Cin = Cout = 1 mF
175
DROPOUT VOLTAGE (mV)
DROPOUT VOLTAGE (mV)
20
TA = 25°C
150
125
100
TA = −40°C
75
50
25
0
0
0
20
40
60
80
100
120
140
0
40
60
80
100
120
140
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 13. Dropout Voltage vs. Output Current,
Vout = 3.0 V
Figure 14. Dropout Voltage vs. Output Current,
Vout = 3.6 V
0.65
0.65
NCP170xxx120TyG
Cin = Cout = 1 mF
Iout = 0
Vout = 1.2 V
0.60
QUIESCENT CURRENT (mA)
QUIESCENT CURRENT (mA)
20
Vin = 5.5 V
0.55
0.50
Vin = 2.5 − 4.0 V
0.45
0.40
Vin = 5.0 V
0.35
−40
−20
0
20
40
60
NCP170xxx250TyG
Cin = Cout = 1 mF
Iout = 0
Vout = 2.5 V
0.60
0.50
Vin = 3.5 − 4.0 V
0.45
Vin = 5.0 V
0.40
0.35
−40
80
Vin = 5.5 V
0.55
−20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 15. Quiescent Current vs. Temperature,
Vout = 1.2 V
Figure 16. Quiescent Current vs. Temperature,
Vout = 2.5 V
www.onsemi.com
11
NCP170
TYPICAL CHARACTERISTICS
70
NCP170xxx360TyG
Cin = Cout = 1 mF
Iout = 0
Vout = 3.6 V
0.60
0.55
GROUND CURRENT (mA)
QUIESCENT CURRENT (mA)
0.65
Vin = 5.5 V
0.50
Vin = 4.0 V
0.45
Vin = 5.0 V
0.40
0.35
−40
0
20
40
60
30
20
Vin = 5.5 V
0.01
0.1
1
10
100
TEMPERATURE (°C)
OUTPUT CURRENT (mA)
Figure 17. Quiescent Current vs. Temperature,
Vout = 3.6 V
Figure 18. Ground Current vs. Output Current,
Vout = 1.2 V
80
NCP170xxx250TyG
Cin = Cout = 1 mF
TA = 25°C
Vout = 2.5 V
Vin = 3.5 V
Vin = 4.5 V
40
30
20
NCP170xxx360TyG
Cin = Cout = 1 mF
TA = 25°C
Vout = 3.6 V
70
Vin = 5.5 V
60
Vin = 4.6 V
Vin = 5.0 V
50
40
30
Vin = 5.5 V
20
10
10
0
0
0.01
0.1
1
10
0.01
100
0.1
1
10
100
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 19. Ground Current vs. Output Current,
Vout = 2.5 V
Figure 20. Ground Current vs. Output Current,
Vout = 3.6 V
80
80
70
70
Iout = 1 mA
Iout = 1 mA
60
60
10 mA
100 mA
PSRR (dB)
PSRR (dB)
40
80
50
50
Vin = 3.5 V
0
−20
GROUND CURRENT (mA)
GROUND CURRENT (mA)
60
50
10
80
70
Vin = 2.5 V
NCP170xxx120TyG
Cin = Cout = 1 mF
TA = 25°C
Vout = 1.2 V
60
40
30
NCP170xxx120TyG
20 Cout = 1 mF
Vin = 2.2 V+ 200 mVpp modulation
10 TA = 25°C
Vout = 1.2 V
0
100
1k
10k
150 mA
100k
1M
50
10 mA
100 mA
40
30
NCP170xxx180TyG
20 Cout = 1 mF
Vin = 2.8 V+ 200 mVpp modulation
10 TA = 25°C
Vout = 1.8 V
0
100
1k
10k
150 mA
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 21. PSRR vs. Frequency, Vout = 1.2 V
Figure 22. PSRR vs. Frequency, Vout = 1.8 V
www.onsemi.com
12
1M
NCP170
TYPICAL CHARACTERISTICS
70
70
Iout = 1 mA
60
60
50
PSRR (dB)
PSRR (dB)
10 mA
100 mA
50
40
30
NCP170xxx300TyG
Cout = 1 mF
Vin = 4.0 V+ 200 mVpp modulation
TA = 25°C
Vout = 3.0 V
20
10
150 mA
100
1k
10k
100k
1M
40
30
150 mA
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 23. PSRR vs. Frequency, Vout = 3.0 V
Figure 24. PSRR vs. Frequency, Vout = 3.6 V
1.4
1M
2.0
NCP170xxx120TyG
Cin = Cout = 1 mF
Vin = 5.5 V
Vout = 1.2 V
Iout = 1 mA
TA = 25°C
1.2
1.0
0.8
OUTPUT VOLTAGE NOISE
SPECTRAL DENSITY (mV/√Hz)
OUTPUT VOLTAGE NOISE
SPECTRAL DENSITY (mV/√Hz)
10 mA
100 mA
NCP170xxx360TyG
20 Cout = 1 mF
Vin = 4.6 V+ 200 mVpp modulation
10 TA = 25°C
Vout = 3.6 V
0
100
1k
10k
0
0.6
0.4
0.2
0
10
100
1k
10k
100k
NCP170xxx180TyG
Cin = Cout = 1 mF
Vin = 5.5 V
Vout = 1.8 V
Iout = 1 mA
TA = 25°C
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
10
1M
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 25. Output Voltage Noise Spectral
Density, Vout = 1.2 V
Figure 26. Output Voltage Noise Spectral
Density, Vout = 1.8 V
1M
4.0
3.5
NCP170xxx300TyG
Cin = Cout = 1 mF
Vin = 5.5 V
Vout = 3.0 V
Iout = 1 mA
TA = 25°C
3.0
2.5
2.0
OUTPUT VOLTAGE NOISE
SPECTRAL DENSITY (mV/√Hz)
OUTPUT VOLTAGE NOISE
SPECTRAL DENSITY (mV/√Hz)
Iout = 1 mA
1.5
1.0
0.5
0
NCP170xxx360TyG
Cin = Cout = 1 mF
Vin = 5.5 V
Vout = 3.6 V
Iout = 1 mA
TA = 25°C
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
10
100
1k
10k
100k
1M
10
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 27. Output Voltage Noise Spectral
Density, Vout = 3.0 V
Figure 28. Output Voltage Noise Spectral
Density, Vout = 3.6 V
www.onsemi.com
13
1M
NCP170
TYPICAL CHARACTERISTICS
Figure 29. Load Transient Response at Load
Step from 1 mA to 50 mA, Vout = 1.2 V
Figure 30. Load Transient Response at Load
Step from 0.1 mA to 50 mA, Vout = 1.2 V
Figure 31. Load Transient Response at Load
Step from 0.1 mA to 10 mA, Vout = 1.2 V
Figure 32. Load Transient Response at Load
Step from 1 mA to 50 mA, Vout = 2.5 V
Output Voltage
Output Current
Figure 33. Load Transient Response at Load
Step from 0.1 mA to 50 mA, Vout = 2.5 V
Figure 34. Load Transient Response at Load
Step from 0.1 mA to 10 mA, Vout = 2.5 V
www.onsemi.com
14
NCP170
TYPICAL CHARACTERISTICS
Figure 35. Load Transient Response at Load
Step from 1mA to 50 mA, Vout= 3.0 V
Figure 36. Load Transient Response at Load
Step from 0.1 mA to 50 mA, Vout = 3.0 V
Figure 37. Load Transient Response at Load
Step from 0.1 mA to 10 mA, Vout = 3.0 V
Figure 38. Load Transient Response at Load
Step from 1 mA to 50 mA, Vout = 3.6 V
Figure 39. Load Transient Response at Load
Step from 0.1 mA to 50 mA, Vout = 3.6 V
Figure 40. Load Transient Response at Load
Step from 0.1 mA to 10 mA, Vout = 3.6 V
www.onsemi.com
15
NCP170
TYPICAL CHARACTERISTICS
Figure 41. Output Voltage with and without
Active Discharge Feature, Vout = 1.2 V
Figure 42. Output Voltage with and without
Active Discharge Feature, Vout = 2.5 V
Figure 43. Output Voltage with and without
Active Discharge Feature, Vout = 3.0 V
Figure 44. Output Voltage with and without
Active Discharge Feature, Vout = 3.6 V
www.onsemi.com
16
NCP170
APPLICATIONS INFORMATION
General
circuitry is switched off and the desired output voltage is
available at output pin. In case the Enable function is not
required the EN pin should be connected directly to input
pin.
The NCP170 is a high performance 150 mA Linear
Regulator with Ultra Low IQ. This device delivers low
Noise and high Power Supply Rejection Ratio with excellent
dynamic performance due to employing the Dynamic
Quiescent Current adjustment which assure ultra low IQ
consumption at no – load state. These parameters make this
device very suitable for various battery powered
applications.
Thermal Shutdown
When the die temperature exceeds the Thermal Shutdown
point (TSD = 175°C typical) the device goes to disabled state
and the output voltage is not delivered until the die
temperature decreases to 150°C. The Thermal Shutdown
feature provides a protection from a catastrophic device
failure at accidental overheating. This protection is not
intended to be used as a substitute for proper heat sinking.
Input Decoupling (CIN)
It is recommended to connect at least a 1 mF Ceramic X5R
or X7R capacitor between IN and GND pins of the device.
This capacitor will provide a low impedance path for any
unwanted AC signals or Noise superimposed onto constant
Input Voltage. The good input capacitor will limit the
influence of input trace inductances and source resistance
during sudden load current changes.
Higher capacitance and lower ESR Capacitors will
improve the overall line transient response.
Power Dissipation and Heat sinking
The maximum power dissipation supported by the device
is dependent upon board design and layout. Mounting pad
configuration on the PCB, the board material, and the
ambient temperature affect the rate of junction temperature
rise for the part. The maximum power dissipation the
NCP170 device can handle is given by:
Output Decoupling (COUT)
The NCP170 does not require a minimum Equivalent
Series Resistance (ESR) for the output capacitor. The device
is designed to be stable with standard ceramics capacitors
with values of 1.0 mF or greater up to 10 mF. The X5R and
X7R types have the lowest capacitance variations over
temperature thus they are recommended. There is
recommended connect the output capacitor as close as
possible to the output pin of the regulator.
P D(MAX) +
ƪTJ(MAX) * TAƫ
R qJA
(eq. 1)
The power dissipated by the NCP170 device for given
application conditions can be calculated from the following
equations:
P D [ V INǒI GND(I OUT)Ǔ ) I OUTǒV IN * V OUTǓ
(eq. 2)
or
Enable Operation
V IN(MAX) [
The NCP170 uses the EN pin to enable /disable its device
and to activate /deactivate the active discharge function at
devices with this feature. If the EN pin voltage is pulled
below 0.4 V the device is guaranteed to be disable. The
active discharge transistor at the devices with Active
Discharge Feature is activated and the output voltage VOUT
is pulled to GND through an internal circuitry with effective
resistance about 100 ohms.
If the EN pin voltage is higher than 1.2 V the device is
guaranteed to be enabled. The internal active discharge
P D(MAX) ) ǒV OUT
I OUT ) I GND
I OUTǓ
(eq. 3)
Hints
VIN and GND printed circuit board traces should be as
wide as possible. When the impedance of these traces is
high, there is a chance to pick up noise or cause the regulator
to malfunction. Place external components, especially the
output capacitor, as close as possible to the NCP170, and
make traces as short as possible.
www.onsemi.com
17
NCP170
ORDERING INFORMATION
Device
Nominal
Output Voltage
Marking
NCP170AMX120TCG
1.2
AC
NCP170AMX150TCG
1.5
AJ
NCP170AMX180TCG
1.8
AD
NCP170AMX190TCG
1.9
AL
NCP170AMX250TCG
2.5
AE
NCP170AMX280TCG
2.8
AF
NCP170AMX285TCG
2.85
AK
NCP170AMX300TCG
3.0
AA
NCP170AMX330TCG
3.3
AG
NCP170AMX360TCG
3.6
AM
NCP170BMX120TCG
1.2
2C
NCP170BMX150TCG
1.5
2J
NCP170BMX180TCG
1.8
2D
NCP170BMX190TCG
1.9
2L
NCP170BMX250TCG
2.5
2E
NCP170BMX280TCG
2.8
2F
NCP170BMX285TCG
2.85
2K
NCP170BMX300TCG
3.0
2A
NCP170BMX330TCG
3.3
2G
NCP170BMX360TCG
3.6
2M
NCP170AXV120T2G
1.2
AC
NCP170AXV150T2G
1.5
AJ
NCP170AXV180T2G
1.8
AD
NCP170AXV210T2G
2.1
AK
NCP170AXV250T2G
2.5
AE
NCP170AXV280T2G
2.8
AF
NCP170AXV300T2G
3.0
AA
NCP170AXV330T2G
3.3
AH
NCP170BXV120T2G
1.2
2C
NCP170BXV150T2G
1.5
2J
NCP170BXV180T2G
1.8
2D
NCP170BXV250T2G
2.5
2E
NCP170BXV280T2G
2.8
2F
NCP170BXV300T2G
3.0
2A
NCP170BXV330T2G
3.3
2H
Active
Discharge
Package
Shipping†
XDFN4 1.0 × 1.0
(Pb-Free)
3000 / Tape & Reel
SOT−563
(Pb-Free)
3000 / Tape & Reel
(Available Soon)
Yes
No
Yes
No
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
www.onsemi.com
18
NCP170
PACKAGE DIMENSIONS
XDFN4 1.0x1.0, 0.65P
MX SUFFIX
CASE 711AJ
ISSUE O
PIN ONE
REFERENCE
0.05 C
2X
4X
A
B
D
ÉÉ
ÉÉ
E
4X
L2
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.15 AND
0.20 mm FROM THE TERMINAL TIPS.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
b2
DETAIL A
DIM
A
A1
A3
b
b2
D
D2
E
e
L
L2
0.05 C
2X
TOP VIEW
(A3)
0.05 C
A
0.05 C
NOTE 4
A1
SIDE VIEW
C
SEATING
PLANE
MILLIMETERS
MIN
MAX
0.33
0.43
0.00
0.05
0.10 REF
0.15
0.25
0.02
0.12
1.00 BSC
0.43
0.53
1.00 BSC
0.65 BSC
0.20
0.30
0.07
0.17
e
e/2
DETAIL A
1
4X
2
D2
45 5
RECOMMENDED
MOUNTING FOOTPRINT*
L
0.65
PITCH
D2
4
2X
0.52
PACKAGE
OUTLINE
3
4X
4X
BOTTOM VIEW
b
0.05
4X
M
0.11
0.39
C A B
1.20
NOTE 3
4X
0.24
4X
0.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
19
NCP170
PACKAGE DIMENSIONS
SOT−563, 6 LEAD
XV SUFFIX
CASE 463A
ISSUE F
SCALE 4:1
D
−X−
5
6
1
2
A
L
4
E
−Y−
3
b
e
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE MATERIAL.
DIM
A
b
C
D
E
e
L
HE
HE
C
5 PL
6
0.08 (0.003)
M
X Y
MILLIMETERS
MIN
NOM MAX
0.50
0.55
0.60
0.17
0.22
0.27
0.08
0.12
0.18
1.50
1.60
1.70
1.10
1.20
1.30
0.5 BSC
0.10
0.20
0.30
1.50
1.60
1.70
INCHES
NOM MAX
0.021 0.023
0.009 0.011
0.005 0.007
0.062 0.066
0.047 0.051
0.02 BSC
0.004 0.008 0.012
0.059 0.062 0.066
MIN
0.020
0.007
0.003
0.059
0.043
SOLDERING FOOTPRINT*
0.3
0.0118
0.45
0.0177
1.35
0.0531
1.0
0.0394
0.5
0.5
0.0197 0.0197
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
20
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP170/D
Similar pages