TI1 LP38691QSD-ADJ 500-ma low-dropout cmos linear regulators stable Datasheet

Product
Folder
Sample &
Buy
Support &
Community
Tools &
Software
Technical
Documents
Reference
Design
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
LP3869x-ADJ/Q1 500-mA Low-Dropout CMOS Linear Regulators
Stable With Ceramic Output Capacitors
1 Features
3 Description
•
•
The LP3869x-ADJ low-dropout CMOS linear
regulators provide 2% precision reference voltage,
extremely low dropout voltage (250 mV at 500-mA
load current, VOUT = 5 V), and excellent AC
performance using ultra-low equivalent series
resistance (ESR) ceramic output capacitors.
1
•
•
•
•
•
•
•
•
•
•
Wide Input Voltage Range: 2.7 V to 10 V
All WSON Options are Available as AEC-Q100
Grade 1
Output Voltage Range: 1.25 V to 9 V
2% Adjust (ADJ) Pin Voltage Accuracy (25°C)
Low Dropout Voltage: 250 mV at 500 mA
(Typical, 5-V Out)
Precision (Trimmed) Bandgap Reference
Ensured Specs for –40°C to +125°C
1-µA Off-State Quiescent Current
Thermal Overload Protection
Foldback Current Limiting
Ground (GND) Pin Current: 55 µA (Typical) at Full
Load
Enable (EN) Pin (LP38693-ADJ)
The low thermal resistance of the WSON and SOT223 packages allow use of the full operating current
even in high ambient temperature environments.
The use of a PMOS power transistor means that no
DC base drive current is required to bias it, thus
allowing the GND-pin current to remain below 100 µA
regardless of load current, input voltage, or operating
temperature.
Device Information(1)
PART NUMBER
LP38691-ADJ
2 Applications
•
•
•
•
LP38693-ADJ
Hard Disk Drives
Notebook Computers
Battery-Powered Devices
Portable Instrumentation
PACKAGE
BODY SIZE (NOM)
WSON (6)
3.00 mm × 3.00 mm
SOT-223 (5)
6.50 mm × 3.56 mm
WSON (6)
3.00 mm × 3.00 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Typical Application Circuits
VIN
VOUT
IN
OUT
LP38691
-ADJ
1 PF *
GND
R1
ADJ
R2
1 PF *
VIN
VOUT
IN
EN
OUT
LP38693
-ADJ
VEN
GND
R1
ADJ
1 PF *
R2
1 PF *
VOUT = VADJ × (1 + R1/R2)
* Minimum value required for stability
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
Table of Contents
1
2
3
4
5
6
7
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
6.6
6.7
4
4
4
4
4
5
6
Absolute Maximum Ratings ......................................
ESD Ratings: LP38691-ADJ, LP38693-ADJ.............
ESD Ratings: LP38691-ADJ-Q1, LP38693-ADJ-Q1.
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Typical Characteristics ..............................................
Detailed Description ............................................ 11
7.1 Overview ................................................................. 11
7.2 Functional Block Diagrams ..................................... 11
7.3 Feature Description................................................. 12
7.4 Device Functional Modes........................................ 12
8
Application and Implementation ........................ 13
8.1 Application Information............................................ 13
8.2 Typical Applications ............................................... 13
9 Power Supply Recommendations...................... 18
10 Layout................................................................... 18
10.1 Layout Guidelines ................................................. 18
10.2 Layout Examples................................................... 18
10.3 WSON Mounting ................................................... 19
11 Device and Documentation Support ................. 20
11.1
11.2
11.3
11.4
11.5
11.6
Documentation Support ........................................
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
20
20
20
20
20
20
12 Mechanical, Packaging, and Orderable
Information ........................................................... 20
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision J (October 2015) to Revision K
•
Page
Added Caution note to Foldback Current Limiting subsection ............................................................................................ 12
Changes from Revision I (April 2013) to Revision J
•
Page
Added Device Information and Pin Configuration and Functions sections, ESD Ratings table, update Thermal
Values; add Feature Description, Device Functional Modes, Application and Implementation, Power Supply
Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and Orderable
Information sections; update Vin, Vout and Ven pin names to IN, OUT, and EN in text and graphics; modified
wording of Description to eliminate redundancy; added top nav icon for reference design................................................... 1
Changes from Revision H (April 2013) to Revision I
Page
•
Changed layout of National Data Sheet to TI format ........................................................................................................... 15
•
Changed layout of National Data Sheet to TI format .......................................................................................................... 19
2
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
5 Pin Configuration and Functions
NGG Package
6-Pin WSON With Exposed Thermal Pad
LP38691-ADJ Top View
NGG Package
6-Pin WSON With Exposed Thermal Pad
LP38693-ADJ Top View
Exposed Pad
on Bottom
(DAP)
GND 2
N/C 3
6 IN
IN 1
6 IN
IN 1
5 OUT
GND 2
4 ADJ
EN 3
Exposed Pad
on Bottom
(DAP)
5 OUT
4 ADJ
NC - No internal connection
NDC Package
5-Pin SOT-223
LP38693-ADJ Top View
EN 1
ADJ 2
5 GND
OUT 3
IN 4
Pin Functions
PIN
LP38691-ADJ
NAME
LP38693-ADJ
I/O
DESCRIPTION
WSON
WSON
SOT-223
DAP
√
√
—
—
EN
—
3
1
I
GND
2
2
5
—
Circuit ground for the regulator. For the SOT-223 package this is
thermally connected to the die and functions as a heat sink when the
soldered down to a large copper plane.
1, 6
1, 6
4
I
This is the input supply voltage to the regulator. For WSON devices,
both IN pins must be tied together for full current operation (250 mA
maximum per pin).
N/C
3
—
—
—
No internal connection.
ADJ
4
4
2
O
The ADJ pin is used to set the regulated output voltage by connecting
it to the external resistors R1 and R2 (see Typical Application
Circuits).
OUT
5
5
3
I
Regulated output voltage.
IN
Copyright © 2005–2016, Texas Instruments Incorporated
WSON Only - The DAP (exposed pad) functions as a thermal
connection when soldered to a copper plane. See WSON Mounting
section for more information.
The EN pin allows the part to be turned to an ON or OFF state by
pulling this pin high or low.
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
3
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1) (2)
V(MAX) All pins (with respect to GND)
IOUT
MIN
MAX
UNIT
–0.3
12
V
(3)
Power dissipation (4)
Internally limited
V
Internally limited
V
Junction temperature
–40
150
Storage temperature, Tstg
−65
150
(1)
(2)
(3)
(4)
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
If used in a dual-supply system where the regulator load is returned to a negative supply, the OUT pin must be diode clamped to
ground.
At elevated temperatures, device power dissipation must be derated based on package thermal resistance and heatsink values (if a
heatsink is used). When using the WSON package, refer to Leadless Leadframe Package (LLP) (SNOA401) and the WSON Mounting
section in this data sheet. If power dissipation causes the junction temperature to exceed specified limits, the device will go into thermal
shutdown.
6.2 ESD Ratings: LP38691-ADJ, LP38693-ADJ
V(ESD)
(1)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001
(1)
VALUE
UNIT
±2000
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
6.3 ESD Ratings: LP38691-ADJ-Q1, LP38693-ADJ-Q1
V(ESD)
(1)
Electrostatic discharge
VALUE
UNIT
2000
V
Human-body model (HBM), per AEC Q100-002 (1)
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.4 Recommended Operating Conditions
MIN
VIN supply voltage
Operating junction temperature
NOM
MAX
UNIT
2.7
10
V
−40
125
°C
6.5 Thermal Information
THERMAL METRIC (1)
LP3869x-ADJ
LP38693-ADJ
WSON
SOT-223
6 PINS
5 PINS
RθJA (2)
Junction-to-ambient thermal resistance, High-K
50.6
68.5 (3)
RθJC(top)
Junction-to-case (top) thermal resistance
44.4
52.2
RθJB
Junction-to-board thermal resistance
24.9
13.0
ψJT
Junction-to-top characterization parameter
0.4
5.5
ψJB
Junction-to-board characterization parameter
25.1
12.8
RθJC(bot)
Junction-to-case (bottom) thermal resistance
5.4
n/a
(1)
(2)
(3)
4
UNIT
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal
Conductivity Test Board for Leaded Surface Mount Packages.
The PCB for the WSON (NGN) package RθJA includes thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
6.6 Electrical Characteristics
Unless otherwise specified, limits apply for TJ = 25°C, VIN = VOUT + 1 V, CIN = COUT = 10 µF, ILOAD = 10 mA. Minimum and
maximum limits are specified through testing, statistical correlation, or design.
PARAMETER
TEST CONDITIONS
VIN = 2.7 V
VADJ
ADJ pin voltage
ΔVOUT/ΔIL
Output voltage line
regulation (2)
Output voltage load
regulation (3)
1.25
1.275
1.2
%/V
0.1
1.8
%/A
1 mA < IL < 0.5 A
VIN = VOUT + 1 V
Full operating temperature range
(VOUT = 3.3 V)
Full operating temperature
range
(VOUT = 5 V)
(VOUT = 5 V)
Full operating temperature
range
5
IL = 0.1 A
80
IL = 0.5 A
430
IL = 0.1 A
145
IL = 0.5 A
725
IL = 0.1 A
65
IL = 0.5 A
330
IL = 0.1 A
110
IL = 0.5 A
550
IL = 0.1 A
45
IL = 0.5 A
250
IL = 0.1 A
100
IL = 0.5 A
450
VIN ≤ 10 V, IL =100 µA – 0.5 A
IQ
Quiescent current
Minimum load current
IFB
Foldback current limit
PSRR
Ripple rejection
VIN ≤ 10 V, IL =100 µA – 0.5 A
Full operating temperature range
100
0.001
VIN – VOUT ≤ 4 V
Full operating temperature range
VIN – VOUT > 5 V
350
VIN – VOUT < 4 V
850
VIN = VOUT + 2 V(DC), with 1 V(p-p) /
120-Hz Ripple
mA
55
Thermal shutdown activation
(junction temp)
160
TSD (HYST)
Thermal shutdown hysteresis
(junction temp)
10
IADJ
ADJ input leakage current
VADJ = 0 V to 1.5 V, VIN = 10 V
en
Output noise
BW = 10 Hz to 10 kHz
VOUT = 3.3 V
0.7
VOUT (LEAK)
Output leakage current
VOUT = VOUT(NOM) + 1 V at 10 VIN
0.5
(4)
µA
1
100
TSD
(1)
(2)
(3)
mV
55
VEN ≤ 0.4 V, (LP38693 Only)
IL(MIN)
V
1.3
0.03
1 mA < IL < 0.5 A
VIN = VOUT + 1 V
(VOUT = 3.3 V)
UNIT
1.25
VOUT + 0.5 V ≤ VIN ≤ 10 V
IL = 25 mA
Full operating temperature range
(VOUT = 2.5 V)
Full operating temperature
range
Dropout voltage (4)
MAX
1.225
VOUT + 0.5 V ≤ VIN ≤ 10 V
IL = 25 mA
(VOUT = 2.5 V)
VDO
TYP (1)
3.2 V ≤ VIN ≤ 10 V, 100 µA < IL < 0.5 A
3.2 V ≤ VIN ≤ 10 V, 100 µA < IL < 0.5 A
Full operating temperature range
ΔVOUT/ΔVIN
MIN
dB
°C
–100
0.01
100
nA
µV/√Hz
2
µA
Typical numbers represent the most likely parametric norm for 25°C operation.
Output voltage line regulation is defined as the change in output voltage from nominal value resulting from a change in input voltage.
Output voltage load regulation is defined as the change in output voltage from nominal value as the load current increases from 1 mA to
full load.
Dropout voltage is defined as the minimum input to output differential required to maintain the output within 100 mV of nominal value.
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
5
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
Electrical Characteristics (continued)
Unless otherwise specified, limits apply for TJ = 25°C, VIN = VOUT + 1 V, CIN = COUT = 10 µF, ILOAD = 10 mA. Minimum and
maximum limits are specified through testing, statistical correlation, or design.
PARAMETER
TEST CONDITIONS
TYP (1)
MIN
MAX
Output = OFF state
Full operating temperature range
Enable voltage (LP38693
Only)
VEN
EN pin leakage
(LP38693 only)
IEN
UNIT
0.4
Output = ON state, VIN = 4 V
Full operating temperature range
1.8
Output = ON state, VIN = 6 V
Full operating temperature range
3
Output = ON state, VIN = 10 V
Full operating temperature range
4
V
VEN = 0 V or 10 V, VIN = 10 V
–1
0.001
1
µA
6.7 Typical Characteristics
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN =
VOUT 1 V, ILOAD = 10 mA.
1.0
1.2
COUT = 10 PF
COUT = 1 PF
Hz)
0.8
0.8
NOISE (PV/
NOISE/ (PV
Hz)
1.0
0.6
0.4
0.6
0.4
0.2
0.2
0.0
10
100
1k
10k
100k
0.0
10
FREQUENCY (Hz)
10k
100k
Figure 2. Noise vs Frequency
70
1.5
60
RIPPLE REJECTION (dB)
COUT = 100 PF
Hz)
1k
FREQUENCY (Hz)
Figure 1. Noise vs Frequency
NOISE (PV/
100
1.0
0.5
50
40
30
VIN (DC) = 3.25V
20
VIN (AC) = 1V(p-p)
COUT = 10 PF
10
0
10
100
1k
10k
100k
0.0
10
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 3. Noise vs Frequency
6
Submit Documentation Feedback
Figure 4. Ripple Rejection
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
Typical Characteristics (continued)
70
70
60
60
RIPPLE REJECTION (dB)
RIPPLE REJECTION (dB)
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN =
VOUT 1 V, ILOAD = 10 mA.
50
40
30
VIN (DC) = 3.25V
20
VIN (AC) = 1V(p-p)
10
100
40
30
20
1k
10k
0
10
100k
VIN (DC) = 3.25V
VIN (AC) = 1V(p-p)
10
COUT = 100 PF
0
10
50
COUT = 1 PF
100
1k
10k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 5. Ripple Rejection
Figure 6. Ripple Rejection
0.4
VOUT = 1.25V
COUT = 100 PF
20
'VOUT (mV)
0.2
0
% DEVIATION
100k
-0.2
10
VOUT
0
-10
-0.4
-20
4
VIN
3
-0.8
2
-1
-50
-25
0
25
50
75
100
125
VIN (V)
-0.6
1
200 Ps/DIV
o
TEMPERATURE ( C)
Figure 8. Line Transient Response
Figure 7. VREF vs Temperature
VOUT = 3.3V
COUT = 10 PF
40
0
-10
-20
20
VOUT
0
-20
-40
VIN
4
3
VIN (V)
5
VIN
4
2
3
200 Ps/DIV
Figure 9. Line Transient Response
Copyright © 2005–2016, Texas Instruments Incorporated
VIN (V)
VOUT
'VOUT (mV)
'VOUT (mV)
10
VOUT = 1.25V
COUT = 100 PF
20
1
200 Ps/DIV
Figure 10. Line Transient Response
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
7
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN =
VOUT 1 V, ILOAD = 10 mA.
VOUT = 3.3V
VOUT = 1.25V
100
COUT = 10 PF
'VOUT (mV)
'VOUT (mV)
50
VOUT
0
-50
-100
COUT = 1 PF
50
VOUT
0
-50
-100
4
VIN
5
3
VIN (V)
VIN
4
2
3
1
100 Ps/DIV
40 Ps/DIV
Figure 11. Line Transient Response
Figure 12. Line Transient Response
VOUT = 3.3V
200
COUT = 1 PF
100
COUT = 10 PF
'VOUT (mV)
100
50
'VOUT (mV)
VIN (V)
100
VOUT
0
-50
0
VOUT
-100
-200
0.5
ILOAD (A)
-100
ILOAD
5
VIN (V)
VIN
4
0.01
3
100 Ps/DIV
40 Ps/DIV
Figure 13. Line Transient Response
Figure 14. Load Transient Response
400
2.3
VIN = 10V
2.1
200
1.9
0
VOUT
1.7
-200
VEN (V)
'VOUT (mV)
COUT = 1 PF
-400
VIN = 6V
1.5
1.3
ILOAD (A)
0.5
ILOAD
1.1
VIN = 4V
0.9
0.7
0.01
0.5
-50
10 Ps/DIV
Figure 15. Load Transient Response
8
Submit Documentation Feedback
-25
0
25
50
75
100
125
TEMPERATURE (oC)
Figure 16. EN Voltage vs Temperature
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
Typical Characteristics (continued)
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN =
VOUT 1 V, ILOAD = 10 mA.
-1.0
0.034
0.032
'VOUT/'VIN (%/V)
'VOUT/'IOUT (%/A)
-1.5
-2.0
-2.5
0.03
0.028
0.026
0.024
-3.0
0.022
-3.5
-50
-25
0
25
50
75
100
125
0.02
-50
o
VOUT = 1.25 V
0
25
50
75
100
125
o
TEMPERATURE ( C)
Figure 17. Load Regulation vs Temperature
-25
TEMPERATURE ( C)
Figure 18. Line Regulation vs Temperature
VOUT = 1.8 V
Figure 19. VOUT vs VIN
Figure 20. VOUT vs VIN
Figure 21. VOUT vs. VIN, Power-up
Figure 22. VOUT vs. VEN, On (LP38693-ADJ only)
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
9
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
Typical Characteristics (continued)
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN =
VOUT 1 V, ILOAD = 10 mA.
2.6
2.5
MIN VIN (V)
2.4
-40°C
2.3
125°C
2.2
2.1
25°C
2
0
100
200
300
400
500
IOUT (mA)
Figure 24. MIN VOUT vs. IOUT
Figure 23. VOUT vs. VEN, Off (LP38693-ADJ only)
900
800
VDROPOUT (mV)
700
-40°C
600
500
400
125°C
300
25°C
200
100
0
0
100
200
300
400
500
IOUT (mA)
VOUT = 1.8 V
Figure 25. Dropout Voltage vs. IOUT
10
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
7 Detailed Description
7.1 Overview
The LP3869x-ADJ devices are designed to meet the requirements of portable, battery-powered digital systems
providing an accurate output voltage with fast start-up. When disabled via a low logic signal at the enable pin
(EN), the power consumption is reduced to virtually zero (LP38693-ADJ only).
These LP3869x-ADJ devices perform well with a single 1-μF input capacitor and a single 1-μF ceramic output
capacitor.
7.2 Functional Block Diagrams
IN
P-FET
N/C
ENABLE
LOGIC
+
P-FET
MOSFET
DRIVER
FOLDBACK
CURRENT
LIMITING
THERMAL
SHUTDOWN
OUT
1.25-V
REFERENCE
ADJ
GND
Figure 26. LP38691 Functional Diagram (WSON)
IN
P-FET
EN
ENABLE
LOGIC
+
MOSFET
DRIVER
P-FET
FOLDBACK
CURRENT
LIMITING
THERMAL
SHUTDOWN
OUT
1.25-V
REFERENCE
ADJ
GND
Figure 27. LP38693 Functional Diagram (SOT-223, WSON)
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
11
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
7.3 Feature Description
7.3.1 Enable (EN)
The LP38693-ADJ has an enable pin (EN) which allows an external control signal to turn the regulator output to
either an ON or OFF state. The Enable on/off threshold has no hysteresis. The voltage signal must rise and fall
cleanly, and promptly, through the on and off voltage thresholds. The EN pin voltage must be higher than the
VEN(MIN) threshold to ensure that the device is fully enabled under all operating conditions. The EN pin voltage
must be lower than the VEN(MAX) threshold to ensure that the device is fully disabled. The EN pin has no internal
pullup or pulldown to establish a default condition and, as a result, this pin must be terminated either actively or
passively. If the EN pin is driven from a source that actively pulls high and low, the drive voltage should not be
allowed to go below ground potential or higher than VIN. If the application does not require the enable function,
the EN pin should be connected directly to the IN pin.
7.3.2 Thermal Overload Protection (TSD)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C which allows
the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry enables.
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a
result of overheating. The TSD circuitry of the LP38693 has been designed to protect against temporary thermal
overload conditions.
The TSD circuitry was not intended to replace proper heat-sinking. Continuously running the LP38693 device into
thermal shutdown degrades device reliability.
7.3.3 Foldback Current Limiting
Foldback current limiting is built into the LP3869x-ADJ devices which reduces the amount of output current the
part can deliver as the output voltage is reduced. The amount of load current is dependent on the differential
voltage between the VIN and VOUT. Typically, when this differential voltage exceeds 5 V, the load current will limit
at about 350 mA. When the VIN – VOUT differential is reduced below 4 V, load current is limited to about 850 mA.
CAUTION
When toggling the LP38693 Enable (EN) after the input voltage (VIN) is applied, the
foldback current limit circuitry is functional the first time that the EN pin is taken high.
The foldback current limit circuitry is non-functional the second, and subsequent, times
that the EN pin is taken high. Depending on the input and output capacitance values
the input inrush current may be higher than expected which can cause the input
voltage to droop.
If the EN pin is connected to the IN pin, the foldback current limit circuitry is functional
when VIN is applied if VIN starts from less than 0.4 V.
7.4 Device Functional Modes
7.4.1 Enable (EN)
The LP38693-ADJ may be switched to the ON or OFF state by logic input at the EN pin. A logic-high voltage on
the EN pin turns the device to the ON state. A logic-low voltage on the EN pin turns the device to the OFF state.
If the application does not require the shutdown feature, the EN pin must be tied to VIN to keep the regulator
output permanently in the ON state when power is applied.
To ensure proper operation, the signal source used to drive the EN input must be able to swing above and below
the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics section under VEN.
12
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
The LP3869x-ADJ can provide 500 mA output current with 2.7 V to 10 V input. Adjustable output voltage in the
range of 1.25 V to 9 V. LP3869x-ADJ is stable with a 1-μF ceramic output capacitor. Typical output noise is
0.7 μVRMS at frequencies from 10 Hz to 10 kHz. Typical PSSR is 55 dB at 1 kHz.
8.2 Typical Applications
VIN
VOUT
IN
OUT
LP38691
-ADJ
1 PF *
GND
R1
ADJ
R2
1 PF *
* Minimum value required for stability
Figure 28. LP38691-ADJ Typical Application
VIN
VOUT
IN
EN
OUT
LP38693
-ADJ
VEN
GND
R1
ADJ
1 PF *
R2
1 PF *
* Minimum value required for stability
Figure 29. LP38693-ADJ Typical Application
8.2.1 Design Requirements
For typical LDO CMOS linear regulators , use the parameters listed in Table 1.
Table 1. Design Parameters
DESIGN PARAMETERS
EXAMPLE VALUE
Input voltage range
2.7 V to 10 V
Output range
Adjustable
Output current
500 mA (maximum)
Output capacitor range
1 µF
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
13
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
8.2.2 Detailed Design Procedure
8.2.2.1 Setting the Output Voltage
The output voltage is set using the external resistors R1 and R2 (see Typical Applications . The output voltage
will be given by Equation 1:
VOUT = VADJ × (1 + ( R1 / R2 ))
(1)
Because the part has a minimum load current requirement of 100 μA, it is recommended that R2 always be 12
kΩ or less to provide adequate loading. Even if a minimum load is always provided by other means, it is not
recommended that very high value resistors be used for R1 and R2 because it can make the ADJ node
susceptible to noise pickup. A maximum Ohmic value of 100 kΩ is recommended for R2 to prevent this from
occurring.
8.2.2.2 External Capacitors
In common with most regulators, the LP3869x-ADJ devices require an external capacitors for regulator stability.
The devices are specifically designed for portable applications requiring minimum board space and smallest
components. These capacitors must be correctly selected for good performance.
8.2.2.3 Input Capacitor
An input capacitor of at least 1 μF is required (ceramic recommended). The capacitor must be located not more
than one centimeter from the input pin and returned to a clean analog ground.
8.2.2.4 Output Capacitor
An output capacitor is required for loop stability. It must be located less than 1 centimeter from the device and
connected directly to the output and ground pins using traces which have no other currents flowing through them.
The minimum amount of output capacitance that can be used for stable operation is 1 μF. Ceramic capacitors
are recommended; the LP3869x-ADJ devices were designed for use with ultra-low equivalent series resistance
(ESR) capacitors. The LP3869x-ADJ is stable with any output capacitor ESR between 5 mΩ to 500 mΩ.
8.2.2.5 Capacitor Characteristics
It is important that capacitance tolerance and variation with temperature be taken into consideration when
selecting a capacitor so that the minimum required amount of capacitance is provided over the full operating
temperature range.
8.2.2.5.1 Ceramic Capacitors
For values of capacitance in the 10- to 100-μF range, ceramics are usually larger and more costly than tantalums
but give superior AC performance for bypassing high frequency noise because of very low ESR (typically less
than 10 mΩ). However, some dielectric types do not have good capacitance characteristics as a function of
voltage and temperature.
The LP3869x-ADJ is designed to work with ceramic capacitors on the output to take advantage of the benefits
they offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The
ESR of a typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR
requirement for stability for the LP3869x.
Z5U and Y5V dielectric ceramics have capacitance that drops severely with applied voltage. A typical Z5U or
Y5V capacitor can lose 60% of its rated capacitance with half of the rated voltage applied to it. The Z5U and Y5V
also exhibit a severe temperature effect, losing more than 50% of nominal capacitance at high and low limits of
the temperature range.
X7R and X5R dielectric ceramic capacitors are strongly recommended if ceramics are used, as they typically
maintain a capacitance range within ±20% of nominal over full operating ratings of temperature and voltage. Of
course, they are typically larger and more costly than Z5U/Y5U types for a given voltage and capacitance.
14
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
8.2.2.5.2 Tantalum Capacitors
Solid tantalum capacitors have good temperature stability: a high-quality tantalum capacitor typically shows a
capacitance value that varies less than 10-15% across the full temperature range of -40°C to 125°C. ESR will
vary only about 2× going from the high to low temperature limits.
The increasing ESR at lower temperatures can cause oscillations when marginal quality capacitors are used (if
the ESR of the capacitor is near the upper limit of the stability range at room temperature).
8.2.2.6 RFI/EMI Susceptibility
Radio frequency interference (RFI) and electromagnetic interference (EMI) can degrade the performance of any
integrated circuit because of the small dimensions of the geometries inside the device. In applications where
circuit sources are present which generate signals with significant high frequency energy content (> 1 MHz), care
must be taken to ensure that this does not affect the device regulator.
If RFI/EMI noise is present on the input side of the regulator (such as applications where the input source comes
from the output of a switching regulator), good ceramic bypass capacitors must be used at the input pin of the
device.
If a load is connected to the device output which switches at high speed (such as a clock), the high-frequency
current pulses required by the load must be supplied by the capacitors on the device output. Because the
bandwidth of the regulator loop is less than 100 kHz, the control circuitry cannot respond to load changes above
that frequency. This means the effective output impedance of the device at frequencies above 100 kHz is
determined only by the output capacitors.
In applications where the load is switching at high speed, the output of the device may need RF isolation from
the load. It is recommended that some inductance be placed between the output capacitor and the load, and
good RF bypass capacitors be placed directly across the load.
PCB layout is also critical in high noise environments, because RFI/EMI is easily radiated directly into PC traces.
Noisy circuitry should be isolated from clean circuits where possible, and grounded through a separate path. At
MHz frequencies, ground planes begin to look inductive and RFI/ EMI can cause ground bounce across the
ground plane. In multi-layer PCB applications, care should be taken in layout so that noisy power and ground
planes do not radiate directly into adjacent layers which carry analog power and ground.
8.2.2.7 Output Noise
Noise is specified in two ways:
• Spot Noise or Output Noise Density is the RMS sum of all noise sources, measured at the regulator
output, at a specific frequency (measured with a 1-Hz bandwidth). This type of noise is usually plotted on
a curve as a function of frequency.
• Total Output Noise or Broad-Band Noise is the RMS sum of spot noise over a specified bandwidth,
usually several decades of frequencies.
Attention should be paid to the units of measurement. Spot noise is measured in units µV√Hz or nV√Hz, and total
output noise is measured in µVRMS.
The primary source of noise in low-dropout regulators is the internal reference. Noise can be reduced in two
ways: by increasing the transistor area or by increasing the current drawn by the internal reference. Increasing
the area will decrease the chance of fitting the die into a smaller package. Increasing the current drawn by the
internal reference increases the total supply current (GND pin current).
8.2.2.8 Power Dissipation
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is
critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and
load conditions and can be calculated with Equation 2.
PD(MAX) = (VIN(MAX) – VOUT) × IOUT(MAX)
(2)
Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available
voltage drop option that would still be greater than the dropout voltage (VDO). However, keep in mind that higher
voltage drops result in better dynamic (that is, PSRR and transient) performance.
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
15
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad to the
PCB. To ensure the device does not overheat, connect the exposed pad, through thermal vias, to an internal
ground plane with an appropriate amount of copper PCB area .
On the VSSOP (DGK) and SOT-223 (NDC) packages, the primary conduction path for heat is through the pins to
the PCB.
The maximum allowable junction temperature (TJ(MAX)) determines maximum power dissipation allowed (PD(MAX))
for the device package.
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance
(RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to
Equation 3 or Equation 4:
TJ(MAX) = TA(MAX) + (RθJA × PD(MAX))
PD(MAX) = (TJ(MAX) - TA(MAX)) / RθJA
(3)
(4)
Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design, and
therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded
in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and copperspreading area, and is to be used only as a relative measure of package thermal performance. For a welldesigned thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance
(RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.
8.2.2.9 Estimating Junction Temperature
The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction
temperatures of surface mount devices on a typical PCB board application. These characteristics are not true
thermal resistance values, but rather package specific thermal characteristics that offer practical and relative
means of estimating junction temperatures. These psi metrics are determined to be significantly independent of
copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are
used in accordance with Equation 5 or Equation 6.
TJ(MAX) = TTOP + (ΨJT × PD(MAX))
where
•
•
PD(MAX) is explained in Equation 2.
TTOP is the temperature measured at the center-top of the device package.
(5)
TJ(MAX) = TBOARD + (ΨJB × PD(MAX))
where
•
•
PD(MAX) is explained in Equation 2.
TBOARD is the PCB surface temperature measured 1-mm from the device package and centered on the
package edge.
(6)
For more information about the thermal characteristics ΨJT and ΨJB, see the TI Application Report
Semiconductor and IC Package Thermal Metrics (SPRA953), available for download at www.ti.com.
For more information about measuring TTOP and TBOARD, see the TI Application Report Using New Thermal
Metrics (SBVA025), available for download at www.ti.com.
For more information about the EIA/JEDEC JESD51 PCB used for validating RθJA, see the TI Application Report
Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017), available for
download at www.ti.com.
16
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
8.2.2.10 Reverse Voltage
A reverse voltage condition will exist when the voltage at the OUT pin is higher than the voltage at the IN pin.
Typically this will happen when VIN is abruptly taken low and COUT continues to hold a sufficient charge such that
the input to output voltage becomes reversed. A less common condition is when an alternate voltage source is
connected to the output.
There are two possible paths for current to flow from the OUT pin back to IN during a reverse voltage condition.
1. While VIN is high enough to keep the control circuity alive, and the EN pin (LP38693-ADJ only) is above the
VEN(ON) threshold, the control circuitry will attempt to regulate the output voltage. If the input voltage is less
than the programmed output voltage, the control circuit will drive the gate of the pass element to the full ON
condition. In this condition, reverse current will flow from the OUT to the IN pin, limited only by the RDS(ON) of
the pass element and the output to input voltage differential. Discharging an output capacitor up to 1000 μF
in this manner will not damage the device as the current will rapidly decay. However, continuous reverse
current should be avoided. When the EN pin is low, this condition will be prevented.
2. The internal PFET pass element has an inherent parasitic diode. During normal operation, the input voltage
is higher than the output voltage and the parasitic diode is reverse biased. However, when VIN is below the
value where the control circuity is alive, or the EN pin is low (LP38693-ADJ only), and the output voltage is
more than 500 mV (typical) above the input voltage the parasitic diode becomes forward biased and current
flows from the output pin to the input pin through the diode. The current in the parasitic diode should be
limited to less than 1-A continuous and 5-A peak.
If used in a dual-supply system where the regulator output load is returned to a negative supply, the OUT pin
must be diode clamped to ground to limit the negative voltage transition. A Schottky diode is recommended
for this protective clamp.
8.2.3 Application Curve
VOUT = 1.25V
COUT = 10 PF
20
VOUT
0
-20
-40
4
VIN
3
2
VIN (V)
'VOUT (mV)
40
1
200 Ps/DIV
Figure 30. Line Transient Response
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
17
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
9 Power Supply Recommendations
The LP3869x-ADJ devices are designed to operate from an input supply voltage range of 2.7 V to 10 V. The
input supply should be well regulated and free of spurious noise. To ensure that the device output voltage is well
regulated, input supply should be at least VOUT + 0.5 V, or 2.7 V, whichever is higher. A minimum capacitor value
of 1-μF is required to be within 1 cm of the IN pin.
10 Layout
10.1 Layout Guidelines
Good PC layout practices must be used or instability can be induced because of ground loops and voltage drops.
The input and output capacitors must be directly connected to the input, output, and ground pins of the regulator
using traces which do not have other currents flowing in them (Kelvin connect).
The best way to do this is to lay out CIN and COUT near the device with short traces to the IN, OUT, and GND
pins. The regulator ground pin should be connected to the external circuit ground so that the regulator and its
capacitors have a "single point ground."
It should be noted that stability problems have been seen in applications where "vias" to an internal ground plane
were used at the ground points of the device and the input and output capacitors. This was caused by varying
ground potentials at these nodes resulting from current flowing through the ground plane. Using a single point
ground technique for the regulator and its capacitors fixed the problem. Because high current flows through the
traces going into VIN and coming from VOUT, Kelvin connect the capacitor leads to these pins so there is no
voltage drop in series with the input and output capacitors.
10.2 Layout Examples
VIA connect to ground
layer
VIA connect to
ground layer
GND
IN
1
8
IN
COUT
4 IN
1 EN
2 ADJ
3 OUT
CIN
CIN
GND
2
EN
3
Exposed Pad
on Bottom
(DAP)
7
OUT
6
ADJ
R1
R2
R2
R1
COUT
Figure 31. SOT-223 Layout
18
Submit Documentation Feedback
Figure 32. WSON LP38693 Layout
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
www.ti.com
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
10.3 WSON Mounting
The NGG0006A (No Pullback) 6-Lead WSON package requires specific mounting techniques which are detailed
in the TI Application ReportLeadless Leadframe Package (LLP) SNOA401. Referring to the section PCB Design
Recommendations, it should be noted that the pad style which should be used with the WSON package is the
NSMD (non-solder mask defined) type. Additionally, it is recommended the PCB terminal pads to be 0.2 mm
longer than the package pads to create a solder fillet to improve reliability and inspection.
The thermal dissipation of the WSON package is directly related to the printed circuit board construction and the
amount of additional copper area connected to the DAP. The DAP (exposed pad) on the bottom of the WSON
package is connected to the die substrate with a conductive die attach adhesive. The DAP has no direct
electrical (wire) connection to any of the pins. There is a parasitic PN junction between the die substrate and the
device ground. As such, it is strongly recommend that the DAP be connected directly to the ground at device pin
2 (GND). Alternatively, but not recommended, the DAP may be left floating (no electrical connection). The DAP
must not be connected to any potential other than ground.
Copyright © 2005–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
19
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1
SNVS324K – JANUARY 2005 – REVISED JANUARY 2016
www.ti.com
11 Device and Documentation Support
11.1 Documentation Support
11.1.1 Related Documentation
For related documentation see the following:
• Leadless Leadframe Package (LLP) (SNOA401)
• Semiconductor and IC Package Thermal Metrics (SPRA953)
• Using New Thermal Metrics (SBVA025)
• Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017)
11.2 Related Links
Table 2 lists quick access links. Categories include technical documents, support and community resources,
tools and software, and quick access to sample or buy.
Table 2. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
LP38691-ADJ
Click here
Click here
Click here
Click here
Click here
LP38693-ADJ
Click here
Click here
Click here
Click here
Click here
LP38691-ADJ-Q1
Click here
Click here
Click here
Click here
Click here
LP38693-ADJ-Q1
Click here
Click here
Click here
Click here
Click here
11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
20
Submit Documentation Feedback
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LP38691-ADJ LP38693-ADJ LP38691-ADJ-Q1 LP38693-ADJ-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
20-Jan-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LP38691QSD-ADJ/NOPB
ACTIVE
WSON
NGG
6
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
L251B
LP38691QSDX-ADJ/NOPB
ACTIVE
WSON
NGG
6
4500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
L251B
LP38691SD-ADJ
NRND
WSON
NGG
6
1000
TBD
Call TI
Call TI
-40 to 125
L117B
LP38691SD-ADJ/NOPB
ACTIVE
WSON
NGG
6
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L117B
LP38691SDX-ADJ/NOPB
ACTIVE
WSON
NGG
6
4500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L117B
LP38693MP-ADJ/NOPB
ACTIVE
SOT-223
NDC
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LJUB
LP38693MPX-ADJ/NOPB
ACTIVE
SOT-223
NDC
5
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LJUB
LP38693QSD-ADJ/NOPB
ACTIVE
WSON
NGG
6
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LLRB
LP38693QSDX-ADJ/NOPB
ACTIVE
WSON
NGG
6
4500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LLRB
LP38693SD-ADJ/NOPB
ACTIVE
WSON
NGG
6
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L127B
LP38693SDX-ADJ/NOPB
ACTIVE
WSON
NGG
6
4500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L127B
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
20-Jan-2016
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LP38691-ADJ, LP38691-ADJ-Q1, LP38693-ADJ, LP38693-ADJ-Q1 :
• Catalog: LP38691-ADJ, LP38693-ADJ
• Automotive: LP38691-ADJ-Q1, LP38693-ADJ-Q1
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Mar-2016
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
LP38691QSD-ADJ/NOPB
LP38691QSDX-ADJ/NOP
B
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
WSON
NGG
6
1000
178.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
WSON
NGG
6
4500
330.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38691SD-ADJ
WSON
NGG
6
1000
178.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38691SD-ADJ/NOPB
WSON
NGG
6
1000
180.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38691SDX-ADJ/NOPB
WSON
NGG
6
4500
330.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38693MP-ADJ/NOPB SOT-223
NDC
5
1000
330.0
16.4
7.0
7.5
2.2
12.0
16.0
Q3
LP38693MPX-ADJ/NOPB SOT-223
NDC
5
2000
330.0
16.4
7.0
7.5
2.2
12.0
16.0
Q3
LP38693QSD-ADJ/NOPB
WSON
NGG
6
1000
178.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38693QSDX-ADJ/NOP
B
WSON
NGG
6
4500
330.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38693SD-ADJ/NOPB
WSON
NGG
6
1000
180.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
LP38693SDX-ADJ/NOPB
WSON
NGG
6
4500
330.0
12.4
3.3
3.3
1.0
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
15-Mar-2016
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LP38691QSD-ADJ/NOPB
WSON
NGG
6
1000
210.0
185.0
35.0
LP38691QSDX-ADJ/NOPB
WSON
NGG
6
4500
367.0
367.0
35.0
LP38691SD-ADJ
WSON
NGG
6
1000
210.0
185.0
35.0
LP38691SD-ADJ/NOPB
WSON
NGG
6
1000
203.0
203.0
35.0
LP38691SDX-ADJ/NOPB
WSON
NGG
6
4500
367.0
367.0
35.0
LP38693MP-ADJ/NOPB
SOT-223
NDC
5
1000
367.0
367.0
35.0
LP38693MPX-ADJ/NOPB
SOT-223
NDC
5
2000
367.0
367.0
35.0
LP38693QSD-ADJ/NOPB
WSON
NGG
6
1000
210.0
185.0
35.0
LP38693QSDX-ADJ/NOPB
WSON
NGG
6
4500
367.0
367.0
35.0
LP38693SD-ADJ/NOPB
WSON
NGG
6
1000
203.0
203.0
35.0
LP38693SDX-ADJ/NOPB
WSON
NGG
6
4500
346.0
346.0
35.0
Pack Materials-Page 2
MECHANICAL DATA
NDC0005A
www.ti.com
MECHANICAL DATA
NGG0006A
SDE06A (Rev A)
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages