IRF IRF6609TRPBF Directfet power mosfet Datasheet

PD - 97091A
IRF6609PbF
IRF6609TRPbF
RoHS Compliant 
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses and Switching Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible 
Compatible with existing Surface Mount Techniques 
l
l
l
l
l
l
l
l
l
DirectFET™ Power MOSFET ‚
VDSS
RDS(on) max
Qg
20V
2.0mΩ@VGS = 10V
2.6mΩ@VGS = 4.5V
46nC
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6609PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET
package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6609PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation
of processors operating at higher frequencies. The IRF6609PbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6609PbF offers
particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
Max.
Units
20
±20
V
V DS
V GS
Drain-to-Source Voltage
Gate-to-Source Voltage
ID @ TC = 25°C
Continuous Drain Current, V GS @ 10V
150
ID @ TA = 25°C
Continuous Drain Current, V GS
31
ID @ TA = 70°C
Continuous Drain Current, V GS
IDM
Pulsed Drain Current
P D @TC = 25°C
Power Dissipation
e
P D @TA = 70°C
k
Power Dissipation h
Power Dissipation h
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
RθJA
Junction-to-Ambient
P D @TA = 25°C
k
@ 10V h
@ 10V h
A
25
250
89
1.8
W
2.8
0.022
-40 to + 150
W/°C
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJC
RθJ-PCB
hl
Junction-to-Ambient il
Junction-to-Ambient jl
Junction-to-Case kl
Junction-to-PCB Mounted
Notes  through Š are on page 10
www.irf.com
Typ.
Max.
–––
45
12.5
–––
20
–––
–––
1.4
1.0
–––
Units
°C/W
1
7/3/06
IRF6609PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
20
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
15
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.6
2.0
–––
2.0
2.6
V
mV/°C Reference to 25°C, ID = 1mA
mΩ
VGS = 10V, ID = 31A
VGS = 4.5V, ID = 25A
VGS(th)
Gate Threshold Voltage
1.55
–––
2.45
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
91
–––
–––
Qg
IGSS
Conditions
VGS = 0V, ID = 250µA
g
g
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V
VDS = 16V, VGS = 0V, TJ = 150°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 25A
nC
VGS = 4.5V
Total Gate Charge
–––
46
69
Qgs1
Pre-Vth Gate-to-Source Charge
–––
15
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.7
–––
Qgd
Gate-to-Drain Charge
–––
15
–––
ID = 17A
Qgodr
Gate Charge Overdrive
–––
11
–––
See Fig. 16
Qsw
Switch Charge (Qgs2 + Qgd)
–––
20
–––
Qoss
Output Charge
–––
26
–––
td(on)
Turn-On Delay Time
–––
24
–––
VDD = 16V, VGS = 4.5V
tr
Rise Time
–––
95
–––
ID = 25A
td(off)
Turn-Off Delay Time
–––
26
–––
tf
Fall Time
–––
9.8
–––
Ciss
Input Capacitance
–––
6290
–––
Coss
Output Capacitance
–––
1850
–––
Crss
Reverse Transfer Capacitance
–––
860
–––
VDS = 10V
nC
ns
VDS = 10V, VGS = 0V
g
Clamped Inductive Load
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
EAS (Thermally limited) Single Pulse Avalanche Energy
e
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
f
e
Typ.
Max.
Units
–––
240
mJ
–––
See Fig. 12, 13, 18a,
18b,
A
–––
mJ
Diode Characteristics
Parameter
IS
Continuous Source Current
Min. Typ. Max. Units
Pulsed Source Current
e
MOSFET symbol
–––
–––
89
–––
–––
250
integral reverse
(Body Diode)
ISM
Conditions
A
(Body Diode)
D
showing the
G
VSD
Diode Forward Voltage
–––
0.80
1.2
V
p-n junction diode.
TJ = 25°C, IS = 25A, VGS = 0V
trr
Reverse Recovery Time
–––
32
48
ns
TJ = 25°C, IF = 25A
Reverse Recovery Charge
–––
26
39
nC
di/dt = 100A/µs
Qrr
2
g
S
g
www.irf.com
IRF6609PbF
1000
1000
100
BOTTOM
10
1
2.7V
≤ 60µs PULSE WIDTH
Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
BOTTOM
10
2.7V
≤ 60µs PULSE WIDTH
Tj = 150°C
0.1
1
0.1
1
10
100
0.1
1
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100.0
T J = 150°C
10.0
T J = 25°C
1.0
VDS = 10V
≤ 60µs PULSE WIDTH
0.1
2.0
3.0
4.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5.0
ID = 31A
VGS = 10V
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF6609PbF
100000
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 17A
C, Capacitance (pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
8
6
4
2
0
100
1
10
0
100
20
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
T J = 150°C
10.0
1.0
60
80
100
120
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
100.0
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
T J = 25°C
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
1msec
100µsec
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.4
0.8
1.2
1.6
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS= 20V
VDS= 10V
10
2.0
0.1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF6609PbF
2.5
VGS(th) Gate threshold Voltage (V)
150
ID , Drain Current (A)
120
90
60
30
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T J , Junction Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
τi (sec)
0.6784
0.00086
17.299
0.57756
17.566
8.94
9.4701
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF6609PbF
10000
Avalanche Current (A)
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
Duty Cycle = Single Pulse
100
10
0.01
1
0.05
0.10
0.1
0.01
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 12. Typical Avalanche Current vs.Pulsewidth
250
EAR , Avalanche Energy (mJ)
Single Pulse
ID = 25A
200
150
100
50
0
25
50
75
100
125
Starting TJ , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy
vs. Temperature
6
Notes on Repetitive Avalanche Curves , Figures 12, 13:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 12, 13).
tav = Average time in avalanche.
150
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.irf.com
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRF6609PbF
1000
ID = 31A
8
6
4
T J = 125°C
2
T J = 25°C
0
2.0
4.0
6.0
8.0
10.0
VGS, Gate-to-Source Voltage (V)
Fig 14. On-Resistance Vs. Gate Voltage
EAS, Single Pulse Avalanche Energy (mJ)
10
ID
11A
14A
BOTTOM 25A
TOP
800
600
400
200
0
25
50
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy
Vs. Drain Current
Id
Vds
Vgs
L
VCC
DUT
0
1K
Vgs(th)
Fig 16a. Gate Charge Test Circuit
LD
VDS
Qgs1 Qgs2
Qgd
Qgodr
Fig 16b. Gate Charge Waveform
VDS
+
90%
VDD D.U.T
VGS
10%
Pulse Width < 1µs
Duty Factor < 0.1%
VGS
Fig 17a. Switching Time Test Circuit
td(on)
td(off)
tr
tf
Fig 17b. Switching Time Waveforms
15V
V(BR)DSS
tp
L
VDS
D.U.T
RG
IAS
20V
VGS
tp
DRIVER
+
V
- DD
A
0.01Ω
Fig 18a. Unclamped Inductive Test Circuit
www.irf.com
I AS
Fig 18b. Unclamped Inductive Waveforms
7
IRF6609PbF
D.U.T
Driver Gate Drive
P.W.
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 19. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
S
D
G
D
8
S
D
www.irf.com
IRF6609PbF
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
H
0.98 1.02
0.67
J
0.63
K
0.88 1.01
2.63
L
2.46
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.199
0.152
0.156
0.014
0.018
0.031
0.032
0.035
0.036
0.070
0.072
0.039
0.040
0.025
0.026
0.035
0.039
0.097
0.104
0.0235 0.0274
0.0008 0.0031
0.003
0.007
DirectFET™ Part Marking
www.irf.com
9
IRF6609PbF
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
LOADED TAPE FEED DIRECTION
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6609TRPBF). For 1000 parts on 7"
reel, order IRF6609TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MAX
CODE
MIN
MIN
MIN
MIN
MAX
MAX
MAX
N.C
A
6.9
12.992 N.C
330.0
177.77 N.C
N.C
N.C
B
0.75
0.795
20.2
19.06
N.C
N.C
N.C
C
0.53
0.504
0.50
12.8
13.5
0.520
13.2
12.8
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
N.C
12.4
11.9
0.567
14.4
12.01
H
0.47
0.469
11.9
11.9
N.C
0.606
15.4
12.01
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Notes:
 Click on this section to link to the appropriate technical paper. † Surface mounted on 1 in. square Cu board.
‚ Click on this section to link to the DirectFET Website.
‡ Used double sided cooling, mounting pad.
ƒ Repetitive rating; pulse width limited by max. junction
ˆ Mounted on minimum footprint full size board with
temperature.
„ Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 25A.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
metalized back and with small clip heatsink.
‰ TC measured with thermal couple mounted to top
(Drain) of part.
Š Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/06
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages