TI1 MAX3238EC Line driver/receiver with esd (hbm) protection Datasheet

www.ti.com
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
RS-232 Bus-Pin ESD Protection Exceeds
±15 kV Using Human-Body Model (HBM)
Meets or Exceeds the Requirements of
TIA/EIA-232-F and ITU v.28 Standards
Operates With 3-V to 5.5-V VCC Supply
Operates up to 400 kbit/s
Five Drivers and Three Receivers
Auto-Powerdown Plus Feature Enables
Flexible Power-Down Mode
Low Standby Current . . . 1 µA Typical
External Capacitors . . . 4 × 0.1 µF
Accepts 5-V Logic Input With 3.3-V Supply
Always-Active Noninverting Receiver Output
(ROUT1B)
Alternative High-Speed Pin-Compatible
Device (1 Mbit/s) for SNx5C3238
ESD Protection for RS-232 Interface Pins
– ±15 kV – Human-Body Model (HBM)
– ±8 kV – IEC61000-4-2, Contact Discharge
– ±15 kV – IEC61000-4-2, Air-Gap Discharge
DB, DW, OR PW PACKAGE
(TOP VIEW)
C2 +
GND
C2−
V−
DOUT1
DOUT2
DOUT3
RIN1
RIN2
DOUT4
RIN3
DOUT5
FORCEON
FORCEOFF
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
C1+
V+
VCC
C1−
DIN1
DIN2
DIN3
ROUT1
ROUT2
DIN4
ROUT3
DIN5
ROUT1B
INVALID
32 31 30 29 28 27 26 25
DOUT1
DOUT2
DOUT3
RIN1
RIN2
DOUT4
RIN3
NC
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
C1–
DIN1
DIN2
DIN3
ROUT1
ROUT2
DIN4
ROUT3
9 10 11 12 13 14 15 16
DOUT5
FORCEON
FORCEOFF
INVALID
NC
ROUT1B
DIN5
NC
Battery-Powered Systems
PDAs
Notebooks
Subnotebooks
Laptops
Palmtop PCs
Hand-Held Equipment
Modems
Printers
28
2
RHB PACKAGE
(TOP VIEW)
APPLICATIONS
•
•
•
•
•
•
•
•
•
1
V−
C2–
GND
C2+
C1+
V+
VCC
NC
•
DESCRIPTION/ORDERING INFORMATION
The MAX3238E consists of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV
ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The device meets the
requirements of TIA/EIA-232-F and provides the electrical interface between notebook and subnotebook
computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to
5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT1B), which allows
applications using the ring indicator to transmit data while the device is powered down. This device operates at
data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006, Texas Instruments Incorporated
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
Flexible control options for power management are featured when the serial port and driver inputs are inactive.
The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode
of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for
approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to
1 µA. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there
is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and
FORCEOFF are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal
is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than
2.7 V or less than –2.7 V, or has been between –0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid
data) if all receiver input voltages are between –0.3 V and 0.3 V for more than 30 µs. Refer to Figure 5 for
receiver input levels.
ORDERING INFORMATION
PACKAGE (1)
TA
Reel of 2000
MAX3238ECDBR
Tube of 50
MAX3238ECPW
Reel of 2000
MAX3238ECPWR
SOIC – DW
Reel of 2000
MAX3238ECDWR
MAX3238EC
QFN – RHB
Reel of 2000
MAX3238ECRHBR
Preview
Tube of 50
MAX3238EIDB
Reel of 2000
MAX3238EIDBR
Tube of 50
MAX3238EIPW
Reel of 2000
MAX3238EIPWR
SOIC – DW
Reel of 2000
MAX3238ICDWR
MAX3238EI
QFN – RHB
Reel of 2000
MAX3238EIRHBR
Preview
TSSOP – PW
SSOP – DB
–40°C to 85°C
(1)
2
TOP-SIDE MARKING
MAX3238ECDB
SSOP – DB
0°C to 70°C
ORDERABLE PART NUMBER
Tube of 50
TSSOP – PW
MAX3238EC
MP238EC
MAX3238EI
MP238EI
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Submit Documentation Feedback
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
FUNCTION TABLES
abc
Each Driver (1)
INPUTS
DIN
(1)
FORCEON
FORCEOFF
TIME ELAPSED SINCE LAST
RIN OR DIN TRANSITION
OUTPUT
DOUT
DRIVER STATUS
X
X
L
X
Z
Powered off
L
H
H
X
H
H
H
H
X
L
Normal operation with
auto-powerdown plus disabled
L
L
H
<30 s
H
H
L
H
<30 s
L
L
L
H
>30 s
Z
H
L
H
>30 s
Z
Normal operation with
auto-powerdown plus enabled
Powered off by
auto-powerdown plus feature
H = high level, L = low level, X = irrelevant, Z = high impedance
Each Receiver (1)
INPUTS
OUTPUTS
RIN1
RIN2–RIN3
FORCEOFF
TIME ELAPSED SINCE LAST
RIN OR DIN TRANSITION
ROUT1B
ROUT2 AND
ROUT3
RECEIVER STATUS
Powered off while
ROUT1B is active
L
X
L
X
L
Z
H
X
L
X
H
Z
L
L
H
<30 s
L
H
L
H
H
<30 s
L
L
H
L
H
<30 s
H
H
H
H
H
<30 s
H
L
Open
Open
H
<30 s
L
H
(1)
Normal operation with
auto-powerdown plus
disabled/enabled
H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off
Submit Documentation Feedback
3
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
LOGIC DIAGRAM (POSITIVE LOGIC)
DIN1
DIN2
DIN3
DIN4
DIN5
FORCEOFF
FORCEON
ROUT1B
ROUT1
ROUT2
ROUT3
4
24
5
23
6
22
7
19
10
17
12
DOUT1
DOUT2
DOUT3
DOUT4
DOUT5
14
13
Auto-powerdown Plus
15
INVALID
16
21
8
20
9
18
11
RIN1
RIN2
RIN3
Submit Documentation Feedback
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range (2)
–0.3
6
V
V+
Positive-output supply voltage range (2)
–0.3
7
V
0.3
–7
V
13
V
V–
Negative-output supply voltage
V+ – V–
Supply voltage difference (2)
VI
Input voltage range
VO
Output voltage range
θJA
range (2)
Driver (FORCEOFF, FORCEON)
–0.3
6
Receiver
–25
25
Driver
Receiver (INVALID)
Package thermal impedance (3) (4)
–13.2
13.2
–0.3
VCC + 0.3
DB package
62
DW package
46
PW package
62
RHB package
TJ
Operating virtual junction temperature
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
UNIT
V
V
°C/W
TBD
–65
150
°C
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to network GND.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
See Figure 6
MIN NOM
VCC = 3.3 V
Supply voltage
VCC = 5 V
VIH
Driver and control high-level input voltage
DIN, FORCEOFF,
FORCEON
VIL
Driver and control low-level input voltage
DIN, FORCEOFF, FORCEON
VI
Receiver input voltage
TA
Operating free-air temperature
(1)
3.3
3.6
4.5
5
5.5
VCC = 3.3 V
VCC = 5 V
2
5.5
2.4
5.5
UNIT
V
V
0
0.8
V
–25
25
V
0
70
–40
85
MAX3238EC
MAX3238EI
MAX
3
°C
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
II
ICC
(1)
(2)
Input leakage current
Supply current
(TA = 25°C)
TEST CONDITIONS
FORCEOFF, FORCEON
MIN
TYP (2)
MAX
±0.01
±1
µA
0.5
2
mA
Auto-powerdown plus
disabled
No load,
FORCEOFF and FORCEON at VCC
Powered off
No load, FORCEOFF at GND
1
10
Auto-powerdown plus
enabled
No load, FORCEOFF at VCC,
FORCEON at GND,
All RIN are open or grounded
1
10
UNIT
µA
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
5
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
DRIVER SECTION
xxx
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
MIN TYP (2) MAX
TEST CONDITIONS
VOH
High-level output voltage
All DOUT at RL = 3 kΩ to GND
5
5.4
VOL
Low-level output voltage
All DOUT at RL = 3 kΩ to GND
–5
–5.4
IIH
High-level input current
VI = VCC
IIL
Low-level input current
VI at GND
µA
µA
±0.01
±1
VO = 0 V
±35
±60
VCC = 5.5 V,
VO = 0 V
±40 ±100
VO = ±2 V
ro
Output resistance
VCC, V+, and V– = 0 V,
IOZ
Output leakage current
FORCEOFF = GND
(2)
(3)
V
±1
VCC = 3.6 V,
Short-circuit output current (3)
(1)
V
±0.01
IOS
300
UNIT
mA
Ω
10M
VO = ±12 V,
VCC = 3 V to 3.6 V
±25
VO = ±10 V,
VCC = 4.5 V to 5.5 V
±25
µA
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
TEST CONDITIONS
MIN
TYP (2) MAX
Maximum data rate
CL = 1000 pF,
One DOUT switching,
RL = 3 kΩ,
See Figure 1
tsk(p)
Pulse skew (3)
CL = 150 pF to 2500 pF,
See Figure 2
RL = 3 kΩ to 7 kΩ,
SR(tr)
Slew rate, transition region
(see Figure 1)
VCC = 3.3 V,
RL = 3 kΩ to 7 kΩ
CL = 150 pF to 1000 pF
6
30
CL = 150 pF to 2500 pF
4
30
(1)
(2)
(3)
250
UNIT
400
kbit/s
100
ns
V/µs
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
PARAMETER
DOUT
6
TEST CONDITIONS
TYP
HBM
±15
IEC 61000-4-2, Air-Gap Discharge
±15
IEC 61000-4-2, Contact Discharge
±8
Submit Documentation Feedback
UNIT
kV
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
RECEIVER SECTION
xxx
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
VOH
High-level output voltage
IOH = –1 mA
VOL
Low-level output voltage
IOL = 1.6 mA
VCC – 0.6
VCC – 0.1
MAX
1.5
2.4
VCC = 5 V
1.8
2.4
VIT–
Negative-going input threshold voltage
Vhys
Input hysteresis (VIT+ – VIT–)
IOZ
Output leakage current (except ROUT1B)
FORCEOFF = 0 V
ri
Input resistance
VI = ±3 V to ±25 V
VCC = 3.3 V
0.6
1.2
VCC = 5 V
0.8
1.5
UNIT
V
VCC = 3.3 V
Positive-going input threshold voltage
(2)
TYP (2)
0.4
VIT+
(1)
MIN
TEST CONDITIONS
V
V
V
0.3
V
±0.05
±10
µA
5
7
kΩ
3
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP (2)
UNIT
tPLH
Propagation delay time, low- to high-level output
CL = 150 pF, See Figure 3
150
ns
tPHL
Propagation delay time, high- to low-level output
CL = 150 pF, See Figure 3
150
ns
ten
Output enable time
CL = 150 pF, RL = 3 kΩ, See Figure 4
200
ns
tdis
Output disable time
CL = 150 pF, RL = 3 kΩ, See Figure 4
200
ns
tsk(p)
Pulse skew (3)
See Figure 3
50
ns
(1)
(2)
(3)
Testing supply conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1–C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF
and C2–C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
PARAMETER
RIN
TEST CONDITIONS
TYP
HBM
±15
IEC 61000-4-2, Air-Gap Discharge
±15
IEC 61000-4-2, Contact Discharge
±8
Submit Documentation Feedback
UNIT
kV
7
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
AUTO-POWERDOWN PLUS SECTION
xxx
Electrical Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
TEST CONDITIONS
MIN
VT+(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
VT–(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
–2.7
VT(invalid)
Receiver input threshold
for INVALID low-level output voltage
FORCEON = GND, FORCEOFF = VCC
–0.3
VOH
INVALID high-level output voltage
IOH = –1 mA, FORCEON = GND,
FORCEOFF = VCC
VOL
INVALID low-level output voltage
IOL = 1.6 mA, FORCEON = GND,
FORCEOFF = VCC
MAX
2.7
UNIT
V
V
0.3
VCC – 0.6
V
V
0.4
V
Switching Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
TYP (1)
MAX
UNIT
tvalid
Propagation delay time, low- to high-level output
0.1
µs
tinvalid
Propagation delay time, high- to low-level output
50
µs
ten
Supply enable time
25
tdis
Receiver or driver edge to auto-powerdown plus
(1)
8
MIN
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
15
30
µs
60
s
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
PARAMETER MEASUREMENT INFORMATION
3V
Generator
(see Note B)
Input
RS-232
Output
50 Ω
RL
tTHL
CL
(see Note A)
3V
FORCEOFF
TEST CIRCUIT
0V
3V
3V
Output
SR(tr) tTLH
−3 V
−3 V
6V
t THL or tTLH
VOH
VOL
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns,
tf ≤ 10 ns.
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
Input
1.5 V
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
3V
FORCEOFF
50%
50%
Output
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns,
tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
3 V or 0 V
FORCEON
3V
Input
1.5 V
1.5 V
−3 V
Output
Generator
(see Note B)
tPHL
50 Ω
3V
FORCEOFF
tPLH
CL
(see Note A)
VOH
50%
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
Submit Documentation Feedback
9
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
PARAMETER MEASUREMENT INFORMATION (continued)
3V
Input
VCC
3 V or 0 V
FORCEON
1.5 V
0V
tPHZ
(S1 at GND)
RL
3 V or 0 V
1.5 V
GND
S1
VOH
Output
50%
Output
CL
(see Note A)
FORCEOFF
Generator
(see Note B)
0.3 V
tPLZ
(S1 at VCC)
50 Ω
tPZL
(S1 at VCC)
0.3 V
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
C.
tPLZ and tPHZ are the same as tdis.
D.
tPZL and tPZH are the same as ten.
Figure 4. Receiver Enable and Disable Times
10
Submit Documentation Feedback
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
PARAMETER MEASUREMENT INFORMATION (continued)
Valid RS-232 Level, INVALID High
ROUT
Generator
(see Note B)
2.7 V
50 Ω
Indeterminate
0.3 V
0V
−0.3 V
Indeterminate
Autopowerdown
Plus
INVALID
−2.7 V
CL = 30 pF
(see Note A)
Valid RS-232 Level, INVALID High
†
FORCEOFF
FORCEON
If Signal Remains Within This Region
For More Than 30 µs, INVALID Is Low†
DIN
DOUT
Auto-powerdown plus disables drivers and reduces
supply current to 1 µA.
TEST CIRCUIT
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following
characteristics: PRR = 5 kbit/s, ZO = 50 Ω, 50%
duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Receiver
Input
3V
2.7 V
0V
0V
−2.7 V
−3 V
tinvalid
tvalid
INVALID
Output
Driver
Input
50%
VCC
50%
0V
3 V to 5 V
50%
50%
0V
≈5.5 V
Driver
Output
≈ −5.5 V
tdis
ten
tdis
ten
V+
V+ −0.3 V
V+
Supply
Voltages
V− +0.3 V
V−
V−
Voltage Waveforms and Timing Diagrams
Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time
Submit Documentation Feedback
11
MAX3238E
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD (HBM) PROTECTION
www.ti.com
SLLS710A – FEBRUARY 2006 – REVISED APRIL 2006
APPLICATION INFORMATION
CBYPASS = 0.1 µF
+
−
1
2
+
C2
27
+
GND
−
4
+
V+
28
−
3
−
C1+
C2+
C2−
VCC
V−
C1−
C4
DOUT1
DOUT2
DOUT3
RIN1
C3†
+
−
26
C1
25
5
24
6
23
7
22
8
21
9
20
DIN1
DIN2
DIN3
ROUT1
RS-232 Port
RIN2
ROUT2
Logic I/Os
5 kΩ
DOUT4
RIN3
10
19
11
18
DIN4
ROUT3
5 kΩ
DOUT5
12
17
16
DIN5
ROUT1B
5 kΩ
FORCEON
FORCEOFF
13
14
Autopowerdown
Plus
15
INVALID
VCC vs CAPACITOR VALUES
VCC
†
C3 can be connected to VCC or GND.
NOTES: A. Resistor values shown are nominal.
B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum
or electrolytic capacitors are used, they should be connected as
shown.
3.3 V ± 0.15 V
3.3 V ± 0.3 V
5 V ± 0.5 V
3 V to 5.5 V
Figure 6. Typical Operating Circuit and Capacitor Values
12
Submit Documentation Feedback
C1
0.1 µF
0.22 µF
0.047 µF
0.22 µF
C2, C3, and C4
0.1 µF
0.22 µF
0.33 µF
1 µF
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
MAX3238ECDB
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
MAX3238EC
MAX3238ECDBR
ACTIVE
SSOP
DB
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
MAX3238EC
MAX3238ECDWR
ACTIVE
SOIC
DW
28
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
MAX3238EC
MAX3238ECPW
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
MP238EC
MAX3238ECPWR
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
MP238EC
MAX3238EIDB
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MAX3238EI
MAX3238EIDBG4
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MAX3238EI
MAX3238EIDBR
ACTIVE
SSOP
DB
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MAX3238EI
MAX3238EIDW
ACTIVE
SOIC
DW
28
20
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MAX3238EI
MAX3238EIDWR
ACTIVE
SOIC
DW
28
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MAX3238EI
MAX3238EIPW
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MP238EI
MAX3238EIPWG4
ACTIVE
TSSOP
PW
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MP238EI
MAX3238EIPWR
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MP238EI
MAX3238EIPWRG4
ACTIVE
TSSOP
PW
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
MP238EI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Feb-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
MAX3238ECDBR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SSOP
DB
28
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
MAX3238ECDWR
SOIC
DW
28
1000
330.0
32.4
11.35
18.67
3.1
16.0
32.0
Q1
MAX3238ECPWR
TSSOP
PW
28
2000
330.0
16.4
6.9
10.2
1.8
12.0
16.0
Q1
MAX3238EIDBR
SSOP
DB
28
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
MAX3238EIDWR
SOIC
DW
28
1000
330.0
32.4
11.35
18.67
3.1
16.0
32.0
Q1
MAX3238EIPWR
TSSOP
PW
28
2000
330.0
16.4
6.9
10.2
1.8
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Feb-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MAX3238ECDBR
SSOP
DB
28
2000
367.0
367.0
38.0
MAX3238ECDWR
SOIC
DW
28
1000
367.0
367.0
55.0
MAX3238ECPWR
TSSOP
PW
28
2000
367.0
367.0
38.0
MAX3238EIDBR
SSOP
DB
28
2000
367.0
367.0
38.0
MAX3238EIDWR
SOIC
DW
28
1000
367.0
367.0
55.0
MAX3238EIPWR
TSSOP
PW
28
2000
367.0
367.0
38.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
Similar pages