ETC2 ML610Q422 8-bit microcontroller with a built-in lcd driver Datasheet

FEDL610Q421-03
Issue Date: Feb.9, 2015
ML610Q421/ML610Q422
8-bit Microcontroller with a Built-in LCD driver
GENERAL DESCRIPTION
This LSI is a high-performance 8-bit CMOS microcontroller into which rich peripheral circuits, such as synchronous serial port,
UART, I2C bus interface (master), melody driver, battery level detect circuit, RC oscillation type A/D converter, 12-bit
successive approximation type A/D converter, and LCD driver, are incorporated around 8-bit CPU nX-U8/100.
The CPU nX-U8/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by 3-stage pipe line architecture
parallel procesing. The Flash ROM that is installed as program memory achieves low-voltage low-power consumption operation
(read operation) equivalent to mask ROM and is most suitable for battery-driven applications.
The on-chip debug function that is installed enables program debugging and programming.
FEATURES
• CPU
− 8-bit RISC CPU (CPU name: nX-U8/100)
− Instruction system: 16-bit instructions
− Instruction set:
Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit
manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic
shift, and so on
− On-Chip debug function
− Minimum instruction execution time
30.5 µs (@32.768 kHz system clock)
0.24 4µs (@4.096 MHz system clock)
• Internal memory
− Internal 32KBbyte Flash ROM (16K×16 bits) (including unusable 1KByte TEST area)
− Internal 1KByte Data RAM (1024×8 bits), 1KByte Display Allocation RAM (1024 x 8bit)
− Internal 100Byte RAM for display
• Interrupt controller
− 2 non-maskable interrupt sources (Internal source: 1, External source: 1)
− 20 maskable interrupt sources (Internal sources: 16, External sources: 4)
• Time base counter
− Low-speed time base counter ×1 channel
Frequency compensation (Compensation range: Approx. −488ppm to +488ppm. Compensation accuracy: Approx.
0.48ppm)
− High-speed time base counter ×1 channel
• Watchdog timer
− Non-maskable interrupt and reset
− Free running
− Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s)
• Timers
− 8 bits × 4 channels (Timer0-3: 16-bit x 2 configuration available by using Timer0-1 or Timer2-3)
− Clock frequency measurement mode (in one channel of 16-bit configuration using Timer2-3)
1/37
FEDL610Q421-03
ML610Q421/ML610Q422
• 1 kHz timer
− 10 Hz/1 Hz interrupt function
• Capture
− Time base capture × 2 channels (4096 Hz to 32 Hz)
• PWM
− Resolution 16 bits × 1 channel
• Synchronous serial port
− Master/slave selectable
− LSB first/MSB first selectable
− 8-bit length/16-bit length selectable
• UART
− TXD/RXD × 1 channel
− Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
− Positive logic/negative logic selectable
− Built-in baud rate generator
• I2C bus interface
− Master function only
− Fast mode (400 kbps@4MHz), standard mode (100 kbps@1MHz, 50kbps@500kHz)
• Melody driver
− Scale: 29 types (Melody sound frequency: 508 Hz to 32.768 kHz)
− Tone length: 63 types
− Tempo: 15 types
− Buzzer output mode (4 output modes, 8 frequencies, 16 duty levels)
• RC oscillation type A/D converter
− 24-bit counter
− Time division × 2 channels
• Successive approximation type A/D converter
− 12-bit A/D converter
− Input × 2 channels
• General-purpose ports
− Non-maskable interrupt input port × 1 channel
− Input-only port × 6 channels (including secondary functions)
− Output-only port × 3 channels (including secondary functions)
− Input/output port
ML610Q421: 22 channels (including secondary functions)
ML610Q422: 14 channels (including secondary functions)
2/37
FEDL610Q421-03
ML610Q421/ML610Q422
• LCD driver
− Dot matrix can be supported.
ML610Q421: 400 dots max. (50 seg × 8 com), 1/1 to 1/8 duty
ML610Q422: 800 dots max. (50 seg × 16 com) , 1/1 to 1/16 duty
− 1/3 or 1/4 bias (built-in bias generation circuit)
− Frame frequency selecable (approx. 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
− Bias voltage multiplying clock selectable (8 types)
− Contrast adjustment (1/3 bias: 32 steps, 1/4 bias: 20 steps)
− LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
− Programmable display allocation function (available only when 1/1~1/8 duty is selected)
• Reset
− Reset through the RESET_N pin
− Power-on reset generation when powered on
− Reset when oscillation stop of the low-speed clock is detected
− Reset by the watchdog timer (WDT) overflow
• Power supply voltage detect function
− Judgment voltages:
One of 16 levels
− Judgment accuracy:
±2% (Typ.)
• Clock
− Low-speed clock: (This LSI can not guarantee the operation withoug low-speed clock)
Crystal oscillation (32.768 kHz)
− High-speed clock:
Built-in RC oscillation (500 kHz)
Built-in PLL oscillation (8.192 MHz ±2.5%), crystal/ceramic oscillation (4.096 MHz), external clock
− Selection of high-speed clock mode by software:
Built-in RC oscillation, built-in PLL oscillation, crystal/ceramic oscillation, external clock
• Power management
− HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
− STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are
stopped.)
− Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, or 1/8 of the oscillation
clock)
− Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.
• Guaranteed operating range
− Operating temperature: −20°C to 70°C (P version: −40°C to +85°C)
− Operating voltage: VDD = 1.1V to 3.6V, AVDD = 2.2V to 3.6V
3/37
FEDL610Q421-03
ML610Q421/ML610Q422
•Product name – Supported Function
The line-up of the ML610Q421 and the ML610Q422 is below.
ROM type
Operating
temperature
Product availability
ML610Q421-xxxWA
Flash ROM
-20°C to +70°C
Yes
ML610Q422-xxxWA
Flash ROM
-20°C to +70°C
Yes
ML610Q421P-xxxWA
Flash ROM
-40°C to +85°C
Yes
ML610Q422P-xxxWA
Flash ROM
-40°C to +85°C
Yes
-120-pin plastic
TQFP -
ROM type
Operating
temperature
Product availability
ML610Q421-xxxTB
Flash ROM
-20°C to +70°C
Yes
ML610Q422-xxxTB
Flash ROM
-20°C to +70°C
Yes
ML610Q421P-xxxTB
Flash ROM
-40°C to +85°C
Yes
ML610Q422P-xxxTB
Flash ROM
-40°C to +85°C
Yes
- Chip (Die) -
xxx: ROM code number (xxx of the blank product is NNN)
Q: Flash ROM version
P: Wide range temperature version (P version)
WA: Chip (Die),
TB: TQFP
4/37
FEDL610Q421-03
ML610Q421/ML610Q422
BLOCK DIAGRAM
ML610Q421 Block Diagram
Figure 1 show the block diagram of the ML610Q421.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RS0*
RT0*
CRT0*
RCM*
IN1*
CS1*
RS1*
RT1*
AIN0, AIN1
PC
Instruction
Register
Program
Memory
(Flash)
32Kbyte
BUS
Controller
INT
1
RAM
1024byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
INT
4
Power
INT
1
INT
1
WDT
TBC
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
I2C
SDA*
SCL*
INT
1
INT
1
INT
1
PWM
1kHzTC
Capture
×2
RC-ADC
×2
INT
4
INT
5
MD0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
INT
1
BLD
PWM0*
INT
1
GPIO
12bit-ADC
VPP
SSIO
Melody
AVDD
AVSS
VREF
EA
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
DSR/CSR
SP
XT0
XT1
OSC0*
OSC1*
ECSR1~3
LR
ALU
VDD
VSS
RESET_N
ELR1~3
Display Allocation
RAM 1024Byte
Display RAM
100Byte
LCD
Driver
COM0 to COM7
LCD
BIAS
VL1, VL2, VL3, VL4
SEG0 to SEG49
C1, C2, C3, C4
Figure 1 ML610Q421 Block Diagram
5/37
FEDL610Q421-03
ML610Q421/ML610Q422
ML610Q422 Block Diagram
Figure 2 show the block diagram of the ML610Q422.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RS0*
RT0*
CRT0*
RCM*
IN1*
CS1*
RS1*
RT1*
VREF
EA
PC
Instruction
Register
Program
Memory
(Flash)
32Kbyte
BUS
Controller
INT
1
RAM
1024byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
INT
4
Power
INT
1
INT
1
WDT
TBC
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
I2C
SDA*
SCL*
INT
1
INT
1
INT
1
PWM
1kHzTC
Capture
×2
RC-ADC
×2
INT
4
VPP
SSIO
PWM0*
INT
1
Melody
INT
5
MD0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
GPIO
P20 to P22
P30 to P35
AVDD
AVSS
AIN0, AIN1
DSR/CSR
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
LR
SP
XT0
XT1
OSC0*
OSC1*
ECSR1~3
ALU
VDD
VSS
RESET_N
ELR1~3
INT
1
12bit-ADC
BLD
P40 to P47
Display Allocation
RAM 1024Byte
Display RAM
100Byte
LCD
Driver
COM0 to COM15
LCD
BIAS
VL1, VL2, VL3, VL4
SEG0 to SEG49
C1, C2, C3, C4
Figure 2 ML610Q422 Block Diagram
6/37
FEDL610Q421-03
ML610Q421/ML610Q422
PIN CONFIGURATION
90pin
60pin
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
120pin
1pin
VPP
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT0
(NC)
XT1
VSS
NMI
VL1
VL2
VL3
VL4
C1
C2
SEG49
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
P20
P21
P22
P40
P41
VSS
(NC)
AVSS
(NC)
VREF
AIN0
AIN1
AVDD
61pin
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
91pin
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
ML610Q421 TQFP120 Pin Layout
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
VDD
P11
(NC)
P10
VSS
P03
P02
P01
P00
C4
C3
31pin
30pin
Note:
The assignment of the pads P30 to P35 are not in order.
Figure 3 ML610Q421 TQFP120 Pin Configuration
7/37
FEDL610Q421-03
ML610Q421/ML610Q422
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
ML610Q422 TQFP120 Pin Layout
90pin
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
120pin
1pin
VPP
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
VSS
VDDX
XT0
(NC)
XT1
VSS
NMI
VL1
VL2
VL3
VL4
C1
C2
SEG49
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
P20
P21
P22
P40
P41
VSS
(NC)
AVSS
(NC)
VREF
AIN0
AIN1
AVDD
60pin
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
91pin
61pin
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
VDD
P11
(NC)
P10
VSS
P03
P02
P01
P00
C4
C3
31pin
30pin
Note:
The assignment of the pads P30 to P35 are not in order.
Figure 4 ML610Q422 TQFP120 Pin Configuration
8/37
FEDL610Q421-03
ML610Q421/ML610Q422
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
ML610Q421 Chip Pin Layout & Dimension
SEG49
89
58
SEG18
COM0
90
57
SEG17
COM1
91
56
SEG16
COM2
92
55
SEG15
COM3
93
54
SEG14
COM4
94
53
SEG13
COM5
95
52
SEG12
COM6
96
51
SEG11
COM7
97
50
SEG10
PA0
98
49
SEG9
PA1
99
48
SEG8
PA2
100
47
SEG7
PA3
101
46
SEG6
PA4
102
45
SEG5
PA5
103
44
SEG4
PA6
104
43
SEG3
PA7
105
42
SEG2
P20/LED0
106
41
SEG1
40
SEG0
P21/LED1
107
P22/LED2
108
39
VDD
P40/SDA
109
38
P11
P41/SCL
110
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
P47/RT1
P30/IN0
P31/CS0
P34/RCT0
P32/RS0
P33/RT0
P35/RCM
TEST
VDD
VDDL
Vss
VDDX
XT0
XT1
Vss
NMI
VL1
VL2
VL3
VL4
C1
C2
116
P46/RS1
AVDD
6
115
P45/CS1
AIN1
5
P02
P44/IN1
P03
34
4
35
114
P43
113
AIN0
3
VREF
2
Vss
P42
P10
36
1
37
112
VPP
111
RESET_N
Vss
AVSS
33
P01
32
P00
31
C4
30
C3
3.02mm
2.98mm
Note:
The assignment of the pads P30 to P35 are not in order.
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
2.98 mm × 3.02 mm
116 pins
80 µm
70 µm × 70 µm
350 µm
VSS level
Figure 5 ML610Q421 Chip Layout & Dimension
9/37
FEDL610Q421-03
ML610Q421/ML610Q422
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
ML610Q422 Chip Pin Layout & Dimension
SEG49
89
58
SEG18
COM0
90
57
SEG17
COM1
91
56
SEG16
COM2
92
55
SEG15
COM3
93
54
SEG14
COM4
94
53
SEG13
COM5
95
52
SEG12
COM6
96
51
SEG11
COM7
97
50
SEG10
COM8
98
49
SEG9
COM9
99
48
SEG8
COM10
100
47
SEG7
COM11
101
46
SEG6
COM12
102
45
SEG5
COM13
103
44
SEG4
COM14
104
43
SEG3
COM15
105
42
SEG2
P20/LED0
106
41
SEG1
40
SEG0
P21/LED1
107
P22/LED2
108
39
VDD
P40/SDA
109
38
P11
P41/SCL
110
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
P47/RT1
P30/IN0
P31/CS0
P34/RCT0
P32/RS0
P33/RT0
P35/RCM
TEST
VDD
VDDL
Vss
VDDX
XT0
XT1
Vss
NMI
VL1
VL2
VL3
VL4
C1
C2
116
P46/RS1
AVDD
6
115
P45/CS1
AIN1
5
P02
P44/IN1
P03
34
4
35
114
P43
113
AIN0
3
VREF
2
Vss
P42
P10
36
1
37
112
VPP
111
RESET_N
Vss
AVSS
33
P01
32
P00
31
C4
30
C3
3.02mm
2.98mm
Note:
The assignment of the pads P30 to P35 are not in order.
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
2.98 mm × 3.02 mm
116 pins
80 µm
70 µm × 70 µm
350 µm
VSS level
Figure 6 ML610Q422 Chip Layout & Dimension
10/37
FEDL610Q421-03
ML610Q421/ML610Q422
PAD COORDINATES
ML610Q421 Pad Coordinates
Table 1 ML610Q421 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VPP
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
Vss
VDDX
XT0
XT1
Vss
NMI
VL1
VL2
VL3
VL4
C1
C2
C3
C4
P00
P01
P02
P03
Vss
P10
P11
VDD
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
-1240
-1160
-1080
-1000
-920
-840
-760
-680
-600
-520
-440
-360
-280
-200
-120
-40
40
120
200
360
520
600
680
840
920
1000
1080
1160
1240
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1240
-1160
-1040
-960
-880
-800
-660
-580
-420
-340
-240
-160
-80
0
80
160
240
320
400
480
560
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
SEG40
SEG41
SEG42
SEG43
SEG44
SEG45
SEG46
SEG47
SEG48
SEG49
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
PA0
PA1
PA2
1384
1384
1384
1384
1384
1384
1384
1384
1160
1080
1000
920
840
760
680
600
520
440
360
280
200
120
40
-40
-120
-200
-280
-360
-440
-520
-600
-680
-760
-840
-920
-1000
-1080
-1160
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
640
720
800
880
960
1040
1120
1200
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1200
1120
1040
960
880
800
720
640
560
480
400
320
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
PA3
PA4
PA5
PA6
PA7
P20
P21
P22
P40
P41
Vss
AVss
VREF
AIN0
AIN1
AVDD
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
240
160
80
0
-80
-200
-280
-360
-440
-520
-600
-680
-840
-920
-1092
-1172
11/37
FEDL610Q421-03
ML610Q421/ML610Q422
ML610Q422 Pad Coordinates
Table 2 ML610Q422 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VPP
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P34
P32
P33
P35
TEST
VDD
VDDL
Vss
VDDX
XT0
XT1
Vss
NMI
VL1
VL2
VL3
VL4
C1
C2
C3
C4
P00
P01
P02
P03
Vss
P10
P11
VDD
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
-1240
-1160
-1080
-1000
-920
-840
-760
-680
-600
-520
-440
-360
-280
-200
-120
-40
40
120
200
360
520
600
680
840
920
1000
1080
1160
1240
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
1384
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1404
-1240
-1160
-1040
-960
-880
-800
-660
-580
-420
-340
-240
-160
-80
0
80
160
240
320
400
480
560
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
SEG40
SEG41
SEG42
SEG43
SEG44
SEG45
SEG46
SEG47
SEG48
SEG49
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
1384
1384
1384
1384
1384
1384
1384
1384
1160
1080
1000
920
840
760
680
600
520
440
360
280
200
120
40
-40
-120
-200
-280
-360
-440
-520
-600
-680
-760
-840
-920
-1000
-1080
-1160
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
640
720
800
880
960
1040
1120
1200
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1404
1200
1120
1040
960
880
800
720
640
560
480
400
320
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
COM11
COM12
COM13
COM14
COM15
P20
P21
P22
P40
P41
Vss
AVss
VREF
AIN0
AIN1
AVDD
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
-1384
240
160
80
0
-80
-200
-280
-360
-440
-520
-600
-680
-840
-920
-1092
-1172
12/37
FEDL610Q421-03
ML610Q421/ML610Q422
PIN LIST
PAD No.
Primary function
Q422 Q421 Pin name
18,22, 18,22,
36,111 37,111
16,39 16,39
17
17
19
19
1
1
112
112
116
116
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
15
15
2
2
20
20
21
21
113
113
Vss
I/O
Function

Negative power
supply pin
Positive power supply
pin
Power supply pin for
VDDL
 internal logic
(internally generated)
Power supply pin for
VDDX
 low-speed oscillation
(internally generated)
Power supply pin for
VPP

Flash ROM
Negative power
supply pin for
AVSS
 successive
approximation type
ADC
Positive power supply
pin for successive
AVDD

approximation type
ADC
Power supply pin for
VL1
 LCD bias (internally
generated)
Power supply pin for
VL2
 LCD bias (internally
generated)
Power supply pin for
VL3
 LCD bias (internally
generated)
Power supply pin for
VL4
 LCD bias (internally
generated)
Capacitor connection
C1
 pin for LCD bias
generation
Capacitor connection
C2
 pin for LCD bias
generation
Capacitor connection
C3
 pin for LCD bias
generation
Capacitor connection
C4
 pin for LCD bias
generation
Input/output pin for
TEST
I/O
testing
RESET_N I Reset input pin
Low-speed clock
XT0
I
oscillation pin
Low-speed clock
XT1
O
oscillation pin
Reference power
supply pin for
VREF
 successive
approximation type
ADC
VDD

Secondary function
Tertiary function
Pin name
I/O
Function
Pin name I/O
Function
























































































































13/37
FEDL610Q421-03
ML610Q421/ML610Q422
PAD No.
Primary function
Q422 Q421 Pin name
I/O
Function
Successive
approximation type
ADC input
Successive
approximation type
ADC input
Non-maskable
interrupt pin
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name I/O
Function


















114
114
AIN0
I
115
115
AIN1
I
23
23
NMI
I
32
32
P00/
EXI0/
CAP0
I
Input port, External
interrupt 0, Capture 0
input






33
33
P01/
EXI1/
CAP1
I
Input port, External
interrupt 1, Capture 1
input






34
34
P02/
EXI2/
RXD0
I
Input port, External
interrupt 2, UART0
receive






35
35
P03/
EXI3
I
Input port, External
interrupt 3






37
37
P10
I
Input port
OSC0
I
High-speed oscillation



OSC1
O
High-speed oscillation



Low-speed clock output



High-speed clock
output
Melody output
RC type ADC0
oscillation input pin












PWM0
O









SIN0
I
38
38
P11
I
Input port
106
106
P20/
LED0
O
Output port
LSCLK
O
107
107
P21/LED1
O
Output port
OUTCLK
O
108
108
P22/LED2
O
Output port
MD0
O
9
9
P30
I/O Input/output port
IN0
I
10
10
P31
I/O Input/output port
CS0
O
11
11
P34
I/O Input/output port
RCT0
O
12
12
P32
I/O Input/output port
RS0
O
13
13
P33
I/O Input/output port
RT0
O
14
14
P35
I/O Input/output port
RCM
O
109
109
P40
I/O Input/output port
I/O Input/output port
SDA
I/O
RC type ADC0
resistor/capacitor
sensor connection pin
RC type ADC0
reference resistor
connection pin
RC type ADC0 resistor
sensor connection pin
RC type ADC
oscillation monitor
I2C data input/output
I/O
I2C clock input/output
RC type ADC0
reference capacitor
connection pin
PWM output
SSIO data input
P42
RXD0
I
UART data input
SOUT0
I/O SSIO synchronous clock
SSIO data output
I
P43
TXD0
O
UART data output
PWM0
O
PWM output
IN1
I
RC type ADC1
oscillation input pin
SIN0
I
SSIO0 data input
CS1
O
SCK0
I/O
SSIO0 synchronous
clock
I/O Input/output port
RS1
O
SOUT0
O
SSIO0 data output
P47
I/O Input/output port
RT1
O



98
PA0






99
PA1
I/O Input/output port
I/O Input/output port






100
PA2






101
PA3
I/O Input/output port
I/O Input/output port






102
PA4
I/O Input/output port





110
110
P41
3
3
4
4
5
5
6
6
7
7
P46
8
8

I/O Input/output port
I/O Input/output port
Input/output port,
P44/
Timer 0/Timer 2/
I/O
PWM0 external clock
T02P0CK
input
Input/output port,
P45/
I/O Timer 1/Timer 3
T13P1CK
external clock input
SCL
RC type ADC1
reference capacitor
connection pin
RC type ADC1
reference resistor
connection pin
RC type ADC1 resistor
sensor connection pin





SCK0
14/37
FEDL610Q421-03
ML610Q421/ML610Q422
PAD No.
Primary function
Q422 Q421 Pin name
I/O
Function
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name I/O
I/O Input/output port
I/O Input/output port
Function






































95
95
COM5
O
LCD common pin


96
96
COM6
O
LCD common pin












97
97
COM7
O
LCD common pin






98

COM8
O
LCD common pin






99

COM9
O
LCD common pin






100

COM10
O
LCD common pin






101

COM11
O
LCD common pin






102

COM12
O
LCD common pin






103

COM13
O
LCD common pin






104

COM14
O
LCD common pin






105

COM15
O
LCD common pin






40
40
SEG0
O
LCD segment pin






41
41
SEG1
O
LCD segment pin






42
42
SEG2
O
LCD segment pin






43
43
SEG3
O
LCD segment pin






44
44
SEG4
O
LCD segment pin







103
PA5

104
PA6

105
PA7
90
90
COM0
I/O Input/output port
O LCD common pin
91
91
COM1
O
LCD common pin


92
92
COM2
O
LCD common pin


93
93
COM3
O
LCD common pin


94
94
COM4
O
LCD common pin


45
45
SEG5
O
LCD segment pin






46
46
SEG6
O
LCD segment pin






47
47
SEG7
O
LCD segment pin






48
48
SEG8
O
LCD segment pin






49
49
SEG9
O
LCD segment pin






50
50
SEG10
O
LCD segment pin






51
51
SEG11
O
LCD segment pin






52
52
SEG12
O
LCD segment pin






53
53
SEG13
O
LCD segment pin






54
54
SEG14
O
LCD segment pin






55
55
SEG15
O
LCD segment pin






56
56
SEG16
O
LCD segment pin






57
57
SEG17
O
LCD segment pin






58
58
SEG18
O
LCD segment pin






59
59
SEG19
O
LCD segment pin






60
60
SEG20
O
LCD segment pin






61
61
SEG21
O
LCD segment pin






62
62
SEG22
O
LCD segment pin






63
63
SEG23
O
LCD segment pin






64
64
SEG24
O
LCD segment pin






65
65
SEG25
O
LCD segment pin






66
66
SEG26
O
LCD segment pin






67
67
SEG27
O
LCD segment pin






68
68
SEG28
O
LCD segment pin






69
69
SEG29
O
LCD segment pin






70
70
SEG30
O
LCD segment pin






71
71
SEG31
O
LCD segment pin






72
72
SEG32
O
LCD segment pin






73
73
SEG33
O
LCD segment pin






74
74
SEG34
O
LCD segment pin






75
75
SEG35
O
LCD segment pin






15/37
FEDL610Q421-03
ML610Q421/ML610Q422
PAD No.
Primary function
Q422 Q421 Pin name
I/O
Function
Secondary function
Pin name
I/O
Function
Tertiary function
Pin name I/O
Function
76
76
SEG36
O
LCD segment pin






77
77
SEG37
O
LCD segment pin






78
78
SEG38
O
LCD segment pin






79
79
SEG39
O
LCD segment pin






80
80
SEG40
O
LCD segment pin






81
81
SEG41
O
LCD segment pin






82
82
SEG42
O
LCD segment pin






83
83
SEG43
O
LCD segment pin






84
84
SEG44
O
LCD segment pin






85
85
SEG45
O
LCD segment pin






86
86
SEG46
O
LCD segment pin






87
87
SEG47
O
LCD segment pin






88
88
SEG48
O
LCD segment pin






89
89
SEG49
O
LCD segment pin






16/37
FEDL610Q421-03
ML610Q421/ML610Q422
PIN DESCRIPTION
Pin name
I/O
Description
Primary/
Secondary/
Tertiary
Logic
—
Negative
—
—
—
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
System
Reset input pin. When this pin is set to a “L” level, system reset mode is
set and the internal section is initialized. When this pin is set to a “H” level
subsequently, program execution starts. A pull-up resistor is internally
connected.
XT0
I Crystal connection pin for low-speed clock.
A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to
XT1
O this pin. Capacitors CDL and CGL are connected across this pin and VSS
as required.
OSC0
I Crystal/ceramic connection pin for high-speed clock.
A crystal or ceramic is connected to this pin (4.1 MHz max.). Capacitors
CDH and CGH (see measuring circuit 1) are connected across this pin
OSC1
O and VSS.
This pin is used as the secondary function of the P10 pin(OSC0) and P11
pin(OSC1).
LSCLK
O Low-speed clock output pin. This pin is used as the secondary function of
the P20 pin.
OUTCLK
O High-speed clock output pin. This pin is used as the secondary function of
the P21 pin.
General-purpose input port
RESET_N
I
General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P10-P11
I General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose output port
P20-P22
O General-purpose output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose input/output port
P30-P35
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P40-P47
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
PA0-PA7
I/O General-purpose input/output port.
These pins are for the ML610Q421, but are not provided in the
ML610Q422.
P00-P03
I
17/37
FEDL610Q421-03
ML610Q421/ML610Q422
Pin name
Primary/
Secondary/
Tertiary
Logic
Secondary
Positive
Primary/
Secondary
Positive
Secondary
Positive
Secondary
Positive
I/O Synchronous serial clock input/output pin. This pin is used as the tertiary
function of the P41 or P45 pin.
I Synchronous serial data input pin. This pin is used as the tertiary function
of the P40 or P44 pin.
O Synchronous serial data output pin. This pin is used as the tertiary
function of the P42 or P46 pin.
Tertiary
—
Tertiary
Positive
Tertiary
Positive
PWM0 output pin. This pin is used as the tertiary function of the P43 or
P34 pin.
PWM0 external clock input pin. This pin is used as the primary function of
the P44 pin.
Tertiary
Positive
Primary
—
External non-maskable interrupt input pin. An interrupt is generated on
both edges.
External maskable interrupt input pins. Interrupt enable and edge
selection can be performed for each bit by software. These pins are used
as the primary functions of the P00-P03 pins.
Primary
Positive/
negative
Positive/
negative
Capture trigger input pins. The value of the time base counter is captured
in the register synchronously with the interrupt edge selected by software.
These pins are used as the primary functions of the P00 pin(CAP0) and
P01 pin(CAP1).
Primary
External clock input pin used for both Timer 0 and Timer 2. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P44 pin.
External clock input pin used for both Timer 1 and Timer 3. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P45 pin.
Primary
—
Primary
—
I/O
UART
TXD0
O
RXD0
I
Description
UART data output pin. This pin is used as the secondary function of the
P43 pin.
UART data input pin. This pin is used as the secondary function of the
P42 or the primary function of the P02 pin.
2
I C bus interface
2
SDA
I/O I C data input/output pin. This pin is used as the secondary function of the
P40 pin. This pin has an NMOS open drain output. When using this pin as
2
a function of the I C, externally connect a pull-up resistor.
2
SCL
O I C clock output pin. This pin is used as the secondary function of the P41
pin. This pin has an NMOS open drain output. When using this pin as a
2
function of the I C, externally connect a pull-up resistor.
Synchronous serial (SSIO)
SCK0
SIN0
SOUT0
PWM
PWM0
T02P0CK
O
O
External interrupt
NMI
I
EXI0-3
I
Capture
CAP0
I
CAP1
I
Timer
T02P0CK
I
T13P1CK
I
Melody
MD0
O
Melody/buzzer signal output pin. This pin is used as the secondary
function of the P22 pin.
LED drive
LED0-2
O
Nch open drain output pins to drive LED.
Primary
Primary
Positive/
negative
Positive/
negative
Secondary Positive/
negative
Primary
Positive/
negative
18/37
FEDL610Q421-03
ML610Q421/ML610Q422
Pin name
Primary/
Secondary/
Tertiary
Logic
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
Secondary
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
I/O Input/output pin for testing. A pull-down resistor is internally connected.
—
—
—
—
—
—
—
—
—
—
—
—
I/O
Description
RC oscillation type A/D converter
IN0
I Channel 0 oscillation input pin. This pin is used as the secondary function
of the P30 pin.
CS0
O Channel 0 reference capacitor connection pin. This pin is used as the
secondary function of the P31 pin.
RS0
O This pin is used as the secondary function of the P32 pin which is the
reference resistor connection pin of Channel 0.
RT0
O Resistor sensor connection pin of Channel 0 for measurement. This pin is
used as the secondary function of the P34 pin.
CRT0
O Resistor/capacitor sensor connection pin of Channel 0 for measurement.
This pin is used as the secondary function of the P33 pin.
RCM
O RC oscillation monitor pin. This pin is used as the secondary function of
the P35 pin.
IN1
I Oscillation input pin of Channel 1. This pin is used as the secondary
function of the P44 pin.
CS1
O Reference capacitor connection pin of Channel 1. This pin is used as the
secondary function of the P45 pin.
RS1
O Reference resistor connection pin of Channel 1. This pin is used as the
secondary function of the P46 pin.
RT1
O Resistor sensor connection pin for measurement of Channel 1. This pin is
used as the secondary function of the P47 pin.
Successive approximation type A/D converter
AVSS
— Negative power supply pin for successive approximation type A/D
converter.
AVDD
— Positive power supply pin for successive approximation type A/D
converter.
VREF
— Reference power supply pin for successive approximation type A/D
converter.
AIN0
I Channel 0 analog input for successive approximation type A/D converter.
AIN1
I Channel 1 analog input for successive approximation type A/D converter.
LCD drive signal
COM0-7
O Common output pins.
COM8-15
O Common output pins.
These pins are for the ML610Q422, but are not provided in the
ML610Q421.
SEG0-49
O Segment output pin.
LCD driver power supply
VL1
— Power supply pins for LCD bias (internally generated). Capacitors Ca, Cb,
VL2
— Cc, and Cd (see measuring circuit 1) are connected between VSS and VL1,
VL3
— VL2, VL3, and VL4, respectively.
VL4
—
C1
— Power supply pins for LCD bias (internally generated). Capacitors C12
C2
— and C34 (see measuring circuit 1) are connected between C1 and C2 and
C3
— between C3 and C4, respectively.
C4
For testing
TEST
Power supply
VSS
VDD
VDDL
—
—
—
VDDX
—
VPP
—
Negative power supply pin.
Positive power supply pin.
Positive power supply pin (internally generated) for internal logic.
Capacitors CL0 and CL1 (see measuring circuit 1) are connected between
this pin and VSS.
Plus-side power supply pin (internally generated) for low-speed oscillation.
Capacitor Cx (see measuring circuit 1) is connected between this pin and
VSS.
Power supply pin for programming Flash ROM. A pull-up resistor is
internally connected.
19/37
FEDL610Q421-03
ML610Q421/ML610Q422
TERMINATION OF UNUSED PINS
Table 3 shows methods of terminating the unused pins.
Table 3
Pin
VPP
AVDD
AVSS
VREF
AIN0, AIN1
VL1, VL2, VL3, VL4
C1, C2, C3, C4
RESET_N
TEST
NMI
P00 to P03
P10 to P11
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
COM0 to 15
SEG0 to 49
Termination of Unused Pins
Recommended pin termination
Open
VSS
VSS
VSS
Open
Open
Open
Open
Open
Open
VDD or VSS
VDD
Open
Open
Open
Open
Open
Open
Note:
It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or
the output mode since the supply current may become excessively large if the pins are left open in the high impedance input
setting.
20/37
FEDL610Q421-03
ML610Q421/ML610Q422
ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
(VSS = AVSS = 0V)
Parameter
Symbol
Condition
Rating
Unit
Power supply voltage 1
VDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 2
AVDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 3
VPP
Ta = 25°C
−0.3 to +9.5
V
Power supply voltage 4
VDDL
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 5
VDDX
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 6
VL1
Ta = 25°C
−0.3 to +1.75
V
Power supply voltage 7
VL2
Ta = 25°C
−0.3 to +3.5
V
Power supply voltage 8
VL3
Ta = 25°C
−0.3 to +5.25
V
Power supply voltage 9
VL4
Ta = 25°C
−0.3 to +7.0
V
Input voltage
VIN
Ta = 25°C
−0.3 to VDD+0.3
V
Output voltage
VOUT
Ta = 25°C
−0.3 to VDD+0.3
V
Output current 1
IOUT1
Port3–A, Ta = 25°C
−12 to +11
mA
Output current 2
IOUT2
Port2, Ta = 25°C
−12 to +20
mA
Power dissipation
PD
Ta = 25°C
1.25
W
Storage temperature
TSTG

−55 to +150
°C
RECOMMENDED OPERATING CONDITIONS
(VSS = AVSS = 0V)
Parameter
Operating temperature
Operating voltage
Operating frequency (CPU)
Capacitor externally connected to
VDDL pin
Capacitor externally connected to
VDDX pin
Capacitors externally connected to
VL1, 2, 3, 4 pins
Capacitors externally connected
across C1 and C2 pins and across
C3 and C4 pins
Symbol
Condition
Range
Unit
TOP
ML610Q421, ML610Q422
ML610Q421P, ML610Q422P
−20 to +70
−40 to +85
°C
VDD

1.1 to 3.6
AVDD

2.2 to 3.6
VDD = 1.1 to 3.6V
30k to 36k
fOP
V
VDD = 1.3 to 3.6V
30k to 650k
VDD = 1.8 to 3.6V
30k to 4.2M
Hz
CL0

1.0±30%
CL1

0.1±30%
CX

0.1±30%
µF
Ca, b, c, d

1.0±30%
µF
C12, C34

1.0±30%
µF
µF
21/37
FEDL610Q421-03
ML610Q421/ML610Q422
CLOCK GENERATION CIRCUIT OPERATING CONDITIONS
(VSS = 0V)
Parameter
Low-speed crystal oscillation
frequency
Recommended equivalent series
resistance value of low-speed
crystal oscillation
Low-speed crystal oscillation
*1
external capacitor
Min.
Rating
Typ.
Max.


32.768k

Hz
RL



40k
Ω

0

CDL/CGL
CL=6pF of
crystal
*2
oscillation
CL=9pF of
crystal
oscillation
CL=12pF of
crystal
oscillation

6


12

Symbol
Condition
fXTL
Unit
pF
High-speed crystal/ceramic
fXTH


4.0M / 4.096M

Hz
oscillation frequency
High-speed crystal oscillation
CDH


24

pF
external capacitor
CGH


24

*1
: The external CDL and CGL need to be adjusted in consideration of variation of internal loading capacitance CD and CG, and
other additional capacitance such as PCB layout.
*2
: When using a crystal oscillator CL = 6pF, there is a possibility that can not be adjusted by external CDL and CGL.
OPERATING CONDITIONS OF FLASH ROM
Parameter
Operating temperature
Operating voltage
Write cycles
Data retention
Symbol
TOP
VDD
VDDL
VPP
CEP
YDR
Condition
At write/erase
*1
At write/erase
*1
At write/erase
*1
At write/erase


Range
0 to +40
2.75 to 3.6
2.5 to 2.75
7.7 to 8.3
80
10
(VSS = AVSS = 0V)
Unit
°C
V
cycles
years
*1
: Those voltages must be supplied to VDDL pin and VPP pin when programming and eraseing Flash ROM.
VPP pin has an internal pulldown resister.
22/37
FEDL610Q421-03
ML610Q421/ML610Q422
DC CHARACTERISTICS (1/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (1/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Typ.
Typ.
Ta = 25°C
500
kHz
−10%
+10%
VDD = 1.3
Typ.
Ta = −20 to
Typ.
500kHz RC oscillation
500
kHz
fRC
frequency
to 3.6V
+70°C
−25%
+25%
Typ.
Ta = −40 to
Typ.
500
kHz
+85°C
−45%
+45%
LSCLK = 32.768kHz
4
PLL oscillation frequency*
fPLL
-2.5%
8.192
+2.5%
MHz
VDD = 1.8 to 3.6V
Low-speed crystal oscillation
TXTL


0.3
2
s
2
start time*
500kHz RC oscillation start
1
TRC


50
500
µs
time
High-speed crystal oscillation
TXTH
VDD = 1.8 to 3.6V
―
2
20
3
start time*
PLL oscillation start time
TPLL
VDD = 1.8 to 3.6V
―
1
10
ms
Low-speed oscillation stop
TSTOP

0.2
3
20
*1
detect time
Reset pulse width
PRST

200


µs
Reset noise elimination
PNRST



0.3
pulse width
Power-on reset activation
TPOR



10
ms
power rise time
1
* : When low-speed crystal oscillation stops for a duration more than the low-speed oscillation stop detect time, the system is
reset to shift to system reset mode.
2
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
3
* : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).
4
* : 1024 clock average.
[Reset pulse width]
VIL1
RESET_N
VIL1
PRST
Reset pulse width (PRST)
[Power-on reset activation power rise time]
0.9xVDD
VDD
0.1xVDD
TPOR
Power-on reset activation power rise time (TPOR )
23/37
FEDL610Q421-03
ML610Q421/ML610Q422
DC CHARACTERISTICS (2/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (2/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
CN4–0 = 00H
0.89
0.94
0.99
CN4–0 = 01H
0.91
0.96
1.01
CN4–0 = 02H
0.93
0.98
1.03
CN4–0 = 03H
0.95
1.00
1.05
CN4–0 = 04H
0.97
1.02
1.07
CN4–0 = 05H
0.99
1.04
1.09
CN4–0 = 06H
1.01
1.06
1.11
CN4–0 = 07H
1.03
1.08
1.13
CN4–0 = 08H
1.05
1.10
1.15
CN4–0 = 09H
1.07
1.12
1.17
CN4–0 = 0AH
1.09
1.14
1.19
CN4–0 = 0BH
1.11
1.16
1.21
CN4–0 = 0CH
1.13
1.18
1.23
CN4–0 = 0DH
1.15
1.20
1.25
CN4–0 = 0EH
1.17
1.22
1.27
CN4–0 = 0FH
1.19
1.24
1.29
VDD = 3.0V,
VL1 voltage
VL1
V
Tj = 25°C
CN4–0 = 10H
1.21
1.26
1.31
CN4–0 = 11H
1.23
1.28
1.33
CN4–0 = 12H
1.25
1.30
1.35
CN4–0 = 13H
1.27
1.32
1.37
*1
CN4–0 = 14H
1.29
1.34
1.39
*1
CN4–0 = 15H
1.31
1.36
1.41
1
*1
CN4–0 = 16H
1.33
1.38
1.43
*1
CN4–0 = 17H
1.35
1.40
1.45
*1
CN4–0 = 18H
1.37
1.42
1.47
*1
CN4–0 = 19H
1.39
1.44
1.49
*1
CN4–0 = 1AH
1.41
1.46
1.51
*1
CN4–0 = 1BH
1.43
1.48
1.53
*1
CN4–0 = 1CH
1.45
1.50
1.55
*1
CN4–0 = 1DH
1.47
1.52
1.57
*1
CN4–0 = 1EH
1.49
1.54
1.59
*1
CN4–0 = 1FH
1.51
1.56
1.61
VL1 temperature
∆VL1
VDD = 3.0V

−1.5

mV/°C
deviation
VL1 voltage
∆VL1
VDD = 1.3 to 3.6V

5
20
mV/V
dependency
VDD = 3.0V, Tj = 25°C,
Typ.
Typ.
*
VL2 voltage 2
VL2
VL1×2
500kΩ load (VL4−VSS)
−10%
+4%
1/3 bias
VL1×2
Typ.
Typ.
VDD = 3.0V,
*
VL3 voltage 2
VL3
V
−10%
+4%
1/4 bias
VL1×3
Tj = 25°C
500kΩ load
1/3 bias
VL1×3
Typ.
Typ.
*
VL4 voltage 2
VL4
(VL4−VSS)
−10%
+5%
1/4 bias
VL1×4
LCD bias voltage
TBIAS



600
ms
generation time
1
* : When using 1/4 bias, the VL1 voltage is set to typ. 1.32 V (same voltage as in CN4–0 = 13H).
2
* : Boost clock is 2kHz(initial) for the bias generation. C12=C34=1uF.
24/37
FEDL610Q421-03
ML610Q421/ML610Q422
DC CHARACTERISTICS (3/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (3/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min. Typ. Max.
LD2–0 = 0H
1.35
LD2–0 = 1H
1.4
LD2–0 = 2H
1.45
LD2–0 = 3H
1.5
LD2–0 = 4H
1.6
LD2–0 = 5H
1.7
LD2–0 = 6H
1.8
LD2–0 = 7H
1.9
Typ.
Typ.
BLD threshold
V
VDD = 1.35 to 3.6V
VBLD
voltage
−2%
+2%
LD2–0 = 8H
2.0
LD2–0 = 9H
2.1
LD2–0 = 0AH
2.2
LD2–0 = 0BH
2.3
LD2–0 = 0CH
2.4
LD2–0 = 0DH
2.5
LD2–0 = 0EH
2.7
LD2–0 = 0FH
2.9
BLD threshold
voltage
∆VBLD
VDD = 1.35 to 3.6V

0

%/°C
temperature
deviation
Supply current 1
Supply current 2
Supply current 3
Supply current 4
Supply current 5
IDD1
IDD2
IDD3
IDD4
IDD5
CPU: In STOP state.
Low-speed/high-speed
oscillation: stopped.
Ta = 25°C

0.15
0.50
Ta = -20 to +70°C


2.50
Ta = -40 to +85°C


5.00
CPU: In HALT state (LTBC,
3 5
WDT: Operating* * ).
High-speed oscillation: Stopped.
LCD/BIAS circuits: Stopped.
CPU: In 32.768kHz operating
1 3
state.* *
High-speed oscillation: Stopped.
2
LCD/BIAS circuits: Operating.*
Ta = 25°C

0.5
1.3
Ta = -20 to +70°C


3.5
Ta = -40 to +85°C


6.0
Ta = 25°C

5
7
Ta = -20 to +70°C


12
Ta = -40 to +85°C


16
CPU: In 500kHz CR operating
state.
2
LCD/BIAS circuits: Operating.*
Ta = 25°C

70
85
Ta = -20 to +70°C


100
Ta = -40 to +85°C


120
CPU: In 4.096MHz operating
2 3
state.* *
PLL: In oscillating state.
2
LCD/BIAS circuits: Operating. *
VDD = 1.8 to 3.6V
Ta = 25°C

0.8
1.0
Ta = -20 to +70°C


1.2
Ta = -40 to +85°C


1.2
µA
1
µA
µA
µA
mA
CPU: In 4.096MHz operating
Ta = 25°C

1.5
1.6
2
state.*
3 4
PLL: In oscillating state. * *
Supply current 6
Ta = -20 to +70°C
IDD6


2.5
mA
A/D: In operating state.
2
LCD/BIAS circuits: Operating. *
Ta = -40 to +85°C


2.5
VDD = AVDD = 3.0V
1
* : When the CPU operating rate is 100% (No HALT state).
2
* : All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz, Bias voltage multiplying
clock: 1/128 LSCLK (256Hz)
3
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
4
* : Use 4.096MHz Crystal Oscillator CHC49SFWB (Kyocera).
5
* : Significant bits of BLKCON0~BLKCON4 registers are all “1”.
25/37
FEDL610Q421-03
ML610Q421/ML610Q422
DC CHARACTERISTICS (4/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (4/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
Output voltage 1
nd
(P20–P22/2
function is
selected)
(P30–P36)
(P40–P47)
*1
(PA0–PA7)
VOH1
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VOL1
IOL1 = +0.5mA, VDD = 1.8 to 3.6V
IOL1 = +0.1mA, VDD = 1.3 to 3.6V
IOL1 = +0.03mA, VDD = 1.1 to 3.6V
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
Output voltage 2
nd
(P20–P22/2
function is Not
selected)
VOH2
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VOL2
Output voltage 3
(P40–P41)
Output voltage 4
(COM0–15)
(SEG0–49)
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
VOL3
IOL2 = +5mA, VDD = 1.8 to 3.6V
IOL3 = +3mA, VDD = 2.0 to 3.6V
2
(when I C mode is selected)
VDD
−0.5
VDD
−0.3
VDD
−0.3



VDD
−0.5
VDD
−0.3
VDD
−0.3










0.5
0.5
0.3







0.5


0.4
VOH4
IOH4 = −0.2mA, VL1=1.2V
VL4
−0.2


VOMH4
IOMH4 = +0.2mA, VL1=1.2V


VL3
+0.2
VOMH4S
IOMH4S = −0.2mA, VL1=1.2V
VL3
−0.2


VOM4
IOM4 = +0.2mA, VL1=1.2V


VL2
+0.2
VOM4S
IOM4S = −0.2mA, VL1=1.2V
VL2
−0.2


VOML4
IOML4 = +0.2mA, VL1=1.2V


VL1
+0.2
VOML4S
IOML4S = −0.2mA, VL1=1.2V


IOL4 = +0.2mA, VL1=1.2V
VL1
−0.2


0.2
VOH = VDD (in high-impedance state)


1
VOL4
Output leakage
IOOH
(P20–P22)
(P30–P35)
(P40–P47)
IOOL
*1
(PA0–PA7)
1
* : ML610Q421 only
V
2
µA
VOL = VSS (in high-impedance state)
−1

3

26/37
FEDL610Q421-03
ML610Q421/ML610Q422
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (4/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
IIH1
VIH1 = VDD
0

1
VDD = 1.8 to 3.6V
−600
−300
−20
Input current 1
(RESET_N)
IIL1
VIL1 = VSS
VDD = 1.3 to 3.6V
−600
−300
-10
VDD = 1.1 to 3.6V
−600
−300
-2
VDD = 1.8 to 3.6V
20
300
600
IIH1
VIH1 = VDD
VDD = 1.3 to 3.6V
10
300
600
Input current 1
(TEST)
VDD = 1.1 to 3.6V
2
300
600
IIL1
VIL1 = Vss
-1


µA
4
VDD = 1.8 to 3.6V
2
30
200
VIH2 = VDD
Input current 2
IIH2
VDD = 1.3 to 3.6V
0.2
30
200
(when pulled-down)
(NMI)
VDD = 1.1 to 3.6V
0.01
30
200
(P00–P03)
VDD = 1.8 to 3.6V
−200
−30
−2
(P10–P11)
VIL2 = VSS
IIL2
VDD = 1.3 to 3.6V
−200
−30
-0.2
(P30–P35)
(when pulled-up)
V
=
1.1
to
3.6V
−200
−30
-0.01
DD
(P40–P47)
*1
IIH2Z
VIH2 = VDD (in high-impedance state)


1
(PA0–PA7)
IIL2Z
VIL2 = VSS (in high-impedance state)
−1


1
* : ML610Q421 only
DC CHARACTERISTICS (5/5))
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified) (5/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Input voltage 1
(RESET_N)
(TEST)
(NMI)
(P00–P03)
(P10–P11)
(P31–P35)
(P40–P43)
(P45–P47)
*1
(PA0–PA7)
Input voltage 2
(P30, P44)
Input pin
capacitance
(NMI)
(P00–P03)
(P10–P11)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
1
* : ML610Q421 only
VDD = 1.3 to 3.6V
0.7
×VDD

VDD
VDD = 1.1 to 3.6V
0.7
×VDD

VDD
VDD = 1.3 to 3.6V
0

0.3
×VDD
VDD = 1.1 to 3.6V
0

0.2
×VDD
VIH2

0.7
×VDD

VDD
VIL2

0

0.3
×VDD
CIN
f = 10kHz
Vrms = 50mV
Ta = 25°C


5
VIH1
VIL1
V
5
pF

27/37
FEDL610Q421-03
ML610Q421/ML610Q422
MEASURING CIRCUITS
MEASURING CIRCUIT 1
XT0
C4
XT1
C3
C2
C34
32.768kHz crystal
CGH
P10/OSC0
C12
C1
CDH
CV:
1µF
CL0:
1µF
CL1:
0.1µF
CX:
0.1µF
Ca,Cb,Cc,Cd:
1µF
C12,C34:
1µF
CGH:
24pF
CDH:
24pF
32.768kHz crystal:
C-001R (Epson Toyocom)
4.096MHz crystal:
HC49SFWB (Kyocera)
P11/OSC1
4.096MHz
crystal
VDD AVDD VREFVDDL
VDDX VL1 VL2 VL3 VL4 VSS AVSS
A
CV
CL1 CL0 CX Ca Cb Cc Cd
MEASURING CIRCUIT 2
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
V
VL4 AVDDVREF VSSAVSS
(*1) Input logic circuit to determine the specified measuring conditions.
(*2) Measured at the specified output pins.
28/37
FEDL610Q421-03
ML610Q421/ML610Q422
MEASURING CIRCUIT 3
(*2)
VIL
Input pins
RS1
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
A
VL4 AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
MEASURING CIRCUIT 4
Input pins
Output pins
(*3)
A
VDD VDDL VDDX VL1
VL2
VL3
VL4 AVDD VREF VSSAVSS
*3: Measured at the specified output pins.
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
Waveform monitoring
MEASURING CIRCUIT 5
VL4 AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
29/37
FEDL610Q421-03
ML610Q421/ML610Q422
AC CHARACTERISTICS (External Interrupt)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Interrupt: Enabled (MIE = 1),
External interrupt disable period
TNUL
CPU: NOP operation
76.8

106.8
µs
System clock: 32.768kHz
P00–P03
(Rising-edge interrupt)
tNUL
P00–P03
(Falling-edge interrupt)
tNUL
NMI, P00–P03
(Both-edge interrupt)
tNUL
AC CHARACTERISTICS (UART)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Transmit baud rate

tTBRT

1
BRT*
1

s
1
BRT*
BRT*
1
BRT*
s
−3%
+3%
1
* : Baud rate period (including the error of the clock frequency selected) set with the UART0 baud rate register (UA0BRTL,H)
and the UART0 mode register 0 (UA0MOD0).
Receive baud rate

tRBRT
tTBRT
TXD0*
tRBRT
RXD0*
*: Indicates the secondary function of the port.
30/37
FEDL610Q421-03
ML610Q421/ML610Q422
AC CHARACTERISTICS (Synchronous Serial Port)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
2
When RC oscillation is active*
10


µs
(VDD = 1.3 to 3.6V)
SCLK input cycle
tSCYC
(slave mode)
When high-speed oscillation is
1


µs
3
active* (VDD = 1.8 to 3.6V)
SCLK output cycle
1
tSCYC


SCLK*

s
(master mode)
2
When RC oscillation is active*
4


µs
(VDD = 1.3 to 3.6V)
SCLK input pulse width
tSW
(slave mode)
When high-speed oscillation is
0.4


µs
3
active* (VDD = 1.8 to 3.6V)
1
1
1
SCLK*
SCLK*
SCLK*
SCLK output pulse width
tSW

s
(master mode)
×0.4
×0.5
×0.6
2
When RC oscillation is active*


500
(VDD = 1.3 to 3.6V)
SOUT output delay time
ns
tSD
(slave mode)
When high-speed oscillation is


240
3
active* (VDD = 1.8 to 3.6V)
2
When RC oscillation is active*


500
(VDD = 1.3 to 3.6V)
SOUT output delay time
ns
tSD
(master mode)
When high-speed oscillation is


240
3
active* (VDD = 1.8 to 3.6V)
SIN input
setup time
tSS

80


ns
(slave mode)
2
When RC oscillation is active*
500


SIN input
(VDD = 1.3 to 3.6V)
setup time
tSS
ns
When high-speed oscillation is
(master mode)
240


3
active* (VDD = 1.8 to 3.6V)
2
When RC oscillation is active*
300


(VDD = 1.3 to 3.6V)
SIN input
ns
tSH
hold time
When high-speed oscillation is
80


3
active* (VDD = 1.8 to 3.6V)
1
* : Clock period selected with S0CK3–0 of the serial port 0 mode register (SIO0MOD1)
2
* : When RC oscillation is selected with OSCM1–0 of the frequency control register (FCON0)
3
* : When Crystal/ceramic oscillation, built-in PLL oscillation, or external clock input is selected with OSCM1–0 of the frequency
control register (FCON0)
tSCYC
tSW
tSW
SCLK0*
tSD
tSD
SOUT0*
tSS
tSH
SIN0*
*: Indicates the secondary function of the port.
31/37
FEDL610Q421-03
ML610Q421/ML610Q422
AC CHARACTERISTICS (I2C Bus Interface: Standard Mode 100kHz)
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless
otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
SCL clock frequency
fSCL

0

100
kHz
SCL hold time
tHD:STA

4.0


µs
(start/restart condition)
SCL ”L” level time
tLOW

4.7


µs
SCL ”H” level time
tHIGH

4.0


µs
SCL setup time
tSU:STA

4.7


µs
(restart condition)
SDA hold time
tHD:DAT

0


µs
SDA setup time
tSU:DAT

0.25


µs
SDA setup time
tSU:STO

4.0


µs
(stop condition)
Bus-free time
tBUF

4.7


µs
AC CHARACTERISTICS (I2C Bus Interface: Fast Mode 400kHz)
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless
otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
SCL clock frequency
fSCL

0

400
kHz
SCL hold time
tHD:STA

0.6


µs
(start/restart condition)
SCL ”L” level time
tLOW

1.3


µs
SCL ”H” level time
tHIGH

0.6


µs
SCL setup time
tSU:STA

0.6


µs
(restart condition)
SDA hold time
tHD:DAT

0


µs
SDA setup time
tSU:DAT

0.1


µs
SDA setup time
tSU:STO

0.6


µs
(stop condition)
Bus-free time
tBUF

1.3


µs
Start
condition
Restart
condition
Stop
condition
P40/SDA
P41/SCL
tHD:STA
tLOW
tHIGH
tSU:STA tHD:STA
tSU:DAT
tHD:DAT
tSU:STO
tBUF
32/37
FEDL610Q421-03
ML610Q421/ML610Q422
AC CHARACTERISTICS (RC Oscillation A/D Converter)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless
otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
RS0, RS1,
Resistors for oscillation
RT0,
CS0, CT0, CS1 ≥ 740pF
1


kΩ
RT0-1,RT1
fOSC1
Resistor for oscillation = 1kΩ
209.4
330.6
435.1
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
41.29
55.27
64.16
kHz
VDD = 1.5V
fOSC3
Resistor for oscillation = 100kΩ
4.71
5.97
7.06
kHz
Kf1
RT0, RT0-1, RT1 = 1kHz
5.567
5.982
6.225

RS to RT oscillation frequency
*1
ratio
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01

VDD = 1.5V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.104
0.108
0.118

fOSC1
Resistor for oscillation = 1kΩ
407.3
486.7
594.6
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
49.76
59.28
72.76
kHz
VDD = 3.0V
fOSC3
Resistor for oscillation = 100kΩ
5.04
5.993
7.04
kHz
Kf1
RT0, RT0-1, RT1 = 1kHz
8.006
8.210
8.416

RS to RT oscillation frequency
*1
ratio
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01

VDD = 3.0V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.100
0.108
0.115

1
* : Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the
same conditions.
fOSCX(RT0-1−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
,
IN0 CS0 RCT0
(*1)
VIL
*1: Input logic circuit to
determine the specified
measuring conditions.
VDDL
fOSCX(RT1−CS1 oscillation)
fOSCX(RS1−CS1 oscillation)
VDDX
RT1
RT0, RT0-1, RT1: 1kΩ /10kΩ/100kΩ
RS0, RS1: 10kΩ
CS0, CT0, CS1: 560pF
CVR0, CVR1: 820pF
IN1 CS1 RS1 RT1
RCM
VDD
CV
RT0
RS0
RS0 RT0
Input pins
VIH
,
CVR1
RT0-1
CT0
CS0
CVR0
RS1
fOSCX(RT0−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
(x = 1, 2, 3)
CS1
Kfx =
Frequency measurement
(fOSCX)
AVDD VREFVSS AVSS
CL1 CL0 CX
Note:
- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors
and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling
capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise
around the node.
- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to
the signal.
- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved
components may affect to the A/D conversion operation by noise the components itself may have.
33/37
FEDL610Q421-03
ML610Q421/ML610Q422
Electrical Characteristics of Successive Approximation Type A/D Converter
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, Ta = −40 to +85°C for P version, unless otherwise
specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Resolution
n



12
bit
2.7V ≤ VREF ≤ 3.6V
−4

+4
Integral non-linearity error
IDL
2.2V ≤ VREF ≤ 2.7V
−6

+6
2.7V ≤ VREF ≤ 3.6V
−3

+3
Differential non-linearity error
LSB
DNL
2.2V ≤ VREF ≤ 2.7V
−5

+5
Zero-scale error
VOFF

−6

+6
Full-scale error
FSE

−6

+6
Reference voltage
VREF

2.2

AVDD
V
SACK = 0

25

(HSCLK = 375kHz to 625kHz)
Conversion time
tCONV
φ/CH
SACK = 1

112

(HSCLK = 1.5MHz to 4.2MHz)
φ: Period of high-speed clock (HSCLK)
AVDD
Reference
voltage
VREF
VDD
VDDL
10µF
1µF
A
0.1µF
−
1µF
RI≤5kΩ
+
Analog input
0.1µF
VDDX
AIN0,
AIN1
0.1µF
VSS
AVSS
34/37
FEDL610Q421-03
ML610Q421/ML610Q422
PACKAGE DIMENSIONS
(Unit: mm)
Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package
code and desired mounting conditions (reflow method, temperature and times).
35/37
FEDL610Q421-03
ML610Q421/ML610Q422
REVISION HISTORY
Document No.
FEDL610Q421-01
FEDL610Q421-02
FEDL610Q421-03
Date
Jul. 29, 2009
Dec. 3, 2010
Feb. 9, 2015
Page
Previous Current
Edition
Edition
–
–
All
3,4
–
–
All
3,4
4
4
–
22
22
23
36
37
Description
Final edition 1
Add to B version
Change header
Delete B version
Change from "Shipment" to " Product name – Supported
Function "
Add CLOCK GENERATION CIRCUIT OPERATING
CONDITIONS
Change "RESET" to " Reset pulse width (PRST)" and "
Power-on reset activation power rise time (TPOR )".
Change description in Note.
36/37
FEDL610Q421-03
ML610Q421/ML610Q422
Notes
1) The information contained herein is subject to change without notice.
2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can
break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure,
please take safety measures such as complying with the derating characteristics, implementing redundant and fire
prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for
any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate
the standard usage and operations of the Products.The peripheral conditions must be taken into account when designing
circuits for mass production.
4) The technical information specified herein is intended only to show the typical functions of the Products and examples of
application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property
rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this
document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights
owned by third parties, arising out of the use of such technical information.
5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems,
gaming/entertainment sets) as well as the applications indicated in this document.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and
consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary
communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and
power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power
control systems, and submarine repeaters.
9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the
recommended usage conditions and specifications contained herein.
10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document.
However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have
no responsibility for any damages arising from any inaccuracy or misprint of such information.
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.
For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no
responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries, you must abide by the
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US
Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.
Copyright
2008 - 2015 LAPIS Semiconductor Co., Ltd.
2-4-8 Shinyokohama, Kouhoku-ku,
Yokohama 222-8575, Japan
http://www.lapis-semi.com/en/
37/37
Similar pages