ON NLU1GT32AMUTCG Single 2-input or gate, ttl level Datasheet

NLU1GT32
Single 2-Input OR Gate,
TTL Level
LSTTL−Compatible Inputs
The NLU1GT32 MiniGatet is an advanced CMOS high−speed
2−input OR gate in ultra−small footprint.
The device input is compatible with TTL−type input thresholds and
the output has a full 5.0 V CMOS level output swing.
The NLU1GT32 input and output structures provide protection
when voltages up to 7.0 V are applied, regardless of the supply
voltage.
5M
UDFN6
1.0 x 1.0
CASE 517BX
L
High Speed: tPD = 3.7 ns (Typ) @ VCC = 5.0 V
Low Power Dissipation: ICC = 2 mA (Max) at TA = 25°C
TTL−Compatible Input: VIL = 0.8 V; VIH = 2.0 V
CMOS−Compatible Output:
VOH > 0.8 VCC; VOL < 0.1 VCC @ Load
Power Down Protection Provided on inputs
Balanced Propagation Delays
Ultra−Small Packages
These are Pb−Free Devices
UDFN6
1.2 x 1.0
CASE 517AA
M
UDFN6
1.45 x 1.0
CASE 517AQ
T
•
•
•
•
MARKING
DIAGRAMS
1
Features
•
•
•
•
www.onsemi.com
M
1
1
5
M
= Device Marking
= Date Code
ORDERING INFORMATION
IN B
1
6
VCC
IN A
2
5
NC
GND
3
4
OUT Y
See detailed ordering and shipping information on page 4 of
this data sheet.
Figure 1. Pinout (Top View)
IN A
≥1
IN B
OUT Y
Figure 2. Logic Symbol
PIN ASSIGNMENT
FUNCTION TABLE
1
IN B
2
IN A
3
GND
A
B
Y
4
OUT Y
L
L
H
H
L
H
L
H
L
H
H
H
5
NC
6
VCC
© Semiconductor Components Industries, LLC, 2016
June, 2016 − Rev. 7
Input
Output
1
Publication Order Number:
NLU1GT32/D
NLU1GT32
MAXIMUM RATINGS
Symbol
Value
Unit
VCC
DC Supply Voltage
−0.5 to +7.0
V
VIN
DC Input Voltage
−0.5 to +7.0
V
DC Output Voltage
−0.5 to +7.0
V
VIN < GND
−20
mA
VOUT < GND
±20
mA
VOUT
Parameter
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IO
DC Output Source/Sink Current
±12.5
mA
ICC
DC Supply Current Per Supply Pin
±25
mA
IGND
DC Ground Current per Ground Pin
±25
mA
TSTG
Storage Temperature Range
−65 to +150
°C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
260
°C
TJ
Junction Temperature Under Bias
150
°C
MSL
Moisture Sensitivity
FR
Flammability Rating
ILATCHUP
Level 1
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Latchup Performance Above VCC and Below GND at 125°C (Note 2)
mA
±500
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA / JESD78.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
1.65
5.5
V
VCC
Positive DC Supply Voltage
VIN
Digital Input Voltage
0
5.5
V
Output Voltage
0
5.5
V
−55
+125
°C
0
0
100
20
ns/V
VOUT
TA
Operating Free−Air Temperature
Dt/DV
Input Transition Rise or Fall Rate
VCC = 3.3 V ± 0.3 V
VCC = 5.0 V ± 0.5 V
www.onsemi.com
2
NLU1GT32
DC ELECTRICAL CHARACTERISTICS
TA = 25 5C
Symbol
Parameter
Conditions
VCC (V)
Min
1.2
1.4
2.0
VIH
Low−Level Input
Voltage
1.8
3.0
4.5 to 5.5
VIL
Low−Level Input
Voltage
1.8
3.0
4.5 to 5.5
VOH
High−Level Output
Voltage
VOL
Low−Level Output
Voltage
Typ
Max
TA = +855C
TA = −555C
to +1255C
Min
Min
1.2
1.4
2.0
0.3
0.53
0.8
VIN = VIH or VIL
IOH = −50 mA
3.0
4.5
2.9
4.4
VIN = VIH or VIL
IOH = −2 mA
IOH = −4 mA
IOH = −8 mA
1.8
3.0
4.5
1.40
2.58
3.94
VIN = VIH or VIL
IOL = 50 mA
3.0
4.5
VIN = VIH or VIL
IOL = 2 mA
IOL = 4 mA
IOL = 8 mA
Max
3.0
4.5
0
0
Max
1.2
1.4
2.0
0.3
0.53
0.8
V
0.3
0.53
0.8
2.9
4.4
2.9
4.4
1.38
2.48
3.80
1.37
2.34
3.66
Unit
V
V
0.1
0.1
0.1
0.1
0.1
0.1
1.8
3.0
4.5
0.36
0.36
0.36
0.44
0.44
0.44
0.52
0.52
0.52
V
IIN
Input Leakage
Current
0 v VIN v 5.5 V
0 to 5.5
±0.1
±1.0
±1.0
mA
ICC
Quiescent Supply
Current
0 v VIN v VCC
5.5
2.0
20
40
mA
ICCT
Quiescent Supply
Current
VIN = 3.4 V
5.5
1.35
1.50
1.65
mA
IOPD
Output Leakage
Current
VOUT = 5.5 V
0.0
0.5
5.0
10
mA
TA = +855C
TA = −555C
to +1255C
Min
Min
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns)
Symbol
tPLH,
tPHL
Parameter
Propagation Delay, Input
A or B to Y
VCC (V)
CPD
Power Dissipation
Capacitance (Note 3)
Typ
Max
Max
Max
Unit
ns
CL = 15 pF
15.4
16.9
18.7
CL = 50 pF
23.8
25.2
26.7
2.3 to 2.7
CL = 15 pF
10.4
11.2
13.2
CL = 50 pF
14.5
15.5
17.9
4.5 to 5.5
Input Capacitance
Min
1.65 to
1.95
3.0 to 3.6
CIN
Test
Condition
TA = 25 5C
CL = 15 pF
4.8
7.9
9.5
11.5
CL = 50 pF
6.1
11.4
13.0
15.5
CL = 15 pF
3.7
5.5
6.5
8.0
CL = 50 pF
4.4
7.5
8.5
10.0
5.5
10
10
10.0
5.0
11
pF
pF
3. CPD is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without
load. Average operating current can be obtained by the equation ICC(OPR) = CPD • VCC • fin + ICC. CPD is used to determine the no−load
dynamic power consumption: PD = CPD • VCC2 • fin + ICC • VCC.
www.onsemi.com
3
NLU1GT32
Input A or B
50%
50% VCC
GND
tPLH
Output Y
tPHL
VOH
50% VCC
VOL
Figure 3. Switching Waveforms
VCC
OUTPUT
INPUT
CL*
*Includes all probe and jig capacitance.
A 1−MHz square input wave is recommended
for propagation delay tests.
Figure 4. Test Circuit
ORDERING INFORMATION
Package
Shipping†
NLU1GT32MUTCG
UDFN6, 1.2 x 1.0, 0.4P
(Pb−Free)
3000 / Tape & Reel
NLU1GT32AMUTCG
UDFN6, 1.45 x 1.0, 0.5P
(Pb−Free)
3000 / Tape & Reel
NLU1GT32CMUTCG
UDFN6, 1.0 x 1.0, 0.35P
(Pb−Free)
3000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
www.onsemi.com
4
NLU1GT32
PACKAGE DIMENSIONS
UDFN6, 1.2x1.0, 0.4P
CASE 517AA
ISSUE D
EDGE OF PACKAGE
PIN ONE
REFERENCE
2X
0.10 C
L1
ÉÉ
ÉÉ
E
DETAIL A
Bottom View
(Optional)
TOP VIEW
2X
EXPOSED Cu
0.10 C
(A3)
0.10 C
A1
A
10X
0.08 C
ÉÉÉ
ÉÉÉ
MOLD CMPD
5X
DIM
A
A1
A3
b
D
E
e
L
L1
L2
MILLIMETERS
MIN
MAX
0.45
0.55
0.00
0.05
0.127 REF
0.15
0.25
1.20 BSC
1.00 BSC
0.40 BSC
0.30
0.40
0.00
0.15
0.40
0.50
MOUNTING FOOTPRINT*
6X
C
A1
A3
DETAIL B
Side View
(Optional)
SEATING
PLANE
SIDE VIEW
1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND
0.30 mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
A
B
D
6X
0.42
0.22
L
3
L2
6X
b
0.10 C A B
0.05 C
6
0.40
PITCH
4
e
NOTE 3
BOTTOM VIEW
1.07
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
5
NLU1GT32
PACKAGE DIMENSIONS
UDFN6 1.45x1.0, 0.5P
CASE 517AQ
ISSUE O
A
B
D
L
L
L1
PIN ONE
REFERENCE
0.10 C
ÉÉÉ
ÉÉÉ
DETAIL A
E
OPTIONAL
CONSTRUCTIONS
DETAIL B
OPTIONAL
CONSTRUCTIONS
A
0.05 C
A1
SIDE VIEW
MOLD CMPD
DETAIL B
0.05 C
6X
DIM
A
A1
A2
b
D
E
e
L
L1
ÉÉ
ÉÉ
EXPOSED Cu
TOP VIEW
0.10 C
A2
6X
C
6X
SEATING
PLANE
0.30
PACKAGE
OUTLINE
L
1.24
3
DETAIL A
6X
0.53
4
BOTTOM VIEW
MILLIMETERS
MIN
MAX
0.45
0.55
0.00
0.05
0.07 REF
0.20
0.30
1.45 BSC
1.00 BSC
0.50 BSC
0.30
0.40
−−−
0.15
MOUNTING FOOTPRINT
e
1
6
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.15 AND
0.30 mm FROM THE TERMINAL TIP.
6X
0.50
PITCH
DIMENSIONS: MILLIMETERS
b
0.10 C A B
0.05 C
1
NOTE 3
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
6
NLU1GT32
PACKAGE DIMENSIONS
UDFN6 1.0x1.0, 0.35P
CASE 517BX
ISSUE O
PIN ONE
REFERENCE
2X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF
BURRS AND MOLD FLASH.
A B
D
ÉÉÉ
ÉÉÉ
ÉÉÉ
E
0.10 C
2X
0.10 C
DIM
A
A1
A3
b
D
E
e
L
L1
TOP VIEW
A3
0.05 C
A
MILLIMETERS
MIN
MAX
0.45
0.55
0.00
0.05
0.13 REF
0.12
0.22
1.00 BSC
1.00 BSC
0.35 BSC
0.25
0.35
0.30
0.40
0.05 C
SIDE VIEW
A1
C
RECOMMENDED
SOLDERING FOOTPRINT*
SEATING
PLANE
5X
e
5X
0.48
L
6X
0.22
3
1
L1
1.18
6
4
6X
BOTTOM VIEW
b
0.10
M
C A B
0.05
M
C
0.53
1
PKG
OUTLINE
NOTE 3
0.35
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NLU1GT32/D
Similar pages