IRF IRGS4064DPBF Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 96424
IRGS4064DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features
•
•
•
•
•
•
•
•
•
•
IC = 10A, TC = 100°C
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5μs SCSOA
Square RBSOA
100% of The Parts Tested for (ILM)
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
G
tsc > 5µs, Tjmax = 175°C
E
VCE(on) typ. = 1.6V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
• Low EMI
G
C
E
D2Pak
G
C
E
Gate
Collector
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
IF@TC=25°C
Diode Continuous Forward Current
IF@TC=100°C
IFM
Diode Continuous Forward Current
Diode Maximum Forward Current
VGE
PD @ TC =25°
PD @ TC =100°
TJ
TSTG
Units
Max.
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
600
20
10
40
40
20
c
V
A
10
40
±20
±30
101
50
d
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
V
W
°C
-55 to + 175
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
1
e
e
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
e
Min.
Typ.
Max.
–––
–––
–––
–––
–––
0.50
1.49
3.66
–––
–––
–––
1.5
40
Units
°C/W
g
www.irf.com
02/16/12
IRGS4064DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
ΔV(BR)CES /ΔT J Temperature Coeff. of Breakdown Voltage
Min. Typ.
Max.
Units
Conditions
600
—
—
V
VGE = 0V, IC = 100μA
—
0.47
—
V/°C
—
1.6
1.91
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.9
—
2.0
—
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
ΔVGE(th)/Δ TJ
Threshold Voltage temp. coefficient
—
-11
—
VGE = 0V, IC = 500μA (25°C-175°C)
V
IC = 10A, VGE = 15V, T J = 150°C
5,6,7,9,
IC = 10A, VGE = 15V, T J = 175°C
10 ,11
V
VCE = VGE , IC = 275μA
mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C)
gfe
Forward Transconductance
—
6.9
—
S
VCE = 50V, IC = 10A, PW = 80μs
Collector-to-Emitter Leakage Current
—
—
25
μA
VGE = 0V, VCE = 600V
—
328
—
—
2.5
3.1
—
1.7
—
—
—
±100
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
CT 6
IC = 10A, VGE = 15V, T J = 25°C
ICES
VFM
Ref.Fig
f
VGE = 0V, VCE = 600V, TJ = 175°C
V
IF = 10A
nA
VGE = ±20V
9,10,11,12
8
IF = 10A, TJ = 175°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
g
Max.
Units
Conditions
Qg
Total Gate Charge (turn-on)
—
21
32
Qge
Gate-to-Emitter Charge (turn-on)
—
5.3
8.0
Qgc
Gate-to-Collector Charge (turn-on)
—
8.9
13
VCC = 400V
Eon
Turn-On Switching Loss
—
29
40
IC = 10A, VCC = 400V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
200
281
Etotal
Total Switching Loss
—
229
313
td(on)
Turn-On delay time
—
27
37
tr
Rise time
—
15
23
td(off)
Turn-Off delay time
—
79
90
tf
Fall time
—
21
29
Eon
Turn-On Switching Loss
—
99
—
Eoff
Turn-Off Switching Loss
—
316
—
Etotal
Total Switching Loss
—
415
—
td(on)
Turn-On delay time
—
27
—
tr
Rise time
—
16
—
td(off)
Turn-Off delay time
—
98
—
tf
Fall time
—
33
—
nC
μJ
CT 1
RG = 22Ω, L = 1.0mH, TJ = 25°C
CT 4
E nergy los s es include tail & diode revers e recovery
IC = 10A, VCC = 400V, VGE = 15V
ns
RG = 22Ω, L = 1.0mH, TJ = 25°C
CT 4
IC = 10A, VCC = 400V, VGE = 15V
13,15
μJ
RG=22Ω, L=1.0mH, T J = 175°C
f
E nergy los s es include tail & diode revers e recovery
ns
CT 4
WF 1,WF 2
IC = 10A, VCC = 400V, VGE = 15V
14,16
RG = 22Ω, L = 1.0mH, TJ = 175°C
CT 4
WF 1,WF 2
Cies
Input Capacitance
—
594
—
Output Capacitance
—
49
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
17
—
f = 1.0Mhz
pF
VGE = 0V
T J = 175°C, IC = 40A
Reverse Bias Safe Operating Area
24
VGE = 15V
Coes
RBSOA
R ef .F ig
IC = 10A
FULL SQUARE
VCC = 480V, Vp =600V
22
4
CT 2
Rg = 22Ω, VGE = +15V to 0V
SCSOA
Short Circuit Safe Operating Area
5
—
—
μs
VCC = 400V, Vp =600V
Rg = 22Ω, VGE = +15V to 0V
Erec
Reverse Recovery Energy of the Diode
—
trr
Diode Reverse Recovery Time
—
Irr
Peak Reverse Recovery Current
—
191
T J = 175°C
22, CT 3
WF 4
—
μJ
62
—
ns
VCC = 400V, IF = 10A
20,21
16
—
A
VGE = 15V, Rg = 22Ω, L=1.0mH
WF 3
17,18,19
Notes:
VCC = 80% (VCES), VGE = 15V, L = 28 μH, RG = 22 Ω.
‚ Pulse width limited by max. junction temperature.
ƒRθ is measured at TJ approximately 90°C
„Refer to AN-1086 for guidelines for measuring V(BR)CES safely
Maximum limits are based on statistical sample size characterization
2
www.irf.com
24
120
20
100
16
80
Ptot (W)
IC (A)
IRGS4064DPbF
12
60
8
40
4
20
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
TC (°C)
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10μsec
100μsec
10
IC A)
IC (A)
1msec
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
1
0.1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VCE = 15V
Fig. 3 - Forward SOA,
TC = 25°C; TJ ≤ 175°C
40
20
10
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
10
0
0
0
2
4
6
8
10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
www.irf.com
VGE = 18V
30
ICE (A)
ICE (A)
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
30
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
3
IRGS4064DPbF
40
80
VGE = 18V
VGE = 12V
60
VGE = 8.0V
50
VGE = 10V
IF (A)
ICE (A)
30
-40°C
25°C
175°C
70
VGE = 15V
20
40
30
10
20
10
0
0
0
2
4
6
8
10
0.0
1.0
2.0
3.0
VCE (V)
20
18
18
16
16
ICE = 5.0A
VCE (V)
VCE (V)
ICE = 20A
8
ICE = 10A
12
ICE = 20A
10
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
V GE (V)
V GE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
40
18
16
10
ICE (A)
12
TJ = 25°C
TJ = 175°C
30
ICE = 5.0A
ICE = 10A
ICE = 20A
14
VCE (V)
7.0
ICE = 5.0A
14
ICE = 10A
10
6.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
20
12
5.0
V F (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
14
4.0
8
6
20
10
4
2
0
0
5
10
15
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
20
0
5
10
15
20
V GE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
www.irf.com
IRGS4064DPbF
1000
600
Swiching Time (ns)
500
Energy (μJ)
400
EOFF
300
200
tdOFF
100
tF
tdON
tR
10
EON
100
0
0
4
8
12
16
20
1
24
0
4
8
12
I C (A)
20
24
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 22Ω; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V.
350
1000
EOFF
300
16
Swiching Time (ns)
Energy (μJ)
250
EON
200
150
100
tdOFF
100
tdON
tF
50
tR
0
0
25
50
75
100
10
125
0
25
50
RG (Ω)
125
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 10A; VGE= 15V
24
20
20
16
RG =10 Ω
16
RG =22 Ω
12
IRR (A)
IRR (A)
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 10A; VGE = 15V
RG =47 Ω
8
12
8
RG = 100 Ω
4
4
0
0
0
4
8
12
16
20
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
www.irf.com
75
24
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 10A
5
IRGS4064DPbF
20
900
10Ω
20A
22Ω
800
47 Ω
15
IRR (A)
QRR (nC)
700
10
100Ω
10A
600
500
5.0A
400
5
300
0
200
400
600
800
1000
1200
0
500
diF /dt (A/μs)
1500
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 10A; TJ = 175°C
80
16
300
RG = 10Ω
150
RG = 47Ω
100
RG = 100Ω
50
70
Isc
12
60
10
50
8
40
6
30
4
20
2
10
0
0
0
0
2
4
6
8
8
10 12 14 16 18 20 22
Current (A)
200
RG = 22Ω
Tsc
14
Time (μs)
250
IRR (A)
1000
diF /dt (A/μs)
10
12
14
16
VGE (V)
IF (A)
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
1000
16
Cies
14
300V
400V
100
VGE (V)
Capacitance (pF)
12
Coes
10
8
6
10
Cres
4
2
0
1
0
20
40
60
VCE (V)
80
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
100
0
4
8
12
16
20
24
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 10A, L=600μH
www.irf.com
IRGS4064DPbF
Thermal Response ( ZthJC )
10
1
D = 0.50
R1
R1
0.20
τJ
0.10
0.1
0.05
τ2
τ1
R3
R3
R4
R4
τC
τ
τ3
τ2
τ4
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.02
0.01
τJ
τ1
R2
R2
Ri (°C/W) τι (sec)
0.007362
0
0.342317 0.000048
0.647826 0.000192
0.493231 0.001461
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( ZthJC )
D = 0.50
1
0.20
0.10
0.05
0.1
R1
R1
0.02
τJ
0.01
τJ
τ1
τC
τ1
Ci= τi/Ri
C
0.01
R2
R2
τ2
τ2
Ri (°C/W)
τι (sec)
1.939783 0.000975
1.721867 0.006135
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGS4064DPbF
L
L
DUT
0
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
8
VCC
80 V
+
-
DUT
Rg
480V
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
IRGS4064DPbF
500
10
TEST CURRENT
tf
25
350
8
tr
275
90% ICE
4
VCE (V)
200
ICE (A)
6
VCE (V)
300
200
15
125
10
5% ICE
100
10% test current
2
0
-0.04
0
0.06
-25
-0.1
0.16
time(μs)
Eon Loss
0.1
110
450
QRR
tRR
5
90
375
0
70
300
Peak
IRR
Vce (V)
-5
IF (A)
-175
IC
50
225
-10
30
150
-400
-15
10
75
-475
-0.05
-20
-10
-325
0.15
10%
Peak
IRR
0.35
time (μS)
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 175°C using CT.4
www.irf.com
Ice (A)
VC
-25
VF (V)
0
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
10
-250
5
time (μs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
-100
5% VCE
50
5% VCE
Eoff Loss
20
90% test current
ICE (A)
400
0
-5
0
5
10
Time (uS)
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGS4064DPbF
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H
LOT CODE 8024
ASS EMBLED ON WW 02, 2000
IN T HE AS SEMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INTERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
F530S
DAT E CODE
P = DESIGNAT ES LEAD - FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS SEMBLY S ITE CODE
www.irf.com
IRGS4064DPbF
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
www.irf.com
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2012
11
Similar pages