IRF IRGP4640PBF Insulated gate bipolar transistor Datasheet

IRGP4640PbF
IRGP4640-EPbF
INSULATED GATE BIPOLAR TRANSISTOR
VCES = 600V
C
IC = 40A, TC = 100°C
tSC ≥ 5µs, TJ(max) = 175°C
C
C
G
GC
E
VCE(on) typ. = 1.60V @ IC = 24A
n-channel
G
Gate
Applications
• Inverters
• UPS
• Welding
E
E
GC
TO-247AD
IRGP4640-EP
TO-247AC
IRGP4640PbF
C
Collector
Features
E
Emitter
Benefits
High efficiency in a wide range of applications and switching
frequencies
Improved reliability due to rugged hard switching performance
and higher power capability
Excellent current sharing in parallel operation
Enables short circuit protection scheme
Environmentally friendly
Low V CE(ON) and Switching Losses
Square RBSOA and Maximum Junction Temperature 175°C
Positive VCE (ON) Temperature Coefficient
5µs short circuit SOA
Lead-Free, RoHS compliant
Base part number
Package Type
IRGP4640PbF
IRGP4640-EPbF
TO-247AC
TO-247AD
Standard Pack
Form
Quantity
Tube
25
Tube
25
Orderable part number
IRGP4640PbF
IRGP4640-EPbF
Absolute Maximum Ratings
Parameter
Max.
Units
V
V CES
Collector-to-Emitter Voltage
600
IC @ TC = 25°C
Continuous Collector Current
65
IC @ TC = 100°C
ICM
Continuous Collector Current
ILM
Clamped Inductive Load Current, VGE = 20V
V GE
Pulse Collector Current, VGE = 15V
c
40
72
d
96
A
Continuous Gate-to-Emitter Voltage
±20
V
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
250
PD @ TC = 100°C
Maximum Power Dissipation
125
TJ
Operating Junction and
TST G
Storage Temperature Range
W
-40 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
–––
–––
0.60
°C/W
RθJC
Junction-to-Case e
RθCS
Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Junction-to-Ambient (typical socket mount)
–––
–––
40
1
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆ V(B R )CES /∆T J
Collector-to-Emitter Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
VGE(th)
Temperature Coeff. of Breakdown Voltage
Gate Threshold Voltage
Min.
Typ.
Max.
Units
600
—
—
V
—
0.30
—
V/°C
—
1.60
1.90
—
2.00
—
4.0
—
6.5
Conditions
VGE = 0V, IC = 100µA
f
VGE = 0V, IC = 1mA (25°C-175°C)
V
IC = 24A, VGE = 15V, TJ = 25°C
V
VCE = VGE , IC = 700µA
IC = 24A, VGE = 15V, TJ = 175°C
∆VGE(th) /∆T J
Threshold Voltage temp. coefficient
—
-18
—
gfe
Forward Transconductance
—
17
—
S
VCE = 50V, IC = 24A, PW = 80µs
ICES
Collector-to-Emitter Leakage Current
—
1.0
20
µA
VGE = 0V, VCE = 600V
—
600
—
IGES
Gate-to-Emitter Leakage Current
—
—
±100
mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C)
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
g
Typ. Max.
Qg
Total Gate Charge (turn-on)
—
50
75
Q ge
Gate-to-Emitter Charge (turn-on)
—
15
20
Q gc
Gate-to-Collector Charge (turn-on)
—
20
30
Eon
Turn-On Switching Loss
—
0.1
0.2
Eoff
Turn-Off Switching Loss
—
0.6
0.7
Etotal
Total Switching Loss
—
0.7
0.9
td(on)
Turn-On delay time
—
40
55
tr
Rise time
—
20
30
td(off)
Turn-Off delay time
—
105
115
tf
Fall time
—
30
40
Eon
Turn-On Switching Loss
—
0.4
—
Eoff
Turn-Off Switching Loss
—
0.85
—
Etotal
Total Switching Loss
—
1.25
—
Units
Conditions
IC = 24A
nC
VGE = 15V
VCC = 400V
mJ
IC = 24A, VCC = 400V, VGE = 15V
h
RG = 10Ω, TJ = 25°C
ns
E nergy los s es include tail & diode revers e recovery
mJ
IC = 24A, VCC = 400V, VGE=15V
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
25
—
td(off)
Turn-Off delay time
—
125
—
tf
Fall time
—
40
—
Cies
Input Capacitance
—
1490
—
Coes
Output Capacitance
—
130
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
45
—
f = 1.0Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
h
RG=10Ω, T J = 175°C
ns
pF
E nergy los s es include tail & diode revers e recovery
VGE = 0V
TJ = 175°C, IC = 96A
VCC = 480V, Vp =600V
Rg = 10Ω, VGE = +20V to 0V
—
—
µs
VCC = 400V, Vp =600V
Rg = 10Ω, VGE = +15V to 0V
Notes:
 Pulse width limited by max. junction temperature.
‚ VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω.
ƒ Rθ is measured at TJ of approximately 90°C.
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Maximum limits are based on statistical sample size characterization.
† Values are influenced by parasitic L and C in measurement.
2
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
80
For both:
Duty cycle : 50%
Tj = 175°C
Tsink = 100°C
Gate drive as specified
Power Dissipation = 125W
70
Load Current ( A )
60
50
Squa re Wave:
40
VCC
30
I
20
D io de as specified
10
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
70
300
60
250
200
40
Ptot (W)
IC (A)
50
30
150
100
20
50
10
0
0
25
50
75
100
125
150
175
25
50
75
100
125
150
175
T C (°C)
T C (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC (A)
IC (A)
10µsec
10
100µsec
1
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
1
10
100
1000
10000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
3
www.irf.com © 2013 International Rectifier
10
100
1000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
90
90
80
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
60
50
70
40
40
30
20
20
10
10
0
0
1
2
3
4
5
6
7
0
8
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
2
3
4
5
6
7
8
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
90
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
70
18
16
14
VCE (V)
60
50
40
30
12
ICE = 12A
ICE = 24A
10
ICE = 48A
8
6
20
4
10
2
0
0
0
1
2
3
4
5
6
7
8
5
20
20
18
18
16
16
14
14
VCE (V)
ICE = 12A
ICE = 24A
10
ICE = 48A
8
15
20
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
12
10
VGE (V)
VCE (V)
VCE (V)
1
VCE (V)
VCE (V)
ICE (A)
50
30
0
12
ICE = 12A
ICE = 24A
10
ICE = 48A
8
6
6
4
4
2
2
0
0
5
10
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
ICE (A)
70
www.irf.com © 2013 International Rectifier
5
10
15
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
1800
120
1600
100
1200
Energy (µJ)
80
ICE (A)
1400
T J = 25°C
TJ = 175°C
60
EOFF
1000
800
EON
600
40
400
20
200
0
0
0
5
10
0
15
10
20
30
VGE (V)
40
50
60
IC (A)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
1600
1000
1400
1200
100
Energy (µJ)
Swiching Time (ns)
tdOFF
tdON
tF
10
tR
EON
1000
EOFF
800
600
400
200
0
1
10
20
30
40
0
50
25
50
IC (A)
125
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
1000
Time (µs)
tdOFF
100
tdON
tF
tR
10
16
280
14
240
12
200
10
160
8
120
6
80
40
4
0
25
50
75
100
125
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
www.irf.com © 2013 International Rectifier
Current (A)
Swiching Time (ns)
100
Rg (Ω)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
5
75
8
10
12
14
16
18
VGE (V)
Fig. 17 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
10000
Cies
1000
Coes
100
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
Cres
10
0
0
20
40
60
80
100
0
5 10 15 20 25 30 35 40 45 50 55
VCE (V)
Q G, Total Gate Charge (nC)
Fig. 19 - Typical Gate Charge vs. VGE
ICE = 24A; L = 600µH
Fig. 18 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
τ
Ri (°C/W) τi (sec)
0.2568 0.000311
0.3429
0.006347
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
L
L
DUT
0
VCC
80 V +
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
RSH
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
DUT
C sense
VCC
Rg
22K
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
7
www.irf.com © 2013 International Rectifier
Fig.C.T.6 - BVCES Filter Circuit
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
600
30
600
25
500
60
tf
500
50
90% ICE
400
C
200
15
300
10
5% V CE
5
0
EOFF Loss
30
90% test
200
20
5% V CE
0
10
0
EON
-5
0.10
C
100
5% ICE
-100
-0.40
40
10% ICE
100
0
tr
ICE
V CE
300
400
VCE (V)
VCE (V)
ICE
20
V CE
C
-100
11.70
0.60
11.90
Time(µs)
12.10
-10
12.30
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
600
300
ICE
500
250
200
V CE
300
150
200
100
100
50
0
I CE (A)
V CE (V)
400
0
-100
-5.00
0.00
5.00
-50
10.00
time (µS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
8
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
IRGP4640PbF/IRGP4640-EPbF
Qualification Information†
Qualification Level
Moisture Sensitivity Level
Industrial
(per International Rectifier’s internal guidelines)
TO-247AC
N/A
TO-247AD
N/A
††
ESD
Class H1C (+/- 2000V)
Human Body Model
(per JEDEC JESD22-A114)
Class C5 (+/- 1000V)††
Charged Device Model
(per JEDEC JESD22-C101)
RoHS Compliant
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
†† Highest passing voltage.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
11
www.irf.com © 2013 International Rectifier
Submit Datasheet Feedback
October 29, 2013
Similar pages