ETC2 ML610347 8-bit microcontroller with voice output function Datasheet

FEDL610Q347FULL-01
Issue Date: January 7, 2010
ML610Q347/ML610347
8-bit Microcontroller with Voice Output Function
GENERAL DESCRIPTION
Equipped with an LAPIS Semiconductor original 8-bit CPU nX-U8/100, the ML610Q347/ML610347 is a
high-performance 8-bit CMOS microcontroller that integrates a wide variety of peripherals such as an 12-bit
A/D converter, timer, synchronous serial port, UART, and voice output function. The nX-U8/100 CPU is
capable of executing instructions efficiently on a one-instruction-per-clock-pulse basis through parallel
processing by the 3-stage pipelined architecture. The microcontroller is also equipped with a flash memory that
has achieved low voltage and low power consumption (at read) equivalent to mask ROMs, so it is best suited to
battery-driven applications such as cellular phones. In addition, it has an on-chip debugging function, which
allows software debugging/rewriting with the LSI mounted on the board.
FEATURES
 CPU
 8-bit RISC CPU (CPU name: nX-U8/100)
 Instruction repertoire: 16-bit length instructions
 Instruction set: Transfer, arithmetic operations, comparison, logical operations, multiply/divide operations,
bit manipulation, bit logical operations, jump, conditional jump, call return stack manipulation, and
arithmetic shift instructions.
 Built-in on-chip debugging function
 Minimum instruction execution time:
31.25 s (@ 32kHz system clock)
0.244 s (@ 4.096 MHz system clock)
 Internal memory
 ML610Q347
Has 128-Kbyte flash memory (64K  16-bit) built in. (including unusable 1KByte TEST area)
 ML610347
Has 128-Kbyte mask memory (64K  16-bit) built in. (including unusable 1KByte TEST area)
 Has 1-Kbyte RAM (1024  8-bit) built in.
 Interrupt controller
 Non-maskable interrupt: 2 sources (1 internal source and 1 external sources)
 Maskable interrupt: 18 sources (10 internal sources and 8 external sources)
 Time-base counter
 Low-speed side time-base counter  1ch
 High-speed side time-base counter  1ch
 Watchdog timer
 Generates a non-maskable interrupt upon the first overflow and a system reset occurs upon the second
 Free-running
 Selectable overflow period: 4 types (125 ms, 500 ms, 2 sec, 8 sec)
 Timer
 8-bit  2ch (16-bit configuration also enabled)
1/29
FEDL610Q347FULL-01
ML610Q347/347
 Voice output function
 Voice synthesis method: HQ-ADPCM / 4-bit ADPCM2 / 8-bit non-linear PCM / 8-bit PCM / 16-bit PCM
 Sampling frequency: 6.4/8/10.7/12.8/16/21.3/25.6/32 kHz
 Speaker amplifier output power
 1W(at 5V)
 Synchronous serial port
 Master/slave selectable
 LSB/MSB-first selectable
 8-bit/16-bit length selectable
 UART
 Half-Duplex Communication
 TXD/RXD  1 channel
 Bit length, with/without parity, odd/even parity, 1 or 2 stop bits
 Positive/negative logic selectable
 Built-in baud-rate generator
 Successive-approximation type A/D converter
 12-bit A/D converter
 Input: 12ch
 Conversion time: 26.86 s per channel at 4.096 MHz
 General-purpose port
 Input-only port  8ch
 Output-only port  4ch (those as secondary functions are also included)
 Input-output port  16ch (those as secondary functions are also included)
 Reset
 Resetting by the RESET_N pin
 Resetting upon power-on detection
 Resetting upon WDT overflow detection
 Clock
 Low-speed side clock
Built-in RC oscillator (32 kHz)
 High-speed side clock
Crystal/ceramic oscillation (4.096 MHz), external clock
 Power management
 HALT mode: Halts the execution of instructions issued by the CPU (the peripheral circuits continue
operating)
 STOP mode: Stops low-speed and high-speed oscillation (the CPU and the peripheral circuits stop
operating)
 Clock gear: Allows changing the frequency of the high-speed system clock by software (oscillator clock
divided by 1, 2, 4, or 8)
 Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused
peripherals.
2/29
FEDL610Q347FULL-01
ML610Q347/347
 Shipment
 64-pin TQFP
 High-speed side clock :Crystal/ceramic oscillation (4.096 MHz)
Flash Memory :ML610Q347-xxxTB (blank product: ML610Q347-NNNTB)
Mask Memory :ML610347-xxxTB
 High-speed side clock :external clock
Flash Memory :ML610Q347J-xxxTB (blank product: ML610Q347J-NNNTB)
Mask Memory :ML610347J-xxxTB
xxx: ROM code number
 Guaranteed operating range
 Operating temperature: 40C to +85C
 Operating voltage: VDD = 2.2 to 5.5 V, SPVDD = 2.3 to 5.5 V, AVDD = 2.2 to 5.5 V
(Be sure to apply the same voltage to VDD and SPVDD power supplies.)
3/29
FEDL610Q347FULL-01
ML610Q347/347
BLOCK DIAGRAM
Figure 1 is a block diagram of the ML610Q347.
Symbols with an asterisk “*” indicate that each of them is the secondary or tertiary function of the corresponding
port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
ALU
VDD
VSS
RESET_N
TEST
OSC0
OSC1
LSCLK*
OUTCLK*
RESET &
TEST
RC32K
AIN0 to AIN11
EA
PC
Instruction
Register
Program
Memory
(Flash)
128Kbyte
BUS
Controller
INT
1
RAM
1024byte
INT
1
Interrupt
Controller
INT
9
TBC
POWER
INT
2
INT
1
VOICECNT
8bit Timer
×2
VPP
SSIO
SCK0*1
SIN0*1
SOUT0*1
UART
RXD0*1
TXD0*1
NMI
P00 to P07
GPIO
P20 to P23
P30 to P37
P40 to P47
INT
WDT
AVDD
AVSS
VREF
DSR/CSR
OSC
SPVDD
SPVSS
SG
SPP
SPM
AOUT
SPIN
LR
Data-bus
INT
4
VDDL
ECSR1~3
SP
Instruction
Decoder
On-Chip
ICE
ELR1~3
INT
1
12bit-ADC
Figure 1
Block Diagram of ML610Q347
4/29
FEDL610Q347FULL-01
ML610Q347/347
Figure 2 is a block diagram of the ML610347.
Symbols with an asterisk “*” indicate that each of them is the secondary or tertiary function of the corresponding
port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
ALU
TEST
OSC0
OSC1
LSCLK*
OUTCLK*
Instruction
Decoder
RESET &
TEST
RC32K
VREF
EA
PC
Instruction
Register
Program
Memory
(Mask)
128Kbyte
BUS
Controller
INT
1
RAM
1024byte
INT
1
Interrupt
Controller
INT
9
TBC
POWER
INT
2
INT
1
VOICECNT
SSIO
SCK0*1
SIN0*1
SOUT0*1
UART
RXD0*1
TXD0*1
8bit Timer
×2
NMI
P00 to P07
GPIO
P20 to P23
P30 to P37
P40 to P47
INT
WDT
AVDD
AVSS
AIN0 to AIN11
DSR/CSR
OSC
SPVDD
SPVSS
SG
SPP
SPM
AOUT
SPIN
LR
Data-bus
INT
4
V
VDDL
DDL
ECSR1~3
SP
VDD
VSS
RESET_N
ELR1~3
INT
1
12bit-ADC
Figure 2
Block Diagram of ML610347
5/29
FEDL610Q347FULL-01
ML610Q347/347
PIN CONFIGURATION
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
NMI
AVDD
VREF
AVSS
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
AIN8
AIN9
AIN10
AIN11
VPP
P43
P42
P41
P40
P07
P06
P05
P04
VSS
P03
P02
P01
P00
RESET_N
TEST
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(NC)
(NC)
SPM
SPP
VDD
OSC0
OSC1
VDDL
P33
P32
P31
P30
P47
P46
P45
P44
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SPVSS
SPVDD
P34
P35
P36
P37
SPIN
AOUT
SG
VSS
(NC)
(NC)
P20
P21
P22
P23
ML610Q347 TQFP package product
NC:
Figure 3
No Connection
Pin Configuration of ML610Q347 Package Product
6/29
FEDL610Q347FULL-01
ML610Q347/347
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
NMI
AVDD
VREF
AVSS
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
AIN8
AIN9
AIN10
AIN11
(NC)
P43
P42
P41
P40
P07
P06
P05
P04
VSS
P03
P02
P01
P00
RESET_N
TEST
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(NC)
(NC)
SPM
SPP
VDD
OSC0
OSC1
VDDL
P33
P32
P31
P30
P47
P46
P45
P44
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SPVSS
SPVDD
P34
P35
P36
P37
SPIN
AOUT
SG
VSS
(NC)
(NC)
P20
P21
P22
P23
ML610347 TQFP package product
NC:
Figure 4
No Connection
Pin Configuration of ML610347 Package Product
7/29
FEDL610Q347FULL-01
ML610Q347/347
LIST OF PINS
Primary function
PAD
No
Pin name
I/O
10,39
Vss

53
VDD

56
VDDL

48
SPVSS

47
SPVDD

29
AVSS

31
AVDD

1
VPP(*)

16
TEST
I/O
15
RESET_N
I
54
OSC0
I
55
OSC1
O
41
AOUT
O
42
SPIN
I
40
SG
O
52
SPP
O
51
SPM
O
30
VREF

28
AIN0
I
27
AIN1
I
26
AIN2
I
25
AIN3
I
Description
Negative power
supply pin
Positive power supply
pin
Power supply for
internal logic
(internally generated)
Negative power
supply pin for built-in
speaker amplifier
Positive power supply
pin for built-in speaker
amplifier
Negative power
supply pin for
successive-approxima
tion type ADC
Positive power supply
pin for
successive-approxima
tion type ADC
Power supply pin for
flash memory
Input/output pin for
testing
Reset input pin
Connection pin for
high-speed clock
oscillation
Connection pin for
high-speed clock
oscillation
LINE output
Analog input to the
built-in speaker
amplifier
Reference power
supply pin of the
built-in speaker
amplifier
Positive output pin of
the built-in speaker
amplifier
Negative output pin of
the built-in speaker
amplifier
Reference power
supply pin for
successive-approxima
tion type ADC
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Secondary function
Tertiary function
Pin name
I/O
Description
Pin name
I/O
Description


































































P11
I
Input port

























































8/29
FEDL610Q347FULL-01
ML610Q347/347
Primary function
PAD
No
Pin name
I/O
24
AIN4
I
23
AIN5
I
22
AIN6
I
21
AIN7
I
20
AIN8
I
19
AIN9
I
18
AIN10
I
17
AIN11
I
32
NMI
I
14
P00/EXI0
I
13
P01/EXI1
I
12
P02/EXI2/
RXD0
I
11
P03/EXI3
I
9
P04/EXI4/
T0P0CK
I
8
P05/EXI5/
T1P1CK
I
7
P06/EXI6
I
6
P07/EXI7
I
36
P20/LED0
O
35
P21/LED1
O
34
P22/LED2
O
33
P23/LED3
O
60
59
58
57
46
45
P30
P31
P32
P33
P34
P35
I/O
I/O
I/O
I/O
I/O
I/O
Description
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Successive-approxim
ation type ADC input
Input port,
non-maskable
interrupt
Input port / External
interrupt
Input port / External
interrupt
Input port / External
interrupt / UART0 data
input
Input port / External
interrupt
Input port / External
interrupt / Timer 0
external clock input
Input port / External
interrupt / Timer 1
external clock input
Input port / External
interrupt
Input port / External
interrupt
Output port / LED
drive
Output port / LED
drive
Output port / LED
drive
Output port / LED
drive
Input/output port
Input/output port
Input/output port
Input/output port
Input/output port
Input/output port
44
P36
I/O
43
P37
5
4
Secondary function
Tertiary function
Pin name
I/O
Description
Pin name
I/O
Description




























































Low-speed
clock output
high-speed
clock output
LSCLK
O
OUTCLK
O










































Input/output port
LSCLK
O



I/O
Input/output port
OUTCLK
O



P40
I/O
Input/output port



SIN0
I
P41
I/O
Input/output port



SCK0
I/O






Low-speed
clock output
high-speed
clock output
SSIO0 data
input
SSIO0
synchronous
9/29
FEDL610Q347FULL-01
ML610Q347/347
Primary function
PAD
No
Pin name
I/O
Description
3
P42
I/O
2
P43
64
P44/T0P0
CK
Secondary function
Description
Tertiary function
Pin name
I/O
Input/output port
RXD0
I
I/O
Input/output port
TXD0
O
I/O
Input/output port,
Timer 0 external clock
input


63
P45/T1P1
CK
I/O
Input/output port,
Timer 1 external clock
input



SCK0
I/O
62
P46
I/O
Input/output port



SOUT0
O
61
P47
I/O
Input/output port





UART0 data
input
UART0 data
output

Pin name
I/O
SOUT0
O


SIN0
I
Description
clock
input/output
SSIO0 data
output

SSIO0 data
input
SSIO0
synchronous
clock
input/output
SSIO0 data
output

*: Applies to the ML610Q347.
10/29
FEDL610Q347FULL-01
ML610Q347/347
PIN DESCRIPTION
Pin name
I/O
Description
Primary/
Secondary/
Tertiary
Logic
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Positive
—
Negative
—
—
—
—
Secondary
—
Secondary
—
Primary
Positive
Primary
Positive
Primary
Positive
Power supply
VSS
VDD
VDDL
SPVSS
SPVDD
AVSS
AVDD
VPP(*)
— Negative power supply pin
— Positive power supply pin
— Positive power supply pin for internal logic (internally generated)
Capacitors CL(see measuring circuit 1) are connected between
this pin and VSS.
— Negative power supply pin for built-in speaker amplifier
— Positive power supply pin for built-in speaker amplifier
— Negative power supply pin for successive-approximation type
ADC
— Positive power supply pin for successive-approximation type
ADC
— Power supply pin for flash memory
Test
TEST
System
RESET_N
I/O Input/output pin for testing. Has a pull-down resistor built in.
Reset input pin. When this pin is set to a “L” level, the device is
placed in system reset mode and the internal circuit is initialized.
If after that this pin is set to a “H” level, program execution
starts. This pin has a pull-up resistor built in.
OSC0
I Pins for connecting a crystal unit for high speed clock.
OSC1
O Connect a 4.096 MHz crystal unit (see Measuring Circuit 1) to
these pins. Also, connect capacitors (CDH and CGH) between
these pins and VSS as required.
LSCLK
O Low-speed clock output. This function is allocated to the
secondary function of the P20 and P36 pins.
OUTCLK
O High-speed clock output. This function is allocated to the
secondary function of the P21 and P37 pins.
General-purpose Input port
P00–P07
I General-purpose input ports.
I
General-purpose Output port
P20–P23
O General-purpose output ports.
Provided with a secondary function. Cannot be used as ports if
their secondary function is used.
General-purpose Input/output port
P30–P37
I/O General-purpose input/output ports.
P40–P47
I/O Provided with a secondary function. Cannot be used as ports if
their secondary function is used.
*Applies to the ML610Q347.
11/29
FEDL610Q347FULL-01
ML610Q347/347
Pin name
UART
TXD0
I/O
Primary/
Secondary/
Tertiary
Logic
Secondary
Positive
Secondary
Positive
Tertiary
Positive
Tertiary
—
Tertiary
Positive
External non-maskable interrupt input pin. The interrupt occurs
on both the rising and falling edges.
External maskable interrupt input pins. It is possible, for each
bit, to specify whether the interrupt is enabled and select the
interrupt edge by software. Allocated to the primary function of
the P00–P07 pins.
Primary
Positive/
Negative
Primary
Positive/
Negative
External clock input pin for timer 0. Allocated to the primary
function of the P04 and P44 pins.
External clock input pin for timer 1. Allocated to the primary
function of the P05 and P45 pins.
Primary
NMOS open drain pins to allow direct driving of LED. Allocated
to the secondary function of the P20–P22 pins.
Primary
Description
UART0 data output pin. Allocated to the secondary function of
the P43 pin.
RXD0
I UART0 data input pin. Allocated to the primary function of the
P02 pin and the secondary function of the P42 pin.
Synchronous serial (SSIO)
SIN0
SCK0
SOUT0
O
I
Synchronous serial data input pin. Allocated to the tertiary
function of the P40 pin and P44 pins.
I/O Synchronous serial clock input/output pin. Allocated to the
tertiary function of the P41 and P45 pins.
O Synchronous serial data output pin. Allocated to the tertiary
function of the P42 and P46 pins.
External interrupt
NMI
I
EXI0–7
I
Timer
T0P0CK
I
T1P1CK
I
LED drive
LED0–3
O
Voice output function
AOUT
O LINE output pin. When you use built-in speaker amplifier,
connect with the SPIN pin.
SPIN
I Analog input pin of the internal speaker amplifier.
SG
O Reference voltage output pin of the internal speaker amplifier.
SPP
O Positive output pin of the internal speaker amplifier.
SPM
O Negative output pin of the internal speaker amplifier.
Successive-approximation type A/D converter
VREF
— Reference power supply pin for the successive-approximation
type A/D converter.
AIN0–AIN11
I Analog inputs to Ch0 to Ch11 of the successive-approximation
type A/D converter.
Primary
—
—
Positive/
Negative
—
—
—
—
—
—
—
—
—
—
—
—
—
—
12/29
FEDL610Q347FULL-01
ML610Q347/347
TERMINATION OF UNUSED PINS
How to Terminate Unused Pins
Pin
VPP
RESET_N
TEST
AVDD
AVSS
VREF
AIN0 – AIN11
SPVDD
SPVSS
AOUT
SPIN
SG
SPP
SPM
P00–P07
P20–P23
P30–P37
P40–P47
Recommended pin termination
Open
Open
Open
VSS
VSS
VSS
Open
VSS
VSS
Open
Open
Open
Open
Open
VDD or VSS
Open
Open
Open
Note:
It is recommended to configure the unused input ports and input/output ports as inputs with pull-down
resistors/pull-up resistors or outputs since the supply current may become excessively large if those pins are left
open in the high impedance input setting.
13/29
FEDL610Q347FULL-01
ML610Q347/347
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(VSS = AVSS = SPVSS = 0V)
Parameter
Symbol
Condition
Rating
Unit
Power supply voltage 1
VDD
Ta = 25C
0.3 to +7.0
V
Power supply voltage 2
AVDD
Ta = 25C
0.3 to +7.0
V
Power supply voltage 3
SPVDD
Ta = 25C
0.3 to +7.0
V
Power supply voltage 4
VDDL
Ta = 25C
0.3 to +3.6
V
Power supply voltage 5
VPP
Ta = 25C
0.3 to +9.5
V
VIN
Ta = 25C
0.3 to VDD+0.3
V
Output voltage
VOUT
Ta = 25C
0.3 to VDD+0.3
V
Output current 1
IOUT1
P03, P04, Ta = 25C
12 to +11
mA
Output current 2
IOUT2
P02, Ta = 25C
12 to +20
mA
Power dissipation
PD
Ta = 25C
861
mW
Storage temperature
TSTG
―
55 to +150
C
Input voltage
Recommended Operating Conditions
(VSS = AVSS = SPVSS = 0V)
Parameter
Operating temperature
Operating voltage
Operating frequency (CPU)
High-speed crystal/ceramic
oscillation frequency
High-speed crystal oscillation
external capacitor
Capacitor externally connected
to VDDL pin
Capacitor externally connected
to SG pin
Symbol
Condition
Range
Unit
TOP
―
40 to +85
C
VDD
―
2.2 to 5.5
SPVDD
―
2.3 to 5.5
V
AVDD
fOP
―
―
2.2 to 5.5
27k to 4.2M
Hz
fXTH
―
4.0M, 4.096M
Hz
CDH
CGH
―
―
15 to 32
15 to 32
pF
CL
―
1030%
F
CSG
―
0.130%
F
14/29
FEDL610Q347FULL-01
ML610Q347/347
Flash Memory Operating Conditions
Parameter
Operating temperature
Symbol
TOP
VDD
VDDL
VPP
CEP
YDR
Operating voltage
Maximum rewrite count
Data retention period
(VSS = AVSS = SPVSS = 0V)
Range
Unit
0 to +40
C
2.7 to 3.6
V
2.5 to 2.75
7.7 to 8.3
80
times
10
years
Condition
At write/erase
At write/erase (*1)
At write/erase (*1)
At write/erase (*1)
―
―
*1: When writing data to, or erasing data from, flash ROM, it is necessary to apply a voltage within the range
specified above to the VDDL pin.
DC Characteristics (1 of 5)
Parameter
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Measuring
Condition
Min.
Typ.
Max.
Unit
circuit
Symbol
High-speed oscillation start
time
Low-speed RC oscillator
frequency
Reset pulse width
Reset noise rejection pulse
width
Time from power-on reset to
power-up
TXTH
―
―
2
20
ms
fLCR
―
27.2k
32k
36.8k
Hz
PRST
―
100
―
―
PNRST
―
―
―
0.4
TPOR
―
―
―
10
1
s
ms
Reset
VIL1
RESET_N
VIL1
PRST
Reset by RESET_N pin
0.9VDD
VDD
0.1VDD
TPOR
Power-on reset
15/29
FEDL610Q347FULL-01
ML610Q347/347
DC Characteristics (2 of 5)
Parameter
LINE amplifier output
load resistance
LINE amplifier output
voltage range
(VDD = SPVDD = 2.3 to 5.5V, AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Measuring
Symbol
Condition
Min.
Typ.
Max.
Unit
circuit
RLA
At 1/2VDD output
10


k
VAD
At output load
DVDD1/6

DVDD5/6
V
SG output voltage
VSG
―
0.95 
DVDD/2
DVDD/2
1.05 
DVDD/2
V
SG output resistance
SPM, SPP output load
resistance
RSG
―
57
96
135
k
RLSP
―
8
―
―

—
0.5
—
W
—
1
—
W
50
—
+50
mV
PSPO1
Speaker amplifier output
power
PSPO2
Output offset voltage
between SPM and SPP
with no signal present
VOF
SPVDD = 3.3V,
f = 1kHz,
RSPO = 8,
THD  10%
At SPIN Input
SPVDD = 5.0V,
f = 1kHz,
RSPO = 8,
THD  10%
At SPIN Input
SPVDD=3.0V,
SPIN – SPM gain
= +6dB
With a load of 8
1
16/29
FEDL610Q347FULL-01
ML610Q347/347
DC Characteristics (3 of 5) ML610Q347
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Meas
Parameter
Symbol
Condition
Min. Typ. Max. Unit uring
circuit
CPU: In STOP state.
Ta  +40C
―
0.5
2.0
Supply current 1
IDD1
Low-speed/high-speed
Ta  +85C
―
0.5
8
oscillation: stopped
CPU: In HALT state
Ta  +40C
―
1.5
3.0
*3
A
(LTBC: Operating )
Supply current 2
IDD2
High-speed
Ta  +85C
―
1.5
10
oscillation:Stopped
1
CPU: Running at 32 kHz*
Supply current 3
―
10
35
IDD3
High-speed oscillation: Stopped
VDD = AVDD =
―
1.7
4
CPU: Running at
SPVDD = 3.0V
Supply current 4
4.096MHz Crystal/ceramic
IDD4
1
2
VDD = AVDD =
oscillating mode*
―
2.2
4
SPVDD = 5.0V
CPU: Running at
VDD = AVDD =
―
3
12
4.096MHz Crystal/ceramic
SPVDD = 3.0V
2
Supply current 5
oscillating mode*
mA
IDD5
VDD = AVDD =
During voice playback (no
―
8
12
output load)
SPVDD = 5.0V
VDD = AVDD =
CPU: Running at
―
1.9
5.5
4.096MHz Crystal/ceramic SPVDD = 3.0V
Supply current 6
IDD6
2
oscillating mode*
VDD = AVDD =
―
3.2
5.5
ADC: Operating
SPVDD = 5.0V
*1: Case when the CPU operating rate is 100% (with no HALT state)
2
* : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).
3
* : Significant bits of BLKCON0~BLKCON4 registers are all “1”.
17/29
FEDL610Q347FULL-01
ML610Q347/347
DC Characteristics (3 of 5) ML610347
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Meas
Parameter
Symbol
Condition
Min. Typ. Max. Unit uring
circuit
CPU: In STOP state.
Ta  +40C
―
0.5
2.0
Supply current 1
IDD1
Low-speed/high-speed
Ta  +85C
―
0.5
8
oscillation: stopped
CPU: In HALT state
Ta  +40C
―
1.2
3.0
*3
A
(LTBC: Operating )
Supply current 2
IDD2
High-speed
Ta  +85C
―
1.2
10
oscillation:Stopped
1
CPU: Running at 32 kHz*
Supply current 3
IDD3
―
5
35
High-speed oscillation: Stopped
VDD = AVDD =
―
1
4
CPU: Running at
SPVDD = 3.0V
4.096MHz Crystal/ceramic
Supply current 4
IDD4
1
2
VDD = AVDD =
oscillating mode*
―
2
4
SPVDD = 5.0V
CPU: Running at
VDD = AVDD =
―
2.8
12
4.096MHz Crystal/ceramic
SPVDD = 3.0V
2
Supply current 5
oscillating mode*
mA
IDD5
VDD = AVDD =
During voice playback (no
―
8
12
output load)
SPVDD = 5.0V
VDD = AVDD =
CPU: Running at
―
1.1
5.5
4.096MHz Crystal/ceramic SPVDD = 3.0V
Supply current 6
IDD6
2
oscillating mode*
VDD = AVDD =
―
2.3
5.5
ADC: Operating
SPVDD = 5.0V
*1: Case when the CPU operating rate is 100% (with no HALT state)
2
* : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).
3
* : Significant bits of BLKCON0~BLKCON4 registers are all “1”.
18/29
FEDL610Q347FULL-01
ML610Q347/347
DC Characteristics (4 of 5)
Parameter
Output voltage 1
(P20–P23)
(P30–P37)
(P40–P47)
Output voltage 2
(P20–P23)
Output leakage
current
(P20–P23)
(P30–P37)
(P40–P47)
Symbol
VOH1
VOL1
VOL2
(VDD = SPVDD = APVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Measuring
Condition
Min.
Typ. Max. Unit
circuit
VDD
―
―
IOH1 = 0.5mA
0.5
IOL1 = +0.5mA
IOL2 = +5mA
When LED drive
VDD  2.2V
mode is selected IOL2 = +8mA
VDD  2.3V
―
―
0.5
―
―
0.5
―
―
0.5
IOOH
VOH = VDD (in high-impedance state)
―
―
1
IOOL
VOL = VSS (in high-impedance state)
1
―
―
Input current 1
(RESET_N)
IIH1
VIH1 = VDD
0
―
1
IIL1
VIL1 = VSS
1500
300
20
Input current 2
(NMI)
(P00–P07)
(P11)
(P30–P37)
(P40–P47)
IIH2
VIH2 = VDD (when pulled down)
2
30
250
IIL2
VIL2 = VSS (when pulled up)
250
30
2
IIH2Z
VIH2 = VDD (in high-impedance state)
―
―
1
IIL2Z
VIL2 = VSS (in high-impedance state)
-1
―
―
IIH3
VIH3 = VDD
20
300
1500
IIL3
VIL3 = VSS
-1
―
―
Input current 3
(TEST)
V
2
A
3
A
4
19/29
FEDL610Q347FULL-01
ML610Q347/347
DC Characteristics (5 of 5)
Parameter
Symbol
Input voltage 1
(RESET_N)
(TEST)
(NMI)
(P00–P07)
(P11)
(P30–P37)
(P40–P47)
Hysteresis width
(RESET_N)
(TEST)
(NMI)
(P00–P07)
(P11)
(P30–P37)
(P40–P47)
Input pin capacitance
(NMI)
(P00–P07)
(P11)
(P30–P37)
(P40–P47)
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Measuring
Condition
Min.
Typ.
Max.
Unit
circuit
VIH1
―
0.7
VDD
―
VDD
VIL1
―
0
―
0.3
VDD
VT
―
0.05
VDD
―
0.4
VDD
CIN
f = 10kHz
Vrms = 50mV
Ta = 25C
―
―
10
V
5
pF
―
Hysteresis Width
Input signal
VT
VDD
VSS
Internal signal
VDDL
VSS
20/29
FEDL610Q347FULL-01
ML610Q347/347
Measuring Circuits
Measuring circuit 1
CGH
OSC0
CDH
P11/OSC1
4.096MHz
crystal unit
VDD AVDD VREF SPVDD
VDDL
SG VSS
AVSS SPVSS
A
CV
CL
CSG
CV
: 1 F
CL
: 10 F
CSG
: 0.1 F
CGH
: 24 pF
CDH
: 24 pF
4.096 MHz crystal unit:
HC49SFWB (Kyocera)
Measuring circuit 2
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD
VDDL
AVDD VREF SPVDD VSS
V
AVSS SPVSS
*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
21/29
FEDL610Q347FULL-01
ML610Q347/347
Measuring circuit 3
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD
VDDL
A
AVDD VREF SPVDD VSS AVSS SPVSS
*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
Measuring circuit 4
Input pins
A
Output pins
(*3)
VDD
VDDL
AVDD VREF SPVDDVSS AVSS SPVSS
*3: Measured at the specified input pins.
22/29
FEDL610Q347FULL-01
ML610Q347/347
VIL
Input pins
(*1)
Output pins
VIH
VDD
VDDL
AVDD VREF SPVDDVSS AVSS SPVSS
Waveform monitoring
Measuring circuit 5
*1: Input logic circuit to determine the specified measuring conditions.
23/29
FEDL610Q347FULL-01
ML610Q347/347
AC Characteristics (External Interrupt)
Parameter
External interrupt disable
period
Symbol
TNUL
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = AVSS = SPVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Condition
Min.
Typ.
Max.
Unit
Interrupt: Enabled (MIE = 1),
2.5
3.5
―
s
CPU: NOP operation
sysclk
sysclk
P00–P07
(Rising-edge interrupt)
tNUL
P00–P07
(Falling-edge interrupt)
tNUL
NMI, P00–P07
(Both-edge interrupt)
tNUL
24/29
FEDL610Q347FULL-01
ML610Q347/347
AC Characteristics (Synchronous Serial Port)
Parameter
Symbol
SCK input cycle
(slave mode)
tSCYC
SCK output cycle
(master mode)
tSCYC
SCK input pulse width
(slave mode)
tSW
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = SPVSS = AVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Condition
Min.
Typ.
Max.
Unit
High-speed oscillation stopped
10
―
―
s
500
During high-speed oscillation
―
―
ns
―
(*1)
―
SCK
―
sec
High-speed oscillation stopped
4
―
―
s
During high-speed oscillation
200
―
―
ns
(*1)
(*1)
SCK
SCK output pulse width
SCK
―
tSW
0.4
(master mode)
0.5
SOUT output delay time
―
―
―
tSD
(slave mode)
SOUT output delay time
―
―
―
tSD
(master mode)
SIN input setup time
―
50
―
tSS
(slave mode)
SIN input hold time
―
50
―
tSH
*1: Clock period selected by S0CK3–0 of the serial port 0 mode register (SIO0MOD1)
(*1)
SCK
0.6
sec
180
ns
80
ns
―
ns
―
ns
tSCYC
tSW
tSW
SCK0*
tSD
tSD
SOUT0
tSS
tSH
SIN0*
*: Indicates the secondary function of the corresponding port.
25/29
FEDL610Q347FULL-01
ML610Q347/347
Electrical Characteristics of Successive Approximation Type A/D Converter
Parameter
Resolution
(VDD = SPVDD = AVDD = 2.2 to 5.5V, VSS = SPVSS = AVSS = 0V,
Ta = 40 to +85C, unless otherwise specified)
Condition
Min.
Typ.
Max.
Unit
―
―
―
12
bits
2.7V  VREF  5.5V
4
―
+4
2.2V  VREF  2.7V
6
―
+6
2.7V  VREF  5.5V
3
―
+3
LSB
5
―
+5
2.2V  VREF  2.7V
―
6
―
+6
―
6
―
+6
―
2.2
―
AVDD
V
SACK=0
―
25
―
(HSCLK=375kHz to 625kHz)
φ/CH
SACK=1
―
112
―
(HSCLK=1.5MHz to 4.2MHz)
φ: Period of high-speed clock (HSCLK)
Symbol
n
Integral non-linearity error
IDL
Differential non-linearity
error
Zero-scale error
Full-scale error
Reference voltage
DNL
VOFF
FSE
VREF
Conversion time
tCONV
AVDD
Reference
voltage
VDD
VDDL
VREF
10F
10F
A

1F
Analog input
RI≤5k
+
0.1F
AIN0
to
AIN11
VSS
AVSS
26/29
FEDL610Q347FULL-01
ML610Q347/347
PACKAGE DIMENSIONS
(Unit: mm)
Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in
storage. Therefore, before you perform reflow mounting, contact ROHM’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions (reflow method,
temperature and times).
The heat resistance (example) of this LSI is shown below. Heat resistance (θJa) changes with the size and the
number of layers of a substrate.
PCB
JEDEC
(W/L/t=76.2/114.5/1.6(mm))
PCB Layer
4L
Air cooling conditions
Calm(0m/sec)
Heat resistance(θJa)
Power consumption of Chip PMax
at OutputPower 1W (5V)
Power consumption of Chip PMax
at OutputPower 0.5W (3.3V)
50[℃/W]
0.818[W]
0.283[W]
TjMax of this LSI is 125℃. TjMax is expressed with the following formulas.
TjMax = TaMax + θJa × PMax
27/29
FEDL610Q347FULL-01
ML610Q347/347
REVISION HISTORY
Document No.
FEDL610Q347FULL-01
Date
Jan 7, 2010
Page
Previous
Current
Edition
Edition
–
–
Description
Formally edition 1
28/29
FEDL610Q347FULL-01
ML610Q347/347
NOTICE
No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS
Semiconductor Co., Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be
obtained from LAPIS Semiconductor upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the
standard usage and operations of the Products. The peripheral conditions must be taken into account when
designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document. However, should
you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor
shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples of
application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any
license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties.
LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such
technical information.
The Products specified in this document are intended to be used with general-use electronic equipment or
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic
appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such
as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility
whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the
instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system which
requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat
to human life or create a risk of human injury (such as a medical instrument, transportation equipment,
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS
Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special
purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales
representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may be controlled
under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit
under the Law.
Copyright
2008 - 2011 LAPIS Semiconductor Co., Ltd.
29/29
Similar pages