IRF IRG4BC20WPBF Insulated gate bipolar transistor Datasheet

PD-95640A
IRG4BC20WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
• Industry-benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and construction offers
tighter parameters distribution, exceptional reliability
• Lead-Free
C
VCES = 600V
VCE(on) typ. = 2.16V
G
@VGE = 15V, IC = 6.5A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
• Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >>300 kHz)
TO-220AB
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
13
6.5
52
52
± 20
200
60
24
-55 to + 150
V
A
V
mJ
W
300 (0.063 in. (1.6mm) from case )
10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.5
–––
2.0 (0.07)
2.1
–––
80
–––
Units
°C/W
g (oz)
1
01/25/10
IRG4BC20WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage
600
—
—
V
VGE = 0V, IC = 250µA
Emitter-to-Collector Breakdown Voltage „ 18
—
—
V
VGE = 0V, IC = 1.0A
Temperature Coeff. of Breakdown Voltage — 0.48 —
V/°C VGE = 0V, IC = 1.0mA
— 2.16 2.6
IC = 6.5A
VGE = 15V
Collector-to-Emitter Saturation Voltage
— 2.55 —
IC = 13A
See Fig.2, 5
V
— 2.05 —
IC = 6.5A , TJ = 150°C
Gate Threshold Voltage
3.0
—
6.0
VCE = VGE, IC = 250µA
Temperature Coeff. of Threshold Voltage
—
-8.8 — mV/°C VCE = VGE, IC = 250µA
Forward Transconductance
5.5 8.3
—
S
VCE = 100 V, IC = 6.5A
—
—
250
VGE = 0V, VCE = 600V
Zero Gate Voltage Collector Current
µA
—
—
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
—
— 1000
VGE = 0V, VCE = 600V, TJ = 150°C
Gate-to-Emitter Leakage Current
—
— ±100
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
t d(on)
tr
td(off)
tf
Eon
Eoff
Ets
t d(on)
tr
td(off)
tf
E ts
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
26
38
IC = 6.5A
3.7 5.5
nC
VCC = 400V
See Fig.8
10
15
VGE = 15V
22
—
14
—
TJ = 25°C
ns
110 160
IC = 6.5A, VCC = 480V
64
96
VGE = 15V, RG = 50Ω
0.06 —
Energy losses include "tail"
0.08 —
mJ See Fig. 9, 10, 14
0.14 0.2
21
—
TJ = 150°C,
15
—
IC = 6.5A, VCC = 480V
ns
150 —
VGE = 15V, RG = 50Ω
150 —
Energy losses include "tail"
0.34 —
mJ See Fig. 10, 11, 14
7.5
—
nH
Measured 5mm from package
490 —
VGE = 0V
38
—
pF
VCC = 30V
See Fig. 7
8.8
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50Ω,
(See fig. 13a)
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC20WPbF
25
For both:
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
20
Clamp voltage:
80% of rated
Load Current ( A )
Power Dissipation = 13W
15
Square wave:
60% of rated
voltage
10
5
Ideal diodes
A
0
0.1
1
10
100
1000
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C, Collector-to-Emitter Current (A)
10
TJ = 150 °C
TJ = 25 °C
1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150 °C
10
TJ = 25 °C
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
9
10
11
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC20WPbF
14
VCE , Collector-to-Emitter Voltage(V)
3.0
Maximum DC Collector Current(A)
12
10
8
6
4
2
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 13 A
IC = 6.5 A
2.0
IC =3.25 A
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
TC , Case Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
P DM
0.05
0.1
0.01
0.00001
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20WPbF
1000
600
VGE , Gate-to-Emitter Voltage (V)
800
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
400
Coes
200
Cres
0
1
10
16
12
8
4
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
V CC = 480V
V GE = 15V
TJ = 25 °C
I C = 6.5A
0.13
0
10
20
30
40
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
5
10
15
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.14
0.12
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.15
VCC = 400V
I C = 6.5A
50
50 Ω
RG = Ohm
VGE = 15V
VCC = 480V
1
IC = 13 A
IC = 6.5 A
IC = 3.25 A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC20WPbF
RG
TJ
VCC
VGE
100
Ω
= 50
Ohm
= 150° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
0.8
0.6
0.4
0.2
0.0
0
2
4
6
8
10
12
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
14
VGE = 20V
T J = 125 oC
10
1
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC20WPbF
RL = VCC
ICM
L
D.U.T.
VC *
50V
1000V
0 - VCC
c
480µF
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Pulsed Collector Current
Test Circuit
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4BC20WPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/2010
8
www.irf.com
Similar pages