ON NLV14049UBDR2G Hex buffer Datasheet

MC14049UB
Hex Buffers
The MC14049UB hex inverter/buffer is constructed with MOS
P−channel and N−channel enhancement mode devices in a single
monolithic structure. This complementary MOS device finds primary
use where low power dissipation and/or high noise immunity is
desired. This device provides logic−level conversion using only one
supply voltage, VDD. The input−signal high level (VIH) can exceed the
VDD supply voltage for logic−level conversions. Two TTL/DTL
Loads can be driven when the device is used as CMOS−to−TTL/DTL
converters (VDD = 5.0 V, VOL v 0.4 V, IOL ≥ 3.2 mA). Note that pins
13 and 16 are not connected internally on this device; consequently
connections to these terminals will not affect circuit operation.
http://onsemi.com
MARKING
DIAGRAMS
16
SOIC−16
D SUFFIX
CASE 751B
Features
•
•
•
•
•
•
•
•
1
High Source and Sink Currents
High−to−Low Level Converter
Supply Voltage Range = 3.0 V to 18 V
Meets JEDEC UB Specifications
VIN can exceed VDD
Improved ESD Protection on All Inputs
These Devices are Pb−Free and are RoHS Compliant
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
16
TSSOP−16
DT SUFFIX
CASE 948F
Parameter
14
049UB
ALYW G
G
1
16
SOEIAJ−16
F SUFFIX
CASE 966
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
14049UG
AWLYWW
Value
Unit
VDD
DC Supply Voltage Range
−0.5 to +18.0
V
Vin
Input Voltage Range
(DC or Transient)
−0.5 to +18.0
V
Vout
Output Voltage Range
(DC or Transient)
−0.5 to VDD
+0.5
V
Iin
Input Current
(DC or Transient) per Pin
± 10
mA
Iout
Output Current
(DC or Transient) per Pin
+45
mA
PD
Power Dissipation, per Package (Note 1)
Plastic
SOIC
MC14049UB
ALYWG
1
A
WL, L
YY, Y
WW, W
G or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
mW
825
740
TA
Ambient Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
See detailed ordering and shipping information in the package
dimensions section on page 3 of this data sheet.
TL
Lead Temperature (8−Second Soldering)
260
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Temperature Derating: All Packages: See Figure 4.
This device contains circuitry to protect the inputs against damage due to high
static voltages or electric fields referenced to the VSS pin, only. Extra precautions
must be taken to avoid applications of any voltage higher than the maximum rated
voltages to this high−impedance circuit. For proper operation, the ranges
VSS v Vin v 18 V and VSS v Vout v VDD are recommended.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
© Semiconductor Components Industries, LLC, 2014
May, 2014 − Rev. 9
1
Publication Order Number:
MC14049UB/D
MC14049UB
VDD
1
16
NC
OUTA
2
15
OUTF
INA
3
14
INF
OUTB
4
13
NC
INB
5
12
OUTE
OUTC
6
11
INE
INC
7
10
OUTD
VSS
8
9
IND
NC = NO CONNECTION
VDD
3
2
5
4
7
6
9
10
11
12
14
15
MC14049UB
NC = PIN 13, 16
VSS = PIN 8
VDD = PIN 1
VSS
Figure 3. Circuit Schematic
Figure 2. Logic Diagram
MC14049UB
Figure 1. Pin Assignment
(1/6 of circuit shown)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
− 55_C
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
25_C
125_C
VDD
Vdc
Min
Max
Min
Typ
(Note 2)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
“0” Level
VIL
5.0
10
15
−
−
−
1.0
2.0
2.5
−
−
−
2.25
4.50
6.75
1.0
2.0
2.5
−
−
−
1.0
2.0
2.5
5.0
10
15
4.0
8.0
12.5
−
−
−
4.0
8.0
12.5
2.75
5.50
8.25
−
−
−
4.0
8.0
12.5
−
−
−
5.0
10
15
– 1.6
– 1.6
– 4.7
−
−
−
– 1.25
– 1.3
– 3.75
– 2.5
– 2.6
– 10
−
−
−
– 1.0
– 1.0
– 3.0
−
−
−
IOL
5.0
10
15
3.75
10
30
−
−
−
3.2
8.0
24
6.0
16
40
−
−
−
2.6
6.6
19
−
−
−
mAdc
Input Current
Iin
15
−
± 0.1
−
± 0.000
01
± 0.1
−
± 1.0
mAdc
Input Capacitance (Vin = 0)
Cin
−
−
−
−
10
20
−
−
pF
Quiescent Current (Per Package)
IDD
5.0
10
15
−
−
−
1.0
2.0
4.0
−
−
−
0.002
0.004
0.006
1.0
2.0
4.0
−
−
−
30
60
120
mAdc
IT
5.0
10
15
Vin = 0 or VDD
Input Voltage
(VO = 4.5 Vdc)
(VO = 9.0 Vdc)
(VO = 13.5 Vdc)
“1” Level
VIH
(VO = 0.5 Vdc)
(VO = 1.0 Vdc)
(VO = 1.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
Vdc
Vdc
IOH
Source
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Sink
Total Supply Current (Note 3 and 4)
(Dynamic plus Quiescent, Per Package)
(CL = 50 pF on all outputs, all buffers
switching)
mAdc
IT = (1.8 mA/kHz) f + IDD
IT = (3.5 mA/kHz) f + IDD
IT = (5.3 mA/kHz) f + IDD
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL − 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD − VSS) in volts, f in kHz is input frequency, and k = 0.002.
http://onsemi.com
2
mAdc
MC14049UB
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise Time
tTLH = (0.8 ns/pF) CL + 60 ns
tTLH = (0.3 ns/pF) CL + 35 ns
tTLH = (0.27 ns/pF) CL + 26.5 ns
tTLH
Output Fall Time
tTHL = (0.3 ns/pF) CL + 25 ns
tTHL = (0.12 ns/pF) CL + 14 ns
tTHL = (0.1 ns/pF) CL + 10 ns
tTHL
Propagation Delay Time
tPLH = (0.38 ns/pF) CL + 61 ns
tPLH = (0.20 ns/pF) CL + 30 ns
tPLH = (0.11 ns/pF) CL + 24.5 ns
tPLH
Propagation Delay Time
tPHL = (0.38 ns/pF) CL + 11 ns
tPHL = (0.12 ns/PF) CL + 9 ns
tPHL = (0.11 ns/pF) CL + 4.5 ns
tPHL
VDD
Vdc
Min
Typ
(Note 6)
Max
5.0
10
15
−
−
−
100
50
40
160
100
60
5.0
10
15
−
−
−
40
20
15
60
40
30
5.0
10
15
−
−
−
80
40
30
120
65
50
5.0
10
15
−
−
−
30
15
10
60
30
20
Unit
ns
ns
ns
ns
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
ORDERING INFORMATION
Package
Shipping†
SOIC−16
(Pb−Free)
48 Units / Rail
SOIC−16
(Pb−Free)
2500 / Tape & Reel
MC14049UBDTR2G
TSSOP−16
(Pb−Free)
2500 / Tape & Reel
MC14049UBFELG
SOEIAJ−16
(Pb−Free)
2000 / Tape & Reel
Device
MC14049UBDG
NLV14049UBDG*
MC14049UBDR2G
NLV14049UBDR2G*
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
Vout , OUTPUT VOLTAGE (Vdc)
18
15
10
5
VDD = 15 Vdc
VDD = 10 Vdc
−55°C
VDD = 5 Vdc
+125°C
5
10
15
Vin, INPUT VOLTAGE (Vdc)
18
Figure 4. Typical Voltage Transfer Characteristics versus Temperature
http://onsemi.com
3
MC14049UB
VDD
VDD
1
1
IOH
8
IOL
VOH
VSS
8
VDS = VOH - VDD
VDD = VOL
160
I OL, OUTPUT SINK CURRENT (mAdc)
0
I OH , OUTPUT SOURCE CURRNT (mAdc)
VOL
VSS
VGS = 5.0 Vdc
-10
VGS = 15 Vdc
120
-20
VGS = 10 Vdc
-30
-40
VGS = 15 Vdc
-50
-10
MAXIMUM CURRENT LEVEL
-8.0
-6.0
-4.0
-2.0
VDS, DRAIN-TO-SOURCE VOLTAGE (Vdc)
MAXIMUM CURRENT LEVEL
40
VGS = 5.0 Vdc
0
0
VGS = 10 Vdc
80
0
Figure 5. Typical Output Source Characteristics
2.0
4.0
6.0
8.0
VDS, DRAIN-TO-SOURCE VOLTAGE (Vdc)
10
Figure 6. Typical Output Sink Characteristics
VDD
PD , MAXIMUM POWER DISSIPATION (mW)
PER PACKAGE
1
PULSE
GENERATOR
1200
1100
1000
8
900
825
800
740
700
600
20 ns
VSS
CL
20 ns
INPUT
VDD
90%
50%
(P) PDIP
500
400
10%
300
200
100
0
Vout
Vin
(D) SOIC
175 mW (P)
120 mW (D) OUTPUT
25
50
75
VSS
tPHL
100
125
150
175
TA, AMBIENT TEMPERATURE (°C)
Figure 7. Ambient Temperature Power Derating
tPLH
VOH
90%
50%
10%
tTHL
tTLH
Figure 8. Switching Time Test Circuit
and Waveforms
http://onsemi.com
4
VOL
MC14049UB
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B−05
ISSUE K
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
B
M
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT*
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC14049UB
PACKAGE DIMENSIONS
TSSOP−16
DT SUFFIX
CASE 948F
ISSUE B
16X K REF
0.10 (0.004)
0.15 (0.006) T U
T U
M
S
V
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
0.25 (0.010)
8
1
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
6
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC14049UB
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
CASE 966
ISSUE A
16
LE
9
Q1
M_
E HE
1
L
8
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
0.10 (0.004)
MILLIMETERS
MIN
MAX
--2.05
0.05
0.20
0.35
0.50
0.10
0.20
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
--0.78
INCHES
MIN
MAX
--0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
--0.031
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC14049UB/D
Similar pages