Mitsubishi M37736EHB Prom version of m37736ehbxxxgp Datasheet

IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
ge.
ion.
icat o chan
t
ecif
l sp ubject
a
in
f
s
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
P
PROM VERSION OF M37736MHBXXXGP
DESCRIPTION
The M37736EHBXXXGP is a single-chip microcomputer using the
7700 Family core. This single-chip microcomputer has a CPU and a
bus interface unit. The CPU is a 16-bit parallel processor that can be
an 8-bit parallel processor, and the bus interface unit enhances the
memory access efficiency to execute instructions fast. This
microcomputer also includes a 32 kHz oscillation circuit, in addition
to the PROM, RAM, multiple-function timers, serial I/O, A-D converter,
and others.
In the M37736EHBXXXGP, as the multiplex method of the external
bus, either of 2 types can be selected.
The M37736EHBXXXGP has the same function as the
M37736MHBXXXGP except that the built-in ROM is PROM. (Refer
to the basic function blocks description.) For program development,
the M37736EHBGS with erasable ROM that is housed in a windowed
ceramic LCC is also provided.
FEATURES
●Number of basic instructions .................................................. 103
●Memory size
PROM ............................................. 124 Kbytes
RAM ................................................ 3968 bytes
●Instruction execution time
The fastest instruction at 25 MHz frequency ...................... 160 ns
●Single power supply ...................................................... 5 V ± 10%
●Low power dissipation (at 25 MHz frequency)
............................................47.5 mW (Typ.)
●Interrupts ............................................................ 19 types, 7 levels
●Multiple-function 16-bit timer ................................................. 5 + 3
●Serial I/O (UART or clock synchronous) ..................................... 3
●10-bit A-D converter ............................................ 8-channel inputs
●12-bit watchdog timer
●Programmable input/output, output
(ports P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10)..........................84
●Clock generating circuit ........................................ 2 circuits built-in
APPLICATION
Control devices for general commercial equipment such as office
automation, office equipment, and others.
Control devices for general industrial equipment such as
communication equipment, and others.
Note. Do not use the windowed EPROM version for mass production,
because it is a tool for program development (for evaluation).
80 ↔ P87/TXD1
79 ↔ P90/CTS2
78 ↔ P91/CLK2
77 ↔ P92/RXD2
76 → P93/TXD2
75 → P94
74 → P95
73 → P96
72 → P97
71 ↔ P00/A0/CS0
70 ↔ P01/A1/CS1
69 ↔ P02/A2/CS2
68 ↔ P03/A3/CS3
67 ↔ P04/A4/CS4
66 ↔ P05/A5/RSMP
65 ↔ P06/A6/A16
64 ↔ P07/A7/A17
63 ↔ P10/A8/D8
62 ↔ P11/A9/D9
61 ↔ P12/A10/D10
60 ↔ P13/A11/D11
59 ↔ P14/A12/D12
58 ↔ P15/A13/D13
57 ↔ P16/A14/D14
56 ↔ P17/A15/D15
55 ↔ P20/A16/A0/D0
54 ↔ P21/A17/A1/D1
53 ↔ P22/A18/A2/D2
52 ↔ P23/A19/A3/D3
51 ↔ P24/A20/A4/D4
PIN CONFIGURATION (TOP VIEW)
M37736EHBXXXGP
P67/TB2IN/f SUB ↔ 1
P66/TB1IN ↔ 2
P65/TB0IN ↔ 3
P64/INT2 ↔ 4
P63/INT1 ↔ 5
P62/INT0 ↔ 6
P61/TA4IN ↔ 7
P60/TA4OUT ↔ 8
P57/TA3IN ↔ 9
P56/TA3OUT ↔ 10
P55/TA2IN ↔ 11
P54/TA2OUT ↔ 12
P53/TA1IN ↔ 13
P52/TA1OUT ↔ 14
P51/TA0IN ↔ 15
P50/TA0OUT ↔ 16
P107/KI3 ↔ 17
P106/KI2 ↔ 18
P105/KI1 ↔ 19
P104/KI0 ↔ 20
P103 ↔ 21
P102 ↔ 22
P101 ↔ 23
P100 ↔ 24
P47 ↔ 25
P46 ↔ 26
P45 ↔ 27
P44 ↔ 28
P43 ↔ 29
P42/f1 ↔ 30
P86/RXD1 ↔ 81
P85/CLK1 ↔ 82
P84/CTS1/RTS1 ↔ 83
P83/TXD0 ↔ 84
P82/RXD0/CLKS0 ↔ 85
P81/CLK0 ↔ 86
P80/CTS0/RTS0/CLKS1 ↔ 87
88
VCC
AVCC
89
VREF → 90
91
AVSS
92
VSS
P77/AN7/XCIN ↔ 93
P76/AN6/XCOUT ↔ 94
P75/AN5/ADTRG ↔ 95
P74/AN4 ↔ 96
P73/AN3 ↔ 97
P72/AN2 ↔ 98
P71/AN1 ↔ 99
P70/AN0 ↔ 100
50 ↔ P25/A21/A5/D5
49 ↔ P26/A22/A6/D6
48 ↔ P27/A23/A7/D7
47 ↔ P30/R/W/WEL
46 ↔ P31/BHE/WEH
45 ↔ P32/ALE
44 ↔ P33/HLDA
43 → EVL0
42 → EVL1
VCC
41
40
VSS
39 → E/RDE
38 → XOUT
37 ← XIN
36 ← RESET
35 ← BSEL
34 ← CNVSS
33 ← BYTE
32 ↔ P40/HOLD
31 ↔ P41/RDY
Outline 100P6S-A
1
M37736EHBXXXGP
M37736EHBGS
Stack Pointer S(16)
XCIN XCOUT
Accumulator B(16)
Accumulator A(16)
Arithmetic Logic
Unit(16)
PROM
124 Kbytes
Clock Generating Circuit
Index Register X(16)
RAM
3968 bytes
Index Register Y(16)
Input/Output
port P0
Input/Output
port P3
Input/Output
port P4
Input/Output
port P5
Timer TB1(16)
Timer TB2(16)
Timer TB0(16)
Timer TA0(16)
XCOUT
XCIN
Direct Page Register DPR(16)
Timer TA1(16)
Processor Status Register PS(11)
Timer TA4(16)
Input Buffer Register IB(16)
Timer TA2(16)
VCC
Data Bank Register DT((8)
Timer TA3(16)
Watchdog Timer
Program Bank Register PG(8)
Input/Output
port P1
Input/Output
port P6
Input/Output
port P7
Input/Output
port P8
A-D Converter(10)
UART0(9)
UART2(9)
CNVSS
UART1(9)
Data Address Register DA(24)
Input/Output
port P2
P0(8)
P1(8)
P2(8)
P3(4)
P4(8)
P5(8)
AVCC
Address Bus
(0V)
AVSS
P6(8)
Instruction Queue Buffer Q2(8)
Incrementer(24)
(0V)
VSS
Bus method
Reset input selection input
RESET
BSEL
Enable output
E
Clock output
XOUT
P7(8)
Instruction Queue Buffer Q1(8)
Program Counter PC(16)
Clock input
XIN
P8(8)
Instruction Register(8)
Data Bus(Odd)
Incrementer/Decrementer(24)
M37736EHBXXXGP BLOCK DIAGRAM











Data Bus(Even)
Instruction Queue Buffer Q0(8)
Program Address Register PA(24)
2











Data Buffer DBL(8)











P9(8)






















P10(8)
Data Buffer DBH(8)











Output
port P9





Input/Output
port P10











Reference External data bus width
selection input
voltage input
BYTE
VREF
PROM VERSION OF M37736MHBXXXGP











P











IN
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som











IM
REL
MITSUBISHI MICROCOMPUTERS
Y
AR
IM
REL
INA
RY
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP
M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
FUNCTIONS OF M37736EHBXXXGP
Parameter
Number of basic instructions
Instruction execution time
Memory size
Input/Output ports
Output port
Multi-function timers
PROM
RAM
P0 – P2, P4 – P8, P10
P3
P9
TA0, TA1, TA2, TA3, TA4
TB0, TB1, TB2
Serial I/O
A-D converter
Watchdog timer
Interrupts
Clock generating circuit
Supply voltage
Power dissipation
Input/Output characteristic
Input/Output voltage
Output current
Memory expansion
Operating temperature range
Device structure
Package
M37736EHBXXXGP
M37736EHBGS
Functions
103
160 ns (the fastest instruction at external clock 25 MHz frequency)
124 Kbytes
3968 bytes
8-bit ✕ 9
4-bit ✕ 1
8-bit ✕ 1
16-bit ✕ 5
16-bit ✕ 3
(UART or clock synchronous serial I/O) ✕ 3
10-bit ✕ 1 (8 channels)
12-bit ✕ 1
3 external types, 16 internal types
Each interrupt can be set to the priority level (0 – 7.)
2 circuits built-in (externally connected to a ceramic resonator or a
quartz-crystal oscillator)
5 V ± 10%
47.5 mW (at external clock 25 MHz frequency)
5V
5 mA
External bus mode A; maximum 16 Mbytes,
External bus mode B; maximum 1 Mbytes
–20 to 85 °C
CMOS high-performance silicon gate process
100-pin plastic molded QFP (100P6S-A)
100-pin ceramic LCC (with a window) (100D0)
3
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
PIN DESCRIPTION
Pin
Vcc,
Vss
CNVss
Name
Input/Output
Power source
Apply 5 V ± 10% to Vcc and 0 V to Vss.
CNVss input
Input
RESET
Reset input
Input
XIN
Clock input
Input
XOUT
Clock output
Output
E
Enable output
Output
BYTE
External data
bus width
selection input
Bus method
select input
Input
_____
_
BSEL
AVcc,
AVss
VREF
P00 – P07
Analog power
source input
Reference
voltage input
I/O port P0
Input
Input
I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3
I/O
P40 – P47 I/O port P4
I/O
P50 – P57 I/O port P5
I/O
P60 – P67 I/O port P6
I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8
I/O
P90 – P97 Output port P9
Output
P100 – P107 I/O port P10
I/O
EVL0, EVL1
4
––
Output
Functions
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory
expansion mode, and to Vcc for the microprocessor mode.
When “L” level is applied to this pin, the microcomputer enters the reset state.
These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should
be connected to the XIN pin, and the XOUT pin should be left open.
This pin functions as the enable signal output pin which indicates the access status in the internal
bus. In the external bus
mode B and the memory expansion mode or the microprocessor mode,
___
this pin output signal RDE.
In the memory expansion mode or the microprocessor mode, this pin determines whether the
external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L”
signal is input and an 8-bit width when “H” signal is input.
In the memory expansion mode or the microprocessor mode, this pin determines the external bus
mode. The bus mode becomes the external bus mode A when “H” signal is input, and the external
bus mode B when “L” signal is input.
Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss.
This is reference voltage input pin for the A-D converter.
In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so
that each pin can be programmed for input or output. These ports are in the input mode when
reset.
In the memory expansion mode or the microprocessor mode,
these
pins output
____ address (A0 – A7)
___
___
at the external bus mode A, and these pins output signals CS0 – CS4 and RSMP, and addresses
(A16, A17) at the external bus mode B.
In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set
to “L” in the memory expansion mode or the microprocessor mode and external data bus has a
16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When
the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output.
In the single-chip mode, these pins have the same functions as port P0. In the memory expansion
mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address is
output. When using the external bus mode A, the address is A16 – A23. When using the external
bus mode B, the address is A0 – A7.
In the single-chip mode, these pins have
the same function
as port P0. In the memory expansion
____
__ ___
mode or the microprocessor
, BHE, ALE, and HLDA signals are output at the external
___ ___ mode, R/W
____
bus mode A, and WEL, WEH, ALE, and HLDA signals are output at the external bus mode B.
In the single-chip mode, these pins have the same functions as____
port P0. In
the memory expansion
___
mode or the microprocessor mode, P40, P41 and P42 become HOLD and RDY input pins, and a
clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip
mode. However, in the memory expansion mode, P42 can be selected as an I/O port.
In addition to having the same functions as port P0 in the single-chip mode, these pins also
function as I/O pins for timers A0 to A3.
In addition to having the same functions as port P0 in the single-chip mode,
___ these
___ pins also
function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins
for timers B0 to B2. P67 also functions as sub-clock φSUB output pin.
In addition to having the same functions as port P0 in the single-chip mode, these pins function as
input pins for A-D converter. Additionally, P76 and P77 have the function as the output pin (XCOUT)
and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and
P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both.
In addition to having the same functions as port P0 in the single-chip mode, these pins also
function as I/O pins for UART 0 and UART 1.
Port P9 is an 8-bit I/O port. These ports are floating when reset. When writting to the port latch,
these ports become the output mode. P90 – P93 also function as I/O port for UART 2.
In addition to having the same functions as port P0__
in the
__single-chip mode, P104 – P107 also
function as input pins for key input interrupt input (KI0 – KI3).
These pins should be left open.
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
BASIC FUNCTION BLOCKS
The M37736EHBXXXGP has the same function as the M37736MHB
XXXGP except that the built-in ROM is PROM. Refer to the section
on the M37736MHBXXXGP.
PIN DESCRIPTION (EPROM MODE)
Pin
VCC, VSS
CNVSS
BYTE
_____
RESET
XIN
XOUT
_
E
AVCC, AVSS
VREF
P00 – P07
P10 – P17
P20 – P27
P30
P31 – P33
P40 – P47
P50 – P57
Name
Power supply
VPP input
VPP input
Reset input
Clock input
Clock output
Enable output
Analog supply input
Reference voltage input
Address input (A0 – A7)
Address input (A8 – A15)
Data I/O (D0 – D7)
Address input (A16)
Input port P3
Input port P4
Control signal input
Input/Output
Input
Input
Input
Input
Output
Output
Input
Input
Input
I/O
Input
Input
Input
Input
Functions
Supply 5V±10% to VCC and 0V to VSS.
Connect to VPP when programming or verifing.
Connect to VPP when programming or verifing.
Connect to VSS.
Connect a ceramic resonator between XIN and XOUT.
Keep open.
Connect AVCC to VCC and AVSS to VSS.
Connect to VSS.
Port P0 functions as the lower 8 bits address input (A0 – A7).
Port P1 functions as the higher 8 bits address input (A8 – A15).
Port P2 functions as the 8 bits data input/output (D0 – D7).
P30 functions as the most significant bit address input (A16).
Connect to VSS.
Connect to VSS.
_____
___
___
Input
Input
P80 – P87
Input port P6
Input port P7
Input port P8
P50, P51, and P52 function as PGM, OE, and CE input pins respectively.
Connect P53, P54, P55, and P56 to VCC. Connect P57 to VSS.
Connect to VSS.
Connect to VSS.
Input
Connect to VSS.
P90 – P97
Input port P9
Input
Connect to VSS.
P100 – P107
Input port P10
_____
Input
Connect to VSS.
P60 – P67
P70 – P77
BSEL
EVL0, EVL1
_____
Input
Output
Connect to VCC.
Keep open.
5
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
EPROM MODE
The M37736EHBXXXGP features
an EPROM mode in addition to
_____
its normal modes. When the RESET signal level is “L”, the chip
automatically enters the EPROM mode. Table 1 list the
correspondence between pins and Figure 1 shows the pin
connections in the EPROM mode.
The EPROM mode is the 1M mode for the EPROM that is equivalent
to the M5M27C101K.
When in the EPROM mode, ports P0, P1, P2, P30, P50, P51, P52,
CNV SS, and BYTE are used for the EPROM (equivalent to the
M5M27C101K).
When in this mode, the built-in PROM can be programmed or read
from using these pins in the same way as with the M5M27C101K.
This chip does not have Device Identifier Mode, so that set the
corresponding program algorithm. The program area should specify
address 0100016 – 1FFFF16.
Connect the clock which is either ceramic resonator or external clock
to XIN pin and XOUT pin.
Table 1 Pin function in EPROM mode
VCC
VPP
VSS
Address input
Data I/O
___
CE
___
OE
_____
M37736EHBXXXGP
VCC
M5M27C101K
VCC
CNVSS, BYTE
VSS
VPP
VSS
A0 – A16
D0 – D7
Ports P0, P1, P30
Port P2
P52
P51
___
CE
___
OE
_____
P50
PGM
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
↔ P87
↔ P90
↔ P91
↔ P92
→ P93
→ P94
→ P95
→ P96
→ P97
↔ P00
↔ P01
↔ P02
↔ P03
↔ P04
↔ P05
↔ P06
↔ P07
↔ P10
↔ P11
↔ P12
↔ P13
↔ P14
↔ P15
↔ P16
↔ P17
↔ P20
↔ P21
↔ P22
↔ P23
↔ P24
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
D0
D1
D2
D3
D4
PGM
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
D5
D6
D7
A16
VSS
∗
VPP
CE
OE
PGM
P67 ↔ 1
P66 ↔ 2
P65 ↔ 3
P64 ↔ 4
P63 ↔ 5
P62 ↔ 6
P61 ↔ 7
P60 ↔ 8
P57 ↔ 9
P56 ↔ 10
P55 ↔ 11
P54 ↔ 12
P53 ↔ 13
P52 ↔ 14
P51 ↔ 15
P50 ↔ 16
P107 ↔ 17
P106 ↔ 18
P105 ↔ 19
P104 ↔ 20
P103 ↔ 21
P102 ↔ 22
P101 ↔ 23
P100 ↔ 24
P47 ↔ 25
P46 ↔ 26
P45 ↔ 25
P44 ↔ 28
P43 ↔ 29
P42 ↔ 30
M37736EHBGP
↔ P25
↔ P26
↔ P27
↔ P30
↔ P31
↔ P32
↔ P33
→ EVL0
→ EVL1
VCC
VSS
→E
→ XOUT
← XIN
← RESET
← BSEL
CNVSS
← BYTE
↔ P40
↔ P41



VCC
P86 ↔ 81
P85 ↔ 82
P84 ↔ 83
P83 ↔ 84
P82 ↔ 85
P81 ↔ 86
P80 ↔ 87
88
VCC
89
AVCC
VREF → 90
91
AVSS
92
VSS
P77 ↔ 93
P76 ↔ 94
P75 ↔ 95
P74 ↔ 96
P73 ↔ 97
P72 ↔ 98
P71 ↔ 99
P70 ↔ 100
∗ : Connect to ceramic oscillation circuit.
Outline 100P6S-A
Fig. 1 Pin connection in EPROM mode
6
: It is used in the EPROM mode.
MI
ELI
NA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
ot a its are
is n
m
This etric li
m
ice:
Not e para
m
So
PR
PROM VERSION OF M37736MHBXXXGP
FUNCTION IN EPROM MODE
1M mode (equivalent to the M5M27C101K)
Reading
___
___
To read the EPROM, set the CE and OE pins to a “L” level. Input the
address of the data (A0 – A16) to be read, and the data will be output
to the
I/O pins
D0 – D7. The data I/O pins will be floating when either
__
__
the CE or OE pins are in the “H” state.
Programming
Programming must be performed
in 8 bits by a byte program.
To
___
___
program to the EPROM, set the CE pin to a “L” level and the OE pin to
a “H” level. The CPU will enter the programming mode when 12.5 V
is applied to the VPP pin. The address to be programmed to is selected
with pins A0 –_____
A16, and the data to be programmed is input to pins D0
– D7. Set the PGM pin to a “L” level to being programming.
Programming operation
To program the M37733EHBXXXFP, first set VCC = 6 V, VPP = 12.5
V, and set the address to 0100016. Apply a 0.2 ms programming
pulse, check that the data can be read, and if it cannot be read OK,
repeat the procedure, applying a 0.2 ms programming pulse and
checking that the data can be read until it can be read OK. Record
the accumulated number of pulse applied (X) before the data can be
read OK, and then write the data again, applying a further once this
number of pulses (0.2 ✕ X ms).
When this series of programming operations is complete, increment
the address, and continue to repeat the procedure above until the
last address has been reached.
Finally, when all addresses have been programmed, read with VCC =
VPP = 5 V (or VCC = VPP = 5.5 V).
Table 2. I/O signal in each mode
Pin
Erasing
To erase data on this chip, use an ultraviolet light source with a 2537
Angstrom wave length. The minimum radiation power necessary for
erasing is 15 J/cm2.
___
___
_____
CE
OE
PGM
VPP
VCC
Data I/O
VIL
VIL
VIH
X
X
5V
5V
5V
5V
Output
Floating
VIL
VIL
VIH
X
VIH
X
5V 5V
VIL 12.5 V 6 V
Floating
Input
Programming
Verify
VIL
VIL
VIH 12.5 V 6 V
Output
Program Disable
VIH
VIH
VIH 12.5 V 6 V
Floating
Mode
Read-out
Output
Disable
Programming
Note 1 : An X indicates either VIL or VIH.
Programming operation (equivalent to the M5M27C101K)
AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted)
Symbol
Parameter
Test conditions
Min.
2
tAS
Address setup time
tOES
tDS
OE setup time
Data setup time
tAH
tDH
Address hold time
Data hold time
0
tDFP
Output enable to output float delay
VCC setup time
VPP setup time
_____
PGM pulse width
_____
PGM over program pulse width
___
CE setup time
__
Data valid from OE
0
tVCS
tVPS
tPW
tOPW
tCES
tOE
___
Limits
Typ.
Max.
µs
µs
µs
µs
2
2
2
130
2
2
0.19
0.19
Unit
0.2
0.21
5.25
2
150
µs
ns
µs
µs
ms
ms
µs
ns
7
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
AC waveforms
PROGRAM
VERIFY
VIH
ADDRESS
VIL
tAH
tAS
VIH/VOH
DATA
DATA OUTPUT VALID
DATA SET
VIL/VOL
tDS
tDH
tDFP
VPP
VPP
VCC
VCC +1
VCC
VCC
tVPS
tVCS
VIH
CE
VIL
tCES
VIH
PGM
tOES
VIL
tOE
tPW
VIH
tOPW
OE
VIL
Test conditions for A.C. characteristics
Input voltage : VIL = 0.45 V, VIH = 2.4 V
Input rise and fall times (10 % – 90 %) : ≤ 20 ns
Reference voltage at timing measurement : Input, Output
“L” = 0.8 V, “H” = 2 V
Programming algorithm flow chart
START
ADDR=FIRST LOCATION
VCC=6.0 V
VPP=12.5 V
X=0
PROGRAM ONE PULSE OF 0.2 ms
X=X+1
YES
X=25?
NO
FAIL
VERIFY
BYTE
FAIL
VERIFY
BYTE
PASS
PROGRAM PULSE OF
0.2X ms DURATION
DEVICE
FAILED
PASS
NO
INCREMENT ADDR
LAST ADDR?
YES
VCC=VPP=*5.0 V
VERIFY
ALL BYTE
FAIL
DEVICE
FAILED
PASS
DEVICE PASSED
8
*4.5 V ≤ VCC = VPP ≤ 5.5 V
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio
ang
cific t to ch
c
spe
inal e subje
f
a
ar
ot
is n
mits
This etric li
m
ice:
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
SAFETY INSTRUCTIONS
ADDRESSING MODES
(1) Sunlight and fluorescent lamp contain light that can erase written
information. When using in read mode, be sure to cover the
transparent glass portion with a seal or other materials (ceramic
package product).
(2) Mitsubishi Electric corp. provides the seal for covering the
transparent glass. Take care that the seal does not touch the read
pins (ceramic package product).
(3) Clean the transparent glass before erasing. Fingers’ fat and paste
disturb the passage of ultraviolet rays and may affect badly the
erasure capability (ceramic package product).
(4) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on.
(5) The programmable M37736EHBGP that is shipped in blank is
also provided. For the M37736EHBGP, Mitsubishi Electric corp.
does not perform PROM programming test and screening following
the assembly processes. To improve reliability after programming,
performing programming and test according to the flow below
before use is recommended.
The M37736EHBXXXGP has 28 powerful addressing modes. Refer
to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine instructions. Refer to the
“7700 Family Software Manual” for the details.
DATA REQUIRED FOR PROM ORDERING
Please send the following data for writing to PROM.
(1) M37736EHBXXXGP writing to PROM order confirmation form
(2) 100P6S mark specification form
(3) ROM data (EPROM 3 sets)
Programming with PROM programmer
Screening
(Caution)
(Leave at 150 °C for 40 hours)
Verify test with PROM programmer
Function check in target device
Caution : Never expose to 150 °C exceeding 100 hours.
9
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
AVcc
VI
VI
VO
Pd
Topr
Tstg
Parameter
Conditions
Power source voltage
Analog power_____
source voltage
Input voltage RESET, CNVss, BYTE
Input voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
P60 – P67, P70 – P77, P80 – P87,
P90 – P92, P100 – P107,
VREF, XIN, BSEL
Output voltage P00 – P07, P10 – P17, P20 – P27,
P30 – P33, P40 – P47, P50 – P57,
7,
P60 – P67, P70 – P77, P80 – P8_
P90 – P97, P100 – P107, XOUT, E
Power dissipation
Ta = 25 °C
Operating temperature
Storage temperature
Ratings
–0.3 to +7
–0.3 to +7
–0.3 to +12(Note)
Unit
V
V
V
–0.3 to Vcc + 0.3
V
–0.3 to Vcc + 0.3
V
300
–20 to +85
–40 to +150
mW
°C
°C
Note. When the EPROM is programmed, input voltage of pins CNVss and BYTE is 13 V respectively.
RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V ± 10%, Ta = –20 to +85 °C, unless otherwise noted)
Symbol
Vcc
AVcc
Vss
AVss
VIH
VIH
VIH
VIL
VIL
VIL
IOH(peak)
IOH(avg)
IOL(peak)
IOL(peak)
IOL(avg)
IOL(avg)
f(XIN)
f(XCIN)
Parameter
f(XIN) : Operating
f(XIN) : Stopped, f(XCIN) = 32.768 kHz
Analog power source voltage
Power source voltage
Analog power source voltage
, P60 – P67,
High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57_____
P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL, XCIN (Note 3)
High-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
High-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
P60 – P67,
Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, _____
P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL, XCIN (Note 3)
Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode)
Low-level input voltage P10 – P17, P20 – P27
(in memory expansion mode and microprocessor mode)
High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P100 – P107
High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P47, P50 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P100 – P107
Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P104 – P107
Low-level peak output current P44 – P47, P100 – P103
Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33,
P40 – P43, P54 – P57, P60 – P67, P70 – P77,
P80 – P87, P90 – P97, P104 – P107
Low-level average output current P44 – P47, P100 – P103
Main-clock oscillation frequency (Note 4)
Sub-clock oscillation frequency
Power source voltage
Min.
4.5
2.7
Max.
5.5
5.5
Vcc
0
0
Unit
V
V
V
V
0.8 Vcc
Vcc
V
0.8 Vcc
Vcc
V
0.5 Vcc
Vcc
V
0
0.2Vcc
V
0
0.2Vcc
V
0
0.16Vcc
V
–10
mA
–5
mA
10
mA
20
mA
5
mA
15
25
50
mA
MHz
kHz
Notes 1. Average output current is the average value of a 100 ms interval.
2. The sum of IOL(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less,
the sum of IOH(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less,
the sum of IOL(peak) for ports P4, P5, P6, P7, and P10 must be 100 mA or less, and
the sum of IOH(peak) for ports P4, P5, P6, P7, and P10 must be 80 mA or less.
3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”.
4. The maximum value of f(XIN) = 12.5 MHz when the main clock division selection bit = “1”.
10
Limits
Typ.
5.0
32.768
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted)
Symbol
VOH
VOH
VOH
VOH
VOL
VOL
VOL
VOL
VOL
VT+ – VT–
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIL
IIL
VRAM
Parameter
Test conditions
High-level output voltage P00 – P07, P10 – P17, P20 – P27,
P33, P40 – P47, P50 – P57,
IOH = –10 mA
P60 – P67, P70 – P77, P80 – P87,
P90 – P97, P100 – P107
High-level output voltage P00 – P07, P10 – P17, P20 – P27, IOH = –400 µA
P33
IOH = –10 mA
High-level output voltage P30 – P32
ICH = –400 µA
_
IOH = –10 mA
High-level output voltage E
IOH = –400 µA
Low-level output voltage P00 – P07, P10 – P17, P20 – P27,
P33, P40 – P43, P50 – P57,
IOL = 10 mA
P60 – P67, P70 – P75, P80 – P87,
P90 – P97, P104 – P107
Low-level output voltage P44 – P47, P100 – P103
IOL = 20 mA
Low-level output voltage P00 – P07, P10 – P17, P20 – P27,
IOL = 2 mA
P33
IOL = 10 mA
Low-level output voltage P30 – P32
IOL = 2 mA
_
IOL = 10 mA
Low-level output voltage E
IOL = 2 mA
____ ___
Hysteresis HOLD
, _______
RDY, __________
TA0IN –________
TA4IN
, TB0________
IN – TB2IN,
_______
________
INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0,
_____
_____
CLK1, CLK2, KI0 – KI3
_____
Hysteresis RESET
Hysteresis XIN
Hysteresis XCIN (When external clock is input)
High-level input current
P00 – P07, P10 – P17, P20 – P27, P30 – P33,
VI = 5 V
P40 – P47, P50 – P57, P60 – P67, P70 – P7
7,
_____
P80 – P87, P90 – P92, P100 – P107, XIN, RESET,
CNVss, BYTE, BSEL
Low-level input current
P00 – P07, P10 – P17, P20 – P27, P30 – P33,
VI = 0 V
P40 – P47, P50 – P57, P60, P61, P65 – P67,
– P77, P80 – P87, P90 – P92, P100 – P103,
P70 _____
XIN, RESET, CNVss, BYTE, BSEL
VI = 0 V,
Low-level input current P104 – P107, P62 – P64
RAM hold voltage
Min.
Limits
Typ.
Unit
3
V
4.7
V
3.1
4.8
3.4
4.8
V
V
2
V
2
V
0.45
V
1.9
0.43
1.6
0.4
V
V
0.4
1
V
0.2
0.1
0.1
0.5
0.4
0.4
V
V
V
without a pull-up transistor
VI = 0 V,
with a pull-up transistor
When clock is stopped.
Max.
–0.25
2
–0.5
5
µA
–5
µA
–5
µA
–1.0
mA
V
11
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Limits
Typ.
Max.
9.5
19
mA
1.3
2.6
mA
VCC = 5V,
f(XIN) = 25 MHz (square waveform),
f(XCIN) = 32.768 kHz,
when a WIT instruction is executed (Note 2)
10
20
µA
VCC = 5 V,
f(XIN) : Stopped,
f(XCIN) : 32.768 kHz,
in operating (Note 3)
50
100
µA
Test conditions
Min.
VCC = 5 V,
f(XIN) = 25 MHz (square waveform),
f(f2) = 12.5 MHz,
f(XCIN) = 32.768 kHz,
in operating (Note 1)
VCC = 5 V,
f(XIN) = 25 MHz (square waveform),
(f(f2) = 1.5625 MHz),
f(XCIN) = Stopped,
in operating (Note 1)
Power source
current
ICC
Notes 1.
2.
3.
4.
In single-chip
mode, output pins
are open, and
other pins are VSS.
Unit
VCC = 5 V,
f(XIN) : Stopped,
5
10
µA
f(XCIN) : 32.768 kHz,
when a WIT instruction is executed (Note 4)
Ta = 25 °C,
1
µA
when clock is stopped
Ta = 85 °C,
20
µA
when clock is stopped
This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop
bit = “1”.
This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”.
This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock.
This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Note), unless otherwise noted)
Symbol
Parameter
Test conditions
Resolution
VREF = VCC
Absolute accuracy
VREF = VCC
RLADDER
Ladder resistance
VREF = VCC
tCONV
Conversion time
VREF
Reference voltage
Analog input voltage
VIA
Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
Min.
—
—
12
10
9.44
2
0
Limits
Typ.
Max.
10
±3
25
VCC
VREF
Unit
Bits
LSB
kΩ
µs
V
V
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
TIMING REQUIREMENTS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Symbol
Parameter
Limits
Unit
Max.
tc
External clock input cycle time (Note 3)
ns
tw(H)
External clock input high-level pulse width (Note 4)
ns
tw(L)
External clock input low-level pulse width (Note 4)
ns
tr
External clock rise time
8
ns
External clock fall time
8
ns
tf
Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 80 ns.
4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.
Min.
40
15
15
Single-chip mode
Symbol
tsu(P0D–E)
tsu(P1D–E)
tsu(P2D-E)
tsu(P3D–E)
tsu(P4D–E)
tsu(P5D–E)
tsu(P6D–E)
tsu(P7D–E)
tsu(P8D–E)
tsu(P10D–E)
th(E–P0D)
th(E–P1D)
th(E–P2D)
th(E–P3D)
th(E–P4D)
th(E–P5D)
th(E–P6D)
th(E–P7D)
th(E–P8D)
th(E–P10D)
Parameter
Port P0 input setup time
Port P1 input setup time
Port P2 input setup time
Port P3 input setup time
Port P4 input setup time
Port P5 input setup time
Port P6 input setup time
Port P7 input setup time
Port P8 input setup time
Port P10 input setup time
Port P0 input hold time
Port P1 input hold time
Port P2 input hold time
Port P3 input hold time
Port P4 input hold time
Port P5 input hold time
Port P6 input hold time
Port P7 input hold time
Port P8 input hold time
Port P10 input hold time
Limits
Min.
60
60
60
60
60
60
60
60
60
60
0
0
0
0
0
0
0
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Memory expansion mode and microprocessor mode
Symbol
tsu(D–E)
tsu(D–RDE)
tsu(RDY–φ1)
tsu(HOLD–φ1)
th(E–D)
th(RDE–D)
th(φ1–RDY)
th(φ1–HOLD)
Parameter
Data input setup time (external bus mode A)
Data input setup time (external bus mode B)
RDY input setup time
____
HOLD input setup time
Data input hold time (external bus mode A)
Data input hold time (external bus mode B)
___
RDY input hold time
____
HOLD input hold time
___
Limits
Min.
32
32
55
55
0
0
0
0
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
13
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
Timer A input
(Count input in event counter mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
PROM VERSION OF M37736MHBXXXGP
parameter
TAiIN input cycle time
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
80
40
40
Max.
Unit
ns
ns
ns
Timer A input (Gating input in timer mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width (Note)
TAiIN input low-level pulse width (Note)
Limits
Min.
320
160
160
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in one-shot pulse mode)
Symbol
t c(TA)
tw(TAH)
tw(TAL)
parameter
TAiIN input cycle time (Note)
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
320
80
80
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in pulse width modulation mode)
Symbol
tw(TAH)
tw(TAL)
parameter
TAiIN input high-level pulse width
TAiIN input low-level pulse width
Limits
Min.
80
80
Max.
Unit
ns
ns
Timer A input (Up-down input in event counter mode)
Symbol
tc(UP)
tw(UPH)
tw(UPL)
tsu(UP–TIN)
th(TIN–UP)
parameter
TAiOUT input cycle time
TAiOUT input high-level pulse width
TAiOUT input low-level pulse width
TAiOUT input setup time
TAiOUT input hold time
Limits
Min.
2000
1000
1000
400
400
Max.
Unit
ns
ns
ns
ns
ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol
t c(TA)
TAj input cycle time
tsu(TAjIN–TAjOUT) TAjIN input setup time
tsu(TAjOUT–TAjIN) TAjOUT input setup time
14
parameter
Limits
Min.
800
200
200
Max.
Unit
ns
ns
ns
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
Timer B input (Count input in event counter mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
80
40
40
160
80
80
TBiIN input cycle time (one edge count)
TBiIN input high-level pulse width (one edge count)
TBiIN input low-level pulse width (one edge count)
TBiIN input cycle time (both edges count)
TBiIN input high-level pulse width (both edges count)
TBiIN input low-level pulse width (both edges count)
Max.
Unit
ns
ns
ns
ns
ns
ns
Timer B input (Pulse period measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
320
160
160
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer B input (Pulse width measurement mode)
Symbol
tc(TB)
tw(TBH)
tw(TBL)
Limits
Parameter
Min.
320
160
160
TBiIN input cycle time (Note)
TBiIN input high-level pulse width (Note)
TBiIN input low-level pulse width (Note)
Max.
Unit
ns
ns
ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
A-D trigger input
Symbol
Limits
Parameter
Min.
1000
125
__________
tc(AD)
tw(ADL)
AD
TRG input cycle time (minimum allowable trigger)
__________
ADTRG input low-level pulse width
Max.
Unit
ns
ns
Serial I/O
Symbol
tc(CK)
tw(CKH)
tw(CKL)
td(C–Q)
th(C–Q)
tsu(D–C)
th(C–D)
Limits
Parameter
Min.
200
100
100
CLKi input cycle time
CLKi input high-level pulse width
CLKi input low-level pulse width
TXDi output delay time
TXDi hold time
RXDi input setup time
RXDi input hold time
Max.
80
0
30
90
______
Unit
ns
ns
ns
ns
ns
ns
ns
____
External interrupt INTi input, key input interrupt KIi input
Symbol
Parameter
_______
tw(INH)
tw(INL)
tw(KIL)
INT
i input high-level pulse width
______
INTi input low-level pulse width
____
KIi input low-level pulse width
Limits
Min.
250
250
250
Max.
Unit
ns
ns
ns
15
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
DATA FORMULAS
Timer A input (Gating input in timer mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input high-level pulse width
tw(TAL)
TAiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Max.
Unit
ns
ns
ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
Limits
Min.
8 ✕ 109
2 · f(f2)
Max.
Unit
ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol
Parameter
tc(TB)
TBiIN input cycle time
tw(TBH)
TBiIN input high-level pulse width
tw(TBL)
TBiIN input low-level pulse width
Limits
Min.
8 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
Note. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
16
Max.
Unit
ns
ns
ns
MI
I
L
E
NA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
PR
PROM VERSION OF M37736MHBXXXGP
SWITCHING CHARACTERISTICS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85°C, f(XIN) = 25 MHz (Note), unless otherwise noted)
Symbol
Parameter
Test conditions
td(E–P0Q)
Port P0 data output delay time
td(E–P1Q)
Port P1 data output delay time
td(E–P2Q)
Port P2 data output delay time
td(E–P3Q)
Port P3 data output delay time
td(E–P4Q)
Port P4 data output delay time
Fig. 2
td(E–P5Q)
Port P5 data output delay time
td(E–P6Q)
Port P6 data output delay time
td(E–P7Q)
Port P7 data output delay time
td(E–P8Q)
Port P8 data output delay time
td(E–P9Q)
Port P9 data output delay time
Port P10 data output delay time
td(E–P10Q)
Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
Limits
Min.
Max.
80
80
80
80
80
80
80
80
80
80
80
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
P0
P1
P2
P3
50 pF
P4
P5
P6
P7
P8
P9
P10
φ1
E
Fig. 2 Measuring circuit for ports P0 – P10 and φ1
17
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode
(VCC = 5 V ± 10%, VSS = 0 V, Ta = 25 °C, f(XIN) = 25 MHz (Note 1), unless otherwise noted)
Symbol
td(An–E)
td(A–E)
Parameter
Address output delay time
Address output delay time
th(E–An)
Address hold time
tw(ALE)
ALE pulse width
tsu(A–ALE)
th(ALE–A)
Address output setup time
Address hold time
td(ALE–E)
ALE output delay time
td(E–DQ)
th(E–DQ)
Data output delay time
Data hold delay time
tw(EL)
tpxz(E–DZ)
tpzx(E–DZ)
td(BHE–E)
td(R/W–E)
th(E–BHE)
th(E–R/W)
td(E–φ1)
td(φ1–HLDA)
_
E pulse width
Test
(Note 2)
Wait mode conditions
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Fig. 2
BHE output delay time
_
R/ W output delay time
___
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
BHE
hold time
_
R/ W hold time
φ1 output delay time
____
HLDA output delay time
Unit
12
ns
87
ns
12
ns
75
ns
18
ns
22
ns
57
ns
5
ns
45
ns
9
ns
15
ns
4
ns
18
50
ns
ns
ns
ns
130
ns
10
20
ns
ns
12
ns
87
ns
12
ns
87
18
18
0
ns
ns
ns
ns
ns
5
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
2. No wait : Wait bit = “1”.
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
18
Max.
45
Floating start delay time
Floating release delay time
___
Limits
Min.
18
50
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode
Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C,
Symbol
td(An–E)
Parameter
Address output delay time
f(XIN) = 25 MHz (Max., Note), unless otherwise noted)
Wait mode
No wait
Wait 1
Wait 0
td(A–E)
Address output delay time
No wait
Wait 1
Wait 0
th(E–An)
Address hold time
tw(ALE)
ALE pulse width
No wait
Wait 1
Wait 0
tsu(A–ALE)
Address output setup time
No wait
Wait 1
Wait 0
th(ALE–A)
Address hold time
No wait
Wait 1
Wait 0
td(ALE–E)
td(E–DQ)
th(E–DQ)
ALE output delay time
Wait 0
No wait
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
E pulse width
tpxz(E–DZ)
Floating start delay time
tpzx(E–DZ)
Floating release delay time
___
BHE output delay time
_
R/W output delay time
No wait
Wait 1
No wait
Wait 1
Wait 0
___
th(E–BHE)
BHE hold time
_
th(E–R/W)
R/W hold time
td(E–φ1)
φ1 output delay time
ns
ns
ns
ns
ns
ns
ns
ns
– 25
ns
ns
– 30
ns
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
ns
– 22
ns
– 30
ns
– 30
ns
5
Wait 0
td(R/W–E)
ns
45
Wait 1
Wait 0
Unit
ns
4
1 ✕ 109
2 · f(f2)
Data hold time
_
Max.
9
1 ✕ 109
2 · f(f2)
Data output delay time
tw(EL)
td(BHE–E)
No wait
Wait 1
Limits
Min.
1 ✕ 109
– 28
2 · f(f2)
3 ✕ 109
– 33
2 · f(f2)
9
1 ✕ 10
– 28
2 · f(f2)
9
3 ✕ 10
– 45
2 · f(f2)
9
1 ✕ 10
– 22
2 · f(f2)
9
1 ✕ 10
– 18
2 · f(f2)
9
2 ✕ 10
– 23
2 · f(f2)
9
1 ✕ 10
– 35
2 · f(f2)
2 ✕ 109
– 35
2 · f(f2)
ns
– 20
ns
– 28
ns
– 33
ns
– 28
ns
– 33
ns
– 22
ns
– 22
ns
0
18
ns
Notes 1. This applies when the main-clock division selection bit = “0”.
2. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
19
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode
(VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Note 1), unless otherwise noted)
Symbol
Parameter
td(CS–WE)
td(CS–RDE)
Chip-select output delay time
th(WE–CS)
th(RDE–CS)
Chip-select hold time
td(An–WE)
td(An–RDE)
Address output delay time
td(A–WE)
td(A–RDE)
Address output delay time
th(WE–An)
th(RDE–An)
Address hold time
tw(ALE)
ALE pulse width
tsu(A–ALE)
th(ALE–A)
Address output setup time
Address hold time
td(ALE–WE)
td(ALE–RDE)
ALE output delay time
td(WE–DQ)
th(WE–DQ)
Data output delay time
Data hold delay time
___ ___
tw(WE)
WEL/WEH pulse width
tpxz(RDE–DZ)
tpzx(RDE–DZ)
Floating start delay time
Floating release delay time
tw(RDE)
td(RSMP–WE)
td(RSMP–RDE)
th(φ1–RSMP)
td(WE–φ1)
td(RDE–φ1)
td(φ1–HLDA)
Test
(Note 2)
Wait mode conditions
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Fig.2
Max.
No wait
Wait 1
Wait 0
Unit
12
ns
87
ns
4
ns
12
ns
87
ns
12
ns
75
ns
18
ns
22
ns
57
ns
5
ns
45
ns
9
ns
15
ns
4
ns
18
50
ns
ns
ns
ns
130
ns
10
45
20
48
ns
ns
ns
128
ns
10
ns
RSMP hold time
0
ns
φ1 output delay time
0
___
RDE pulse width
5
No wait
Wait 1
Wait 0
____
RSMP output delay time
____
18
ns
50
ns
____
HLDA output delay time
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
2. No wait : Wait bit = “1”.
Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”.
Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
20
Limits
Min.
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode
Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Max., Note1), unless otherwise noted)
Symbol
Parameter
td(CS–WE)
td(CS–RDE)
Chip-select output delay time
th(WE–CS)
th(RDE–CS)
Chip-select hold time
Wait mode
No wait
Wait 1
Wait 0
td(An–WE)
td(An–RDE)
Address output delay time
td(A–WE)
td(A–RDE)
Address output delay time
th(WE–An)
th(RDE–An)
Address hold time
tw(ALE)
ALE pulse width
No wait
Wait 1
Wait 0
No wait
Wait 1
Wait 0
Address output setup time
No wait
Wait 1
No wait
Wait 1
Wait 0
th(ALE–A)
Address hold time
No wait
Wait 1
ALE output delay time
td(WE–DQ)
Data output delay time
th(WE–DQ)
Data hold time
tw(WE)
WEL/WEH pulse width
___ ___
tpxz(RDE–DZ)
tpzx(RDE–DZ)
td(RSMP–WE)
td(RSMP–RDE)
th(φ1–RSMP)
td(WE–φ1)
td(RDE–φ1)
No wait
Wait 1
____
RSMP output delay time
____
RSMP hold time
φ1 output delay time
ns
ns
– 28
ns
– 33
ns
– 28
ns
– 45
ns
– 22
ns
– 18
ns
– 23
ns
– 35
ns
– 35
ns
ns
9
1 ✕ 10
2 · f(f2)
– 25
ns
ns
4
Wait 0
1 ✕ 10
2 · f(f2)
No wait
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
9
– 30
ns
45
Wait 1
Wait 0
No wait
Wait 1
Wait 0
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
4 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
0
ns
– 22
ns
– 30
ns
– 30
ns
5
Floating release delay time
RDE pulse width
ns
9
Floating start delay time
___
tw(RDE)
1 ✕ 10
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
3 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
1 ✕ 109
2 · f(f2)
2 ✕ 109
2 · f(f2)
Unit
9
Wait 0
td(ALE–WE)
td(ALE–RDE)
Max.
4
Wait 0
tsu(A–ALE)
Limits
Min.
1 ✕ 109
– 28
2 · f(f2)
3 ✕ 109
– 33
2 · f(f2)
ns
– 20
ns
– 32
ns
– 32
ns
– 30
ns
0
ns
18
ns
Notes 1. This applies when the main-clock division selection bit = “0”.
2. f(f2) represents the clock f2 frequency.
For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
21
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
TIMING DIAGRAM
tr
tf
tc
tw(H)
Single-chip mode
XIN
E
td(E–PiQ)
Port Pi output
(i = 0 – 10)
tsu(PiD–E)
th(E–PiD)
Port Pi input
(i = 0 – 8, 10)
td(E–P1Q)
Port P1 output
tsu(P1D–E)
th(E–P1D)
Port P1 input
td(E–P2Q)
Port P2 output
tsu(P2D–E)
th(E–P2D)
Port P2 input
td(E–P3Q)
Port P3 output
tsu(P3D–E)
th(E–P3D)
Port P3 input
td(E–P4Q)
Port P4 output
tsu(P4D–E)
th(E–P4D)
Port P4 input
td(E–P5Q)
Port P5 output
tsu(P5D–E)
th(E–P5D)
Port P5
input
td(E–P6Q)
Port P6 output
tsu(P6D–E)
th(E–P6D)
Port P6 input
td(E–P7Q)
Port P7 output
tsu(P7D–E)
th(E–P7D)
Port P7 input
td(E–P8Q)
Port P8 output
tsu(P8D–E)
Port P8 input
22
th(E–P8D)
tw(L)
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
In event count mode
TAiOUT input
(Up-down input)
TAiIN input
(when count by falling)
TAiIN input
(when count by rising)
th(TIN–UP)
tsu(UP–TIN)
In event counter mode
(When two-phase pulse input is selected)
tc(TA)
TAjIN input
tsu(TAjIN–TAjOUT)
tsu(TAjIN–TAjOUT)
tsu(TAjOUT–TAjIN)
TAjOUT input
tsu(TAjOUT–TAjIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
23
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tSU(D–C)
RxDi
tw(INL)
INTi input
Kli input
24
tw(INH)
tw(KNL)
th(C–D)
MI
I
L
E
NA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
PR
PROM VERSION OF M37736MHBXXXGP
Memory expansion mode and microprocessor mode
(When wait bit = “1”)
φ1
E or RDE,
WEL, WEH
RDY input
tsu(RDY– φ 1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E or RDE,
WEL, WEH
RDY input
tsu(RDY– φ 1) th(φ 1–RDY)
(When wait bit = “1” or “0” in common)
φ1
tsu(HOLD– φ 1)
th( φ 1–HOLD)
HOLD input
td(φ 1–HLDA)
td(φ1–HLDA)
HLDA output
Test conditions
• VCC = 5 V ± 10%
• Input timing voltage : V IL = 1.0 V, VIH = 4.0 V
• Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
25
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M37736EHBGS
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
ot a its are
is n
m
This etric li
m
ice:
Not e para
m
So
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode
(No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(E-φ1)
td(E-φ1)
tw(EL)
E
td(An-E)
An
th(E-An)
Address
tw(ALE)
Address
Address
td(ALE-E)
ALE
th(ALE-A)
th(E-DQ)
tsu(A-ALE)
Am/Dm
Address
Data
tpxz(E-DZ)
tpzx(E-DZ)
Address
Address
th(E-D)
td(E-DQ)
td(A-E)
tsu(D-E)
DmIN
Data
td(BHE-E)
th(E-BHE)
BHE
td(R/W-E)
R/W
Test conditions
•
VCC = 5 V ± 10%
•
Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
•
Data input DmIN : VIL = 0.8 V, VIH = 2.5 V
26
th(E-R/W)
IM
REL
INA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion hange
c
ifica
pec ject to
s
l
fina
sub
ot a its are
is n
m
This etric li
:
e
m
ic
Not e para
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection = “1”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(E–φ1)
td(E–φ1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
Address
td(ALE–E)
ALE
th(ALE–A)
tsu(A–ALE)
Am/Dm
th(E–DQ)
Address
td(A–E)
Data
tpzx(E–DZ)
tpxz(E–DZ)
Address
Address
td(E–DQ)
th(E–D)
tsu(D–E)
DmIN
Data
td(BHE–E)
th(E–BHE)
td(R/W–E)
th(E–R/W)
BHE
R/W
Test conditions
• Vcc = 5 V ± 10%
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
27
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode
(Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(E–φ1)
td(E–φ1)
tw(EL)
E
td(An–E)
th(E–An)
Address
An
tw(ALE)
td(ALE–E)
tsu(A–ALE)
th(ALE–A)
Address
Address
ALE
th(E–DQ)
Am/Dm
Address
Data
tpzx(E–DZ)
tpxz(E–DZ)
Address
Address
td(E–DQ)
td(A–E)
tsu(D–E)
Data
DmIN
td(BHE–E)
th(E–BHE)
BHE
td(R/W–E)
R/W
Test conditions
• Vcc = 5 V ± 10%
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
28
th(E–R/W)
th(E–D)
MI
I
L
E
NA
MITSUBISHI MICROCOMPUTERS
RY
M37736EHBXXXGP
M67736EHBGS
.
.
tion
nge
ifica to cha
t
pec
al s subjec
in
f
are
ot a
is n limits
This
ric
ice: aramet
t
o
N
ep
Som
PR
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode
(No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(WE– φ1)
td(WE– φ1)
td(RDE– φ1 )
td(RDE– φ1)
CS0 – CS4
t d(CS–WE)
td(CS–RDE)
th(WE –CS)
An
th(RDE– CS)
Address
Address
td(An–WE)
tw(ALE)
Address
td(An–RDE )
td(ALE –WE)
th(RDE –An)
th(WE–An)
ALE
td(ALE –RDE)
th(ALE –A)
tsu(A–ALE)
th(WE–DQ)
Am/Dm
Address
Data
td(WE–DQ)
tpxz(RDE –DZ)
tpzx(RDE –DZ)
Address
Address
td(A–RDE)
t d(A–WE)
tw(WE)
th(RDE–D)
WEL, WEH
t su(D–RDE)
DmIN
Data
tw(RDE)
RDE
th(φ1–RSMP)
td(RSMP –WE)
td(RSMP –RDE)
RSMP
Test conditions
• Vcc = 5 V ± 10%
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
29
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M37736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode
(Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(WE–φ1)
td(WE–φ1)
td(RDE–φ1)
td(RDE-φ1)
CS0 – CS4
th(WE–CS)
th(RDE–CS)
td(CS–RDE)
td(CS–WE)
An
Address
td(An–WE)
tw(ALE)
Address
th(RDE–An)
td(An–RDE)
th(WE-An)
td(ALE–WE)
ALE
th(ALE–A)
tsu(A–ALE)
Am/Dm
td(ALE–RDE)
tpxz(RDE–DZ)
th(WE–DQ)
Address
td(A–WE)
Data
td(WE–DQ)
Address
tpzx(RDE–DZ)
Address
td(A–RDE)
tw(WE)
th(RDE–D)
WEL, WEH
tsu(D–RDE)
DmIN
Data
tw(RDE)
RDE
th(φ 1–RSMP)
RSMP
td(RSMP–WE)
Test conditions
• Vcc = 5 V ± 10%
• Output timing voltage : V OL = 0.8 V, V OH = 2.0 V
• Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
30
td(RSMP–RDE)
IM
REL
IN
MITSUBISHI MICROCOMPUTERS
Y
AR
M37736EHBXXXGP
M67736EHBGS
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode
(Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L)
tw(H)
tf tr
tc
XIN
φ1
td(WE– φ 1)
td(RDE– φ1)
td(RDE– φ 1)
td(WE– φ 1)
CS0 – CS4
td(CS–WE)
th(WE–CS)
td(CS–RDE)
th(RDE–CS)
Address
An
Address
td(An–WE)
tw(ALE)
Address
td(An–RDE)
td(ALE–WE)
th(RDE–An)
th(WE–An)
ALE
td(ALE–RDE)
tsu(A–ALE)
Am/Dm
Address
th(ALE–A)
Data
th(WE–DQ)
tpxz(RDE–DZ)
tpzx(RDE–DZ)
Address
Address
td(WE–DQ)
td(A–WE)
td(A–RDE)
tw(WE)
WEL, WEH
tsu(D–RDE)
th(RDE–D)
Data
DmIN
tw(RDE)
RDE
td(RSMP–WE)
th(φ1–RSMP)
td(RSMP–RDE)
RSMP
Test conditions
• Vcc = 5 V ± 10%
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Data input DmIN : VIL = 0.8 V, VIH = 2.5 V
31
IM
REL
IN
Y
AR
e.
n.
atio chang
cific
spe bject to
l
a
fin re su
a
ot a
is n limits
his
e: T ametric
ic
t
No e par
Som
P
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP
M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
PACKAGE OUTLINE
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1997 MITSUBISHI ELECTRIC CORP.
H-LF488-A KI-9703 Printed in Japan (ROD) 2
New
32 publication, effective Mar. 1997.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
M37736EHBXXXGP, M37736EHBGS Datasheet
Rev.
date
Revision Description
1.00
First Edition
970611
2.00
The following are revised:
980731
Page
Previous Version
Revised Version
P9
Right column
Line 2
The M37736EHBXXXGP has 28 powerful
addressing modes. Refer to the MITSUBISHI
SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details
of each addressing mode.
The M37736EHBXXXGP has 28 powerful
addressing modes. Refer to the “7700 Family
Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine
instructions. Refer to the MITSUBISHI
SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details.
Line 10
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine
instructions. Refer to the “7700 Family Software
Manual” for the details.
(2) 100P6S mark specification form
(2) 80P6N mark specification form
(1)
Similar pages