Cypress MB9AF131KBPMC-G-SNE2 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

MB9A130LB Series
32-bit ARM® Cortex®-M3
FM3 Microcontroller
The MB9A130LB Series are highly integrated 32-bit microcontrollers that dedicated for embedded controllers with low-power
consumption mode and competitive cost.
The MB9A130LB Series are based on the ARM® Cortex®-M3 Processor with on-chip Flash memory and SRAM, and has peripheral
functions such as Motor Control Timers, ADCs and Communication Interfaces (UART, CSIO, I2C).
The products which are described in this data sheet are placed into TYPE3 product categories in FM3 Family Peripheral Manual.
Features
32-bit ARM® Cortex®-M3 Core
[CSIO]
 Processor version: r2p1
 Full-duplex double buffer
 Up to 20 MHz Operation Frequency
 Built-in dedicated baud rate generator
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
 Overrun error detection function available
channel NMI (non-maskable interrupt) and
32 channels' peripheral interrupts and 8 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
management
[I2C]
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
On-chip Memories
A/D Converter (Max 8 channels)
[Flash memory]
[12-bit A/D Converter]
 Up to 128 Kbytes
 Successive Approximation type
 Read cycle: 0 wait-cycle
 Conversion time: Min. 1.0 μs
 Security function for code protection
 Priority conversion available (priority at 2 levels)
 Scanning conversion mode
[SRAM]
This series contains 8 Kbyte on-chip SRAM that is connected
to System bus of Cortex-M3 core.
 SRAM1: 8 Kbytes
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16 steps, for Priority conversion:
4 steps)
Base Timer (Max 8 channels)
Multi-function Serial Interface (Max 8 channels)
Operation mode is selectable from the followings for each
channel.
 UART
Operation mode is selectable from the followings for each
channel.
 16-bit PWM timer
 16-bit PPG timer
 16-/32-bit reload timer
 CSIO
 16-/32-bit PWC timer
 I2 C
[UART]
 Full-duplex double buffer
 Selection with or without parity supported
 Built-in dedicated baud rate generator
 External clock available as a serial clock
 Various error detection functions available (parity errors,
framing errors, and overrun errors)
Cypress Semiconductor Corporation
Document Number: 002-05671 Rev.*B
•
198 Champion Court
•
San Jose , CA 95134-1709
•
408-943-2600
Revised May 23, 2017
MB9A130LB Series
General Purpose I/O Port
Watchdog Timer (2 channels)
This series can use its pins as general purpose I/O ports when
they are not used for peripherals. Moreover, the port relocate
function is built in. It can set which I/O port the peripheral
function can be allocated.
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
 Capable of pull-up control per pin
 Capable of reading pin level directly
 Built-in the port relocate function
 Up to 52 fast general purpose I/O Ports@64 pin Package
 Some pins are 5V tolerant I/O
See List of Pin Functions and I/O Circuit Type to confirm the
corresponding pins.
Multi-function Timer
This series consists of two different watchdogs, a Hardware
watchdog and a Software watchdog.
Hardware watchdog timer is clocked by built-in Low-speed CR
oscillator. Therefore, Hardware watchdog is active in any low
power consumption mode except RTC and Stop and Deep
Standby RTC and Deep Standby Stop modes.
Clock and Reset
[Clocks]
Five clock sources (2 external oscillators, 2 built-in CR
oscillators, and Main PLL) that are dynamically selectable.
The Multi-function timer is composed of the following blocks.
 Main Clock:
4 MHz to 20 MHz
 16-bit free-run timer × 3 ch.
 Sub Clock:
32.768 kHz
 Input capture × 4 ch.
 Built-in High-speed CR Clock: 4 MHz
 Output compare × 6 ch.
 Built-in Low-speed CR Clock: 100 kHz
 A/D activation compare × 1 ch.
 Main PLL Clock
 Waveform generator × 3 ch.
 16-bit PPG timer × 3 ch.
The following function can be used to achieve the motor
control.
 PWM signal output function
 DC chopper waveform output function
 Dead time function
 Input capture function
 A/D convertor activate function
 DTIF (Motor emergency stop) interrupt function
Real-time clock (RTC)
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
00 to 99.
 Interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute) is available. This function is
also available by specifying only Year, Month, Day, Hour or
Minute.
 Timer interrupt function after set time or each set time.
 Capable of rewriting the time with continuing the time count.
 Leap year automatic count is available.
[Resets]
 Reset requests from INITX pin
 Power on reset
 Software reset
 Watchdog timers reset
 Low voltage detector reset
 Clock supervisor reset
Clock Super Visor (CSV)
Clocks generated by built-in CR oscillators are used to
supervise abnormality of the external clocks.
 If external clock failure (clock stop) is detected, reset is
asserted.
 If external frequency anomaly is detected, interrupt or reset is
asserted.
Low Voltage Detector (LVD)
This Series include 2-stage monitoring of voltage on the VCC.
When the voltage falls below the voltage has been set, Low
Voltage Detector generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
External Interrupt Controller Unit
 Up to 8 external interrupt input pins
 Include one non-maskable interrupt (NMI) input pin
Document Number: 002-05671 Rev.*B
Page 2 of 86
MB9A130LB Series
Low Power Consumption Mode
Debug
Six low power consumption modes supported.
Serial Wire JTAG Debug Port (SWJ-DP)
 Sleep
 Timer
Power Supply
Wide range voltage: VCC = 1.8 V to 5.5 V
 RTC
 Stop
 Deep Standby RTC
 Deep Standby Stop
Back up register is 16 bytes.
Document Number: 002-05671 Rev.*B
Page 3 of 86
MB9A130LB Series
Contents
1. Product Lineup .................................................................................................................................................................. 6
2. Packages ........................................................................................................................................................................... 7
3. Pin Assignment ................................................................................................................................................................. 8
4. List of Pin Functions....................................................................................................................................................... 12
5. I/O Circuit Type................................................................................................................................................................ 25
6. Handling Precautions ..................................................................................................................................................... 30
6.1
Precautions for Product Design ................................................................................................................................... 30
6.2
Precautions for Package Mounting .............................................................................................................................. 31
6.3
Precautions for Use Environment ................................................................................................................................ 32
7. Handling Devices ............................................................................................................................................................ 33
8. Block Diagram ................................................................................................................................................................. 35
9. Memory Size .................................................................................................................................................................... 36
10. Memory Map .................................................................................................................................................................... 36
11. Pin Status in Each CPU State ........................................................................................................................................ 39
12. Electrical Characteristics ............................................................................................................................................... 45
12.1 Absolute Maximum Ratings ......................................................................................................................................... 45
12.2 Recommended Operating Conditions.......................................................................................................................... 46
12.3 DC Characteristics....................................................................................................................................................... 47
12.3.1 Current Rating .............................................................................................................................................................. 47
12.3.2 Pin Characteristics ....................................................................................................................................................... 50
12.4 AC Characteristics ....................................................................................................................................................... 51
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 51
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 52
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 52
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL) .................................................. 53
12.4.5 Operating Conditions of Main PLL (In the case of using built-in High-speed CR clock for input clock of Main PLL) .... 53
12.4.6 Reset Input Characteristics .......................................................................................................................................... 54
12.4.7 Power-on Reset Timing................................................................................................................................................ 54
12.4.8 Base Timer Input Timing .............................................................................................................................................. 55
12.4.9 CSIO/UART Timing ...................................................................................................................................................... 56
12.4.10 External Input Timing ................................................................................................................................................ 64
12.4.11 I2C Timing ................................................................................................................................................................. 65
12.4.12 JTAG Timing ............................................................................................................................................................. 66
12.5 12-bit A/D Converter .................................................................................................................................................... 67
12.6 Low-Voltage Detection Characteristics ........................................................................................................................ 70
12.6.1 Low-Voltage Detection Reset ....................................................................................................................................... 70
12.6.2 Interrupt of Low-voltage Detection ............................................................................................................................... 71
12.7 Flash Memory Write/Erase Characteristics ................................................................................................................. 73
12.7.1 Write / Erase time......................................................................................................................................................... 73
12.7.2 Write cycles and data hold time ................................................................................................................................... 73
12.8 Return Time from Low-Power Consumption Mode ...................................................................................................... 74
12.8.1 Return Factor: Interrupt/WKUP .................................................................................................................................... 74
12.8.2 Return Factor: Reset .................................................................................................................................................... 76
13. Ordering Information ...................................................................................................................................................... 78
14. Package Dimensions ...................................................................................................................................................... 79
15. Major Changes ................................................................................................................................................................ 84
Document Number: 002-05671 Rev.*B
Page 4 of 86
MB9A130LB Series
Document History ................................................................................................................................................................. 85
Sales, Solutions, and Legal Information ............................................................................................................................. 86
Document Number: 002-05671 Rev.*B
Page 5 of 86
MB9A130LB Series
1. Product Lineup
Memory size
Product name
On-chip Flash
On-chip SRAM
SRAM1
MB9AF131KB/LB
MB9AF132KB/LB
64 Kbytes
8 Kbytes
128 Kbytes
8 Kbytes
MB9AF131KB
MB9AF132KB
48
MB9AF131LB
MB9AF132LB
64
Function
Product name
Pin count
CPU
Freq.
Power supply voltage range
MF Serial Interface
(UART/CSIO/I2C)
Base Timer
(PWC/ Reload timer/PWM/PPG)
A/D activation
1 ch.
compare
Input capture
4 ch.
Free-run timer
3 ch.
MFOutput
Timer
6 ch.
compare
Waveform
3 ch.
generator
PPG
3 ch.
Real-time clock
Watchdog timer
External Interrupts
general purpose I/O ports
12-bit A/D converter
CSV (Clock Super Visor)
LVD (Low Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
Cortex-M3
20 MHz
1.8 V to 5.5 V
4 ch. (Max)
(CSIO and I2C is Max 3 ch.)
8 ch. (Max)
8 ch. (Max)
1 unit (Max)
1 unit
1 ch. (SW) + 1 ch. (HW)
6 pins (Max) + NMI × 1
8 pins (Max) + NMI × 1
37 pins (Max)
52 pins (Max)
6 ch. (1 unit)
8 ch. (1 unit)
Yes
2 ch.
4 MHz
100 kHz
SWJ-DP
Note:
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use
the port relocate function of the I/O port according to your function use.
See Electrical Characteristics (12.4) AC Characteristics (12.4.3) Built-in CR Oscillation Characteristics for accuracy of built-in
CR.
Document Number: 002-05671 Rev.*B
Page 6 of 86
MB9A130LB Series
2. Packages
Product name
Package
MB9AF131KB
MB9AF132KB
MB9AF131LB
MB9AF132LB
LQFP:
LQA048 (0.5mm pitch)

-
QFN:
VNA048

-
LQFP:
LQD064 (0.5mm pitch)
-

LQFP:
LQG064 (0.65mm pitch)
-

QFN:
VNC064
-

: Supported
Note:
See Package Dimensions for detailed information on each package.
Document Number: 002-05671 Rev.*B
Page 7 of 86
MB9A130LB Series
3. Pin Assignment
LQA048
VSS
P82
P81
P80
P60 / SIN5_0 / TIOA2_2 / INT15_1 / IC00_0 / WKUP3
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
48
47
46
45
44
43
42
41
40
39
38
37
(TOP VIEW)
VCC
1
36
P21 / SIN0_0 / INT06_1 / WKUP2
P50 / SIN3_1 / INT00_0
2
35
P22 / SOT0_0 / TIOB7_1
P51 / SOT3_1 / INT01_0
3
34
P23 / SCK0_0 / TIOA7_1
P52 / SCK3_1 / INT02_0
4
33
AVSS
P39 / DTTI0X_0 / ADTG_2
5
32
AVRH
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
6
31
AVCC
P3B / TIOA1_1 / RTO01_0
7
30
P15 / AN05 / IC03_2
P3C / TIOA2_1 / RTO02_0
8
29
P14 / AN04 / INT03_1 / IC02_2
P3D / TIOA3_1 / RTO03_0
9
28
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3E / TIOA4_1 / RTO04_0
10
27
P12 / AN02 / SOT1_1 / IC00_2
P3F / TIOA5_1 / RTO05_0
11
26
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1
VSS
12
25
P10 / AN00
14
15
16
17
18
19
20
21
22
23
24
P47 / X1A
INITX
P49 / TIOB0_0
P4A / TIOB1_0
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
13
C
VCC
P46 / X0A
LQFP - 48
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05671 Rev.*B
Page 8 of 86
MB9A130LB Series
VNA048
37 P00 / TRSTX
38 P01 / TCK / SWCLK
39 P02 / TDI
40 P03 / TMS / SWDIO
41 P04 / TDO / SWO
42 P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
43 P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
44 P60 / SIN5_0 / TIOA2_2 / INT15_1 / IC00_0 / WKUP3
45 P80
46 P81
47 P82
48 VSS
(TOP VIEW)
VCC
1
36 P21 / SIN0_0 / INT06_1 / WKUP2
P50 / SIN3_1 / INT00_0
2
35 P22 / SOT0_0 / TIOB7_1
P51 / SOT3_1 / INT01_0
3
34 P23 / SCK0_0 / TIOA7_1
P52 / SCK3_1 / INT02_0
4
33 AVSS
P39 / DTTI0X_0 / ADTG_2
5
32 AVRH
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
6
P3B / TIOA1_1 / RTO01_0
7
P3C / TIOA2_1 / RTO02_0
8
29 P14 / AN04 / INT03_1 / IC02_2
P3D / TIOA3_1 / RTO03_0
9
28 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
31 AVCC
QFN - 48
30 P15 / AN05 / IC03_2
P3E / TIOA4_1 / RTO04_0 10
27 P12 / AN02 / SOT1_1 / IC00_2
P3F / TIOA5_1 / RTO05_0 11
26 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1
VSS 24
PE3 / X1 23
PE2 / X0 22
MD0 21
PE0 / MD1 20
P4A / TIOB1_0 19
P49 / TIOB0_0 18
INITX 17
P47 / X1A 16
P46 / X0A 15
C 13
25 P10 / AN00
VCC 14
VSS 12
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05671 Rev.*B
Page 9 of 86
MB9A130LB Series
LQD064/LQG064
VSS
P82
P81
P80
P60 / SIN5_0 / TIOA2_2 / INT15_1 / IC00_0 / WKUP3
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P62 / SCK5_0 / ADTG_3
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P0C / SCK4_0 / TIOA6_1
P0B / SOT4_0 / TIOB6_1
P0A / SIN4_0 / INT00_2
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
(TOP VIEW)
VCC
1
48
P21 / SIN0_0 / INT06_1 / WKUP2
P50 / SIN3_1 / INT00_0
2
47
P22 / SOT0_0 / TIOB7_1
P51 / SOT3_1 / INT01_0
3
46
P23 / SCK0_0 / TIOA7_1
P52 / SCK3_1 / INT02_0
4
45
P19 / SCK2_2
P30 / TIOB0_1 / INT03_2
5
44
P18 / AN08 / SOT2_2
P31 / SCK6_1 / TIOB1_1 / INT04_2
6
43
AVSS
P32 / SOT6_1 / TIOB2_1 / INT05_2
7
42
AVRH
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
8
41
AVCC
P39 / DTTI0X_0 / ADTG_2
9
40
P17 / AN07 / SIN2_2 / INT04_1
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2 10
39
P15 / AN05 / IC03_2
P3B / TIOA1_1 / RTO01_0 11
38
P14 / AN04 / INT03_1 / IC02_2
P3C / TIOA2_1 / RTO02_0 12
37
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3D / TIOA3_1 / RTO03_0 13
36
P12 / AN02 / SOT1_1 / IC00_2
P3E / TIOA4_1 / RTO04_0 14
35
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1
P3F / TIOA5_1 / RTO05_0 15
34
P10 / AN00
VSS 16
33
VCC
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
P47 / X1A
INITX
P49 / TIOB0_0
P4A / TIOB1_0
P4B / TIOB2_0
P4C / SCK7_1 / TIOB3_0
P4D / SOT7_1 / TIOB4_0
P4E / SIN7_1 / TIOB5_0 / INT06_2
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
17
C
VCC
P46 / X0A
LQFP - 64
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05671 Rev.*B
Page 10 of 86
MB9A130LB Series
VNC064
49 P00 / TRSTX
50 P01 / TCK / SWCLK
51 P02 / TDI
52 P03 / TMS / SWDIO
53 P04 / TDO / SWO
54 P0A / SIN4_0 / INT00_2
55 P0B / SOT4_0 / TIOB6_1
56 P0C / SCK4_0 / TIOA6_1
57 P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
58 P62 / SCK5_0 / ADTG_3
59 P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
60 P60 / SIN5_0 / TIOA2_2 / INT15_1 / IC00_0 / WKUP3
61 P80
62 P81
63 P82
64 VSS
(TOP VIEW)
VCC
1
48 P21 / SIN0_0 / INT06_1 / WKUP2
P50 / SIN3_1 / INT00_0
2
47 P22 / SOT0_0 / TIOB7_1
P51 / SOT3_1 / INT01_0
3
46 P23 / SCK0_0 / TIOA7_1
P52 / SCK3_1 / INT02_0
4
45 P19 / SCK2_2
P30 / TIOB0_1 / INT03_2
5
44 P18 / AN08 / SOT2_2
P31 / SCK6_1 / TIOB1_1 / INT04_2
6
43 AVSS
P32 / SOT6_1 / TIOB2_1 / INT05_2
7
42 AVRH
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
8
P39 / DTTI0X_0 / ADTG_2
9
41 AVCC
QFN - 64
40 P17 / AN07 / SIN2_2 / INT04_1
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2 10
39 P15 / AN05 / IC03_2
P3B / TIOA1_1 / RTO01_0 11
38 P14 / AN04 / INT03_1 / IC02_2
P3C / TIOA2_1 / RTO02_0 12
37 P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3D / TIOA3_1 / RTO03_0 13
36 P12 / AN02 / SOT1_1 / IC00_2
P3E / TIOA4_1 / RTO04_0 14
35 P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / IC02_0 / WKUP1
P3F / TIOA5_1 / RTO05_0 15
34 P10 / AN00
VSS 32
PE3 / X1 31
PE2 / X0 30
MD0 29
PE0 / MD1 28
P4E / SIN7_1 / TIOB5_0 / INT06_2 27
P4D / SOT7_1 / TIOB4_0 26
P4C / SCK7_1 / TIOB3_0 25
P4B / TIOB2_0 24
P4A / TIOB1_0 23
P49 / TIOB0_0 22
INITX 21
P47 / X1A 20
P46 / X0A 19
C 17
33 VCC
VCC 18
VSS 16
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05671 Rev.*B
Page 11 of 86
MB9A130LB Series
4. List of Pin Functions
List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
LQFP-64
QFN-64
1
1
2
2
3
3
4
4
5
-
6
-
7
-
8
-
9
5
10
6
Document Number: 002-05671 Rev.*B
I/O circuit
type
Pin name
LQFP-48
QFN-48
VCC
P50
INT00_0
SIN3_1
P51
INT01_0
SOT3_1
(SDA3_1)
P52
INT02_0
SCK3_1
(SCL3_1)
P30
TIOB0_1
INT03_2
P31
TIOB1_1
SCK6_1
(SCL6_1)
INT04_2
P32
TIOB2_1
SOT6_1
(SDA6_1)
INT05_2
P33
INT04_0
TIOB3_1
SIN6_1
ADTG_6
P39
DTTI0X_0
ADTG_2
P3A
RTO00_0
(PPG00_0)
TIOA0_1
RTCCO_2
SUBOUT_2
Pin state
type
G
F
G
F
G
F
E
F
E
F
E
F
E
F
E
H
E
H
Page 12 of 86
MB9A130LB Series
Pin No
LQFP-64
QFN-64
I/O circuit
type
Pin name
LQFP-48
QFN-48
Pin state
type
P3B
11
7
RTO01_0
(PPG00_0)
E
H
E
H
E
H
E
H
E
H
TIOA1_1
P3C
12
8
RTO02_0
(PPG02_0)
TIOA2_1
P3D
13
9
RTO03_0
(PPG02_0)
TIOA3_1
P3E
14
10
RTO04_0
(PPG04_0)
TIOA4_1
P3F
15
11
RTO05_0
(PPG04_0)
TIOA5_1
16
12
VSS
-
17
13
C
-
18
14
VCC
-
19
15
20
16
21
17
22
18
23
19
24
-
Document Number: 002-05671 Rev.*B
P46
X0A
P47
X1A
INITX
P49
TIOB0_0
P4A
TIOB1_0
P4B
TIOB2_0
D
M
D
N
B
C
E
H
E
H
E
H
Page 13 of 86
MB9A130LB Series
Pin No
LQFP-64
QFN-64
I/O circuit
type
Pin name
LQFP-48
QFN-48
Pin state
type
P4C
25
-
TIOB3_0
E
H
E
H
E
F
C
P
H
D
A
A
A
B
SCK7_1
(SCL7_1)
P4D
26
-
TIOB4_0
SOT7_1
(SDA7_1)
P4E
27
-
TIOB5_0
INT06_2
SIN7_1
PE0
28
20
29
21
30
22
31
23
32
24
VSS
-
33
-
VCC
-
34
25
MD1
MD0
PE2
X0
PE3
X1
P10
AN00
F
J
F
L
F
J
F
J
P11
AN01
SIN1_1
35
26
INT02_1
FRCK0_2
IC02_0
WKUP1
P12
AN02
36
27
SOT1_1
(SDA1_1)
IC00_2
P13
AN03
37
28
SCK1_1
(SCL1_1)
IC01_2
RTCCO_1
SUBOUT_1
Document Number: 002-05671 Rev.*B
Page 14 of 86
MB9A130LB Series
Pin No
LQFP-64
QFN-64
I/O circuit
type
Pin name
LQFP-48
QFN-48
Pin state
type
P14
38
29
AN04
INT03_1
F
K
F
J
F
K
IC02_2
P15
39
30
AN05
IC03_2
P17
40
-
AN07
SIN2_2
INT04_1
41
31
AVCC
-
42
32
AVRH
-
43
33
AVSS
-
P18
44
-
AN08
F
J
E
H
G
H
G
H
G
G
E
E
E
E
E
E
SOT2_2
(SDA2_2)
P19
45
-
SCK2_2
(SCL2_2)
P23
46
34
SCK0_0
(SCL0_0)
TIOA7_1
P22
47
35
SOT0_0
(SDA0_0)
TIOB7_1
P21
48
36
SIN0_0
INT06_1
WKUP2
49
37
P00
TRSTX
P01
50
38
TCK
SWCLK
51
39
Document Number: 002-05671 Rev.*B
P02
TDI
Page 15 of 86
MB9A130LB Series
Pin No
LQFP-64
QFN-64
I/O circuit
type
Pin name
LQFP-48
QFN-48
Pin state
type
P03
52
40
TMS
E
E
E
E
E
F
E
H
E
H
E
I
I
H
I
H
I
G
SWDIO
P04
53
41
TDO
SWO
P0A
54
-
SIN4_0
INT00_2
P0B
55
-
SOT4_0
(SDA4_0)
TIOB6_1
P0C
56
-
SCK4_0
(SCL4_0)
TIOA6_1
P0F
NMIX
57
42
CROUT_1
RTCCO_0
SUBOUT_0
WKUP0
P62
58
-
SCK5_0
(SCL5_0)
ADTG_3
P61
59
43
SOT5_0
(SDA5_0)
TIOB2_2
DTTI0X_2
P60
SIN5_0
60
44
TIOA2_2
INT15_1
IC00_0
WKUP3
61
45
P80
G
O
62
46
P81
G
O
63
47
P82
G
O
64
48
VSS
-
Document Number: 002-05671 Rev.*B
Page 16 of 86
MB9A130LB Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin
function
ADC
Base Timer
0
Base Timer
1
Base Timer
2
Base Timer
3
Base Timer
4
Base Timer
5
Base Timer
6
Base Timer
7
Debugger
Pin name
ADTG_2
ADTG_3
ADTG_6
AN00
AN01
AN02
AN03
AN04
AN05
AN07
AN08
TIOA0_1
TIOB0_0
TIOB0_1
TIOA1_1
TIOB1_0
TIOB1_1
TIOA2_1
TIOA2_2
TIOB2_0
TIOB2_1
TIOB2_2
TIOA3_1
TIOB3_0
TIOB3_1
TIOA4_1
TIOB4_0
TIOA5_1
TIOB5_0
TIOA6_1
TIOB6_1
TIOA7_1
TIOB7_1
SWCLK
SWDIO
SWO
TRSTX
TCK
TDI
TMS
TDO
Function description
A/D converter external trigger input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
Base timer ch.5 TIOB pin
Base timer ch.6 TIOA pin
Base timer ch.6 TIOB pin
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Serial wire debug interface clock input pin
Serial wire debug interface data input / output pin
Serial wire viewer output pin
JTAG reset Input pin
JTAG test clock input pin
JTAG test data input pin
JTAG test mode state input/output pin
JTAG debug data output pin
Document Number: 002-05671 Rev.*B
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
9
5
58
8
34
25
35
26
36
27
37
28
38
29
39
30
40
44
10
6
22
18
5
11
7
23
19
6
12
8
60
44
24
7
59
43
13
9
25
8
14
10
26
15
11
27
56
55
46
34
47
35
50
38
52
40
53
41
49
37
50
38
51
39
52
40
53
41
Page 17 of 86
MB9A130LB Series
Pin
function
External
Interrupt
GPIO
Pin name
INT00_0
INT00_2
INT01_0
INT02_0
INT02_1
INT03_1
INT03_2
INT04_0
INT04_1
INT04_2
INT05_2
INT06_1
INT06_2
INIT15_1
NMIX
P00
P01
P02
P03
P04
P0A
P0B
P0C
P0F
P10
P11
P12
P13
P14
P15
P17
P18
P19
P21
P22
P23
Function description
External interrupt request 00 input pin
External interrupt request 01 input pin
External interrupt request 02 input pin
External interrupt request 03 input pin
External interrupt request 04 input pin
External interrupt request 05 input pin
External interrupt request 06 input pin
External interrupt request 15 input pin
Non-Maskable Interrupt input pin
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
Document Number: 002-05671 Rev.*B
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
2
2
54
3
3
4
4
35
26
38
29
5
8
40
6
7
48
36
27
60
44
57
42
49
37
50
38
51
39
52
40
53
41
54
55
56
57
42
34
25
35
26
36
27
37
28
38
29
39
30
40
44
45
48
36
47
35
46
34
Page 18 of 86
MB9A130LB Series
Pin
function
GPIO
Pin name
P30
P31
P32
P33
P39
P3A
P3B
P3C
P3D
P3E
P3F
P46
P47
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P60
P61
P62
P80
P81
P82
PE0
PE2
PE3
Function description
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
General-purpose I/O port 8
General-purpose I/O port E
Document Number: 002-05671 Rev.*B
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
5
6
7
8
9
5
10
6
11
7
12
8
13
9
14
10
15
11
19
15
20
16
22
18
23
19
24
25
26
27
2
2
3
3
4
4
60
44
59
43
58
61
45
62
46
63
47
28
20
30
22
31
23
Page 19 of 86
MB9A130LB Series
Pin
function
Multifunction
Serial
0
Multifunction
Serial
1
Multifunction
Serial
2
Pin name
Function description
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
SIN0_0
Multi-function serial interface ch.0 input pin
48
36
SOT0_0
(SDA0_0)
Multi-function serial interface ch.0 output pin.
This pin operates as SOT0 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA0 when it is used in an I2C (operation mode
4).
47
35
SCK0_0
(SCL0_0)
Multi-function serial interface ch.0 clock I/O pin.
This pin operates as SCK0 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL0 when it is used in an I2C (operation mode
4).
46
34
SIN1_1
Multi-function serial interface ch.1 input pin
35
26
SOT1_1
(SDA1_1)
Multi-function serial interface ch.1 output pin.
This pin operates as SOT1 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA1 when it is used in an I2C (operation mode
4).
36
27
SCK1_1
(SCL1_1)
Multi-function serial interface ch.1 clock I/O pin.
This pin operates as SCK1 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL1 when it is used in an I2C (operation mode
4).
37
28
SIN2_2
Multi-function serial interface ch.2 input pin
40
-
SOT2_2
(SDA2_2)
Multi-function serial interface ch.2 output pin.
This pin operates as SOT2 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA2 when it is used in an I2C (operation mode
4).
44
-
SCK2_2
(SCL2_2)
Multi-function serial interface ch.2 clock I/O pin.
This pin operates as SCK2 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL2 when it is used in an I2C (operation mode
4).
45
-
Document Number: 002-05671 Rev.*B
Page 20 of 86
MB9A130LB Series
Pin name
Multifunction
Serial
3
SIN3_1
Multi-function serial interface ch.3 input pin
SOT3_1
(SDA3_1)
Multi-function serial interface ch.3 output pin.
This pin operates as SOT3 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA3 when it is used in an I2C (operation mode
4).
3
3
SCK3_1
(SCL3_1)
Multi-function serial interface ch.3 clock I/O pin.
This pin operates as SCK3 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL3 when it is used in an I2C (operation mode
4).
4
4
SIN4_0
Multi-function serial interface ch.4 input pin
54
-
SOT4_0
(SDA4_0)
Multi-function serial interface ch.4 output pin.
This pin operates as SOT4 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA4 when it is used in an I2C (operation mode
4).
55
-
56
-
60
44
SOT5_0
(SDA5_0)
Multi-function serial interface ch.5 output pin.
This pin operates as SOT5 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA5 when it is used in an I2C (operation mode
4).
59
43
SCK5_0
(SCL5_0)
Multi-function serial interface ch.5 clock I/O pin.
This pin operates as SCK5 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL5 when it is used in an I2C (operation mode
4).
58
-
Multifunction
Serial
4
SCK4_0
(SCL4_0)
Multifunction
Serial
5
SIN5_0
Function description
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
2
2
Pin function
Multi-function serial interface ch.4 clock I/O pin.
This pin operates as SCK4 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL4 when it is used in an I2C (operation mode
4).
Multi-function serial interface ch.5 input pin
Document Number: 002-05671 Rev.*B
Page 21 of 86
MB9A130LB Series
Pin name
Multifunction
Serial
6
SIN6_1
Multi-function serial interface ch.6 input pin
SOT6_1
(SDA6_1)
Multi-function serial interface ch.6 output pin.
This pin operates as SOT6 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA6 when it is used in an I2C (operation mode
4).
7
-
SCK6_1
(SCL6_1)
Multi-function serial interface ch.6 clock I/O pin.
This pin operates as SCK6 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL6 when it is used in an I2C (operation mode
4).
6
-
SIN7_1
Multi-function serial interface ch.7 input pin
27
-
SOT7_1
(SDA7_1)
Multi-function serial interface ch.7 output pin.
This pin operates as SOT7 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SDA7 when it is used in an I2C (operation mode
4).
26
-
SCK7_1
(SCL7_1)
Multi-function serial interface ch.7 clock I/O pin.
This pin operates as SCK7 when it is used in a
UART/CSIO (operation modes 0 to 2) and as
SCL7 when it is used in an I2C (operation mode
4).
25
-
Multifunction
Serial
7
Function description
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
8
-
Pin function
Document Number: 002-05671 Rev.*B
Page 22 of 86
MB9A130LB Series
Pin function
Multifunction Timer
0
Pin name
DTTI0X_0
DTTI0X_2
FRCK0_2
IC00_0
IC00_2
IC01_2
IC02_0
IC02_2
IC03_2
RTO00_0
(PPG00_0)
RTO01_0
(PPG00_0)
RTO02_0
(PPG02_0)
RTO03_0
(PPG02_0)
RTO04_0
(PPG04_0)
RTO05_0
(PPG04_0)
Real-time
clock
Low Power
Consumption
Mode
RTCCO_0
RTCCO_1
RTCCO_2
SUBOUT_0
SUBOUT_1
SUBOUT_2
WKUP0
WKUP1
WKUP2
WKUP3
Function description
Input signal of waveform generator to control
outputs RTO00 to RTO05 of Multi-function
timer 0
16-bit free-run timer ch.0 external clock input
pin
16-bit input capture input pin of Multi-function
timer 0.
ICxx describes a channel number.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is used in
PPG0 output modes.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is used in
PPG0 output modes.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is used in
PPG0 output modes.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is used in
PPG0 output modes.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is used in
PPG0 output modes.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is used in
PPG0 output modes.
0.5 seconds pulse output pin of Real-time clock
Sub clock output pin
Deep stand-by mode return signal input pin 0
Deep stand-by mode return signal input pin 1
Deep stand-by mode return signal input pin 2
Deep stand-by mode return signal input pin 3
Document Number: 002-05671 Rev.*B
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
9
5
59
43
35
26
60
36
37
35
38
39
44
27
28
26
29
30
10
6
11
7
12
8
13
9
14
10
15
11
57
37
10
57
37
10
57
35
48
60
42
28
6
42
28
6
42
26
36
44
Page 23 of 86
MB9A130LB Series
Pin function
Reset
Pin name
INITX
Mode
MD0
MD1
Function description
External Reset Input pin.
A reset is valid when INITX = L.
Mode 0 pin.
During normal operation, MD0 = L must be
input During serial programming to flash
memory, MD0 = H must be input.
Mode 1 pin.
During normal operation, input is not needed
During serial programming to flash memory,
MD1 = L must be input.
Power
VCC
Power supply pin
VSS
GND pin
X0
X0A
X1
X1A
CROUT_1
AVCC
Main clock (oscillation) input pin
Sub clock (oscillation) input pin
Main clock (oscillation) I/O pin
Sub clock (oscillation) I/O pin
Built-in High-speed CR-osc clock output port
A/D converter analog power pin
A/D converter analog reference voltage input
pin
GND
Clock
ADC
Power
ADC
GND
C pin
AVRH
Pin No
LQFP-64
LQFP-48
QFN-64
QFN-48
21
17
29
21
28
20
1
18
33
16
32
64
30
19
31
20
57
41
1
14
12
24
48
22
15
23
16
42
31
42
32
AVSS
A/D converter GND pin
43
33
C
Power stabilization capacity pin
17
13
Note:
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-05671 Rev.*B
Page 24 of 86
MB9A130LB Series
5. I/O Circuit Type
Type
A
Circuit
Remarks
It is possible to select the main
oscillation / GPIO function.
When the main oscillation is selected.
Pull-up
resistor
P-ch
P-ch
Digital output
X1
N-ch
Digital output
R
Pull-up resistor control
• Oscillation feedback resistor
: Approximately 1 MΩ
• With Standby control
When the GPIO is selected.
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby control
• Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Digital input
Standby mode Control
Clock input
Feedback
resistor
Standby mode Control
Digital input
Standby mode Control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
Document Number: 002-05671 Rev.*B
Page 25 of 86
MB9A130LB Series
Type
B
Circuit
Remarks
• CMOS level hysteresis input
• Pull-up resistor
: Approximately 50 kΩ
Pull-up resistor
Digital input
C
Digital input
N-ch
Document Number: 002-05671 Rev.*B
• Open drain output
• CMOS level hysteresis input
Digital output
Page 26 of 86
MB9A130LB Series
Type
Circuit
Remarks
D
It is possible to select the sub
oscillation / GPIO function
Pull-up
resistor
P-ch
P-ch
Digital output
X1A
N-ch
Digital output
R
Pull-up resistor control
Digital input
When the sub oscillation is
selected.
• Oscillation feedback resistor
: Approximately 5 MΩ
• With Standby control
When the GPIO is selected.
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby control
• Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Standby mode Control
Clock input
Feedback
resistor
Standby mode Control
Digital input
Standby mode Control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05671 Rev.*B
Page 27 of 86
MB9A130LB Series
Type
Circuit
Remarks
•
•
•
•
•
E
P-ch
P-ch
N-ch
Digital output
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off
Digital output
R
Pull-up resistor control
Digital input
Standby mode Control
F
P-ch
P-ch
N-ch
R
Digital output
Digital output
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off
Pull-up resistor control
Digital input
Standby mode Control
Analog input
Input control
Document Number: 002-05671 Rev.*B
Page 28 of 86
MB9A130LB Series
Type
Circuit
Remarks
G
P-ch
N-ch
Digital output
Digital output
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With standby control
5 V tolerant input
IOH = -4 mA, IOL = 4 mA
Available to control of PZR
registers. Only P22, P23, P51,
P52
• When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off
R
Digital input
Standby mode control
H
CMOS level hysteresis input
Mode input
•
•
•
•
•
I
P-ch
N-ch
Digital output
CMOS level output
CMOS level hysteresis input
With standby control
IOH = -4 mA, IOL = 4 mA
When this pin is used as an I2C
pin, the digital output P-ch
transistor is always off
Digital output
R
Digital input
Standby mode control
Document Number: 002-05671 Rev.*B
Page 29 of 86
MB9A130LB Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-05671 Rev.*B
Page 30 of 86
MB9A130LB Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended
conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
3. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
4. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
5. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
6. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-05671 Rev.*B
Page 31 of 86
MB9A130LB Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1
MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,
use anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices
begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05671 Rev.*B
Page 32 of 86
MB9A130LB Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pins
and GND pins, between AVCC pin and AVSS pin near this device.
Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Using an external clock
To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pins.
 Example of Using an External Clock
Device
X0/PE2 (X0A/P46)
Can be used as
general-purpose
I/O ports.
X1/PE3 (X1A/P47)
Set as
general-purpose
I/O ports.
Handling when using Multi-function serial pin as I2C pin
If it is using the Multi-function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I 2C pins need to
keep the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF.
Document Number: 002-05671 Rev.*B
Page 33 of 86
MB9A130LB Series
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7uF would be recommended for this series.
C
Device
CS
VSS
GND
Mode pins (MD0, MD1)
Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance
stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.
Turning on: VCC → AVCC → AVRH
Turning off: AVRH → AVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Differences in features among the products with different memory sizes and between Flash memory
products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash memory products and MASK products are different because chip
layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Document Number: 002-05671 Rev.*B
Page 34 of 86
MB9A130LB Series
8. Block Diagram
MB9AF131/132
TRSTX,TCK,
TDI,TMS
TDO
ROM
Table
SWJ-DP
Cortex-M3 Core I
@20MHz(Max)
D
Multi-layer AHB (Max 20MHz)
Sys
AHB-APB Bridge: APB0
(Max 20MHz)
NVIC
Flash I/F
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
Watchdog Timer
(Hardware)
Security
On-Chip
Flash
64/128Kbytes
SRAM1
8Kbytes
CSV
CLK
X0
X1
X0A
X1A
Main
Osc
Sub
Osc
PLL
Source Clock
CR
4MHz
CR
100kHz
CROUT
AVCC,
AVSS,AVRH
ANxx
Deep Standby Ctrl
WKUPx
12-bit A/D Converter
Unit 0
ADTG_x
A/D Activation
Compare
1ch.
IC0x
FRCK0
16-bit Input Capture
4ch.
16-bit FreeRun Timer
3ch.
16-bit Output
Compare
6ch.
DTTI0X
RTO0x
LVD Ctrl
AHB-APB Bridge : APB2 (Max 20MHz)
TIOBx
Power On
Reset
Base Timer
16-bit 8ch. /
32-bit 4ch.
AHB-APB Bridge : APB1 (Max 20MHz)
TIOAx
Regulator
C
IRQ-Monitor
RTCCO
SUBOUT
Real-Time Clock
External Interrupt
Controller
8-pin + NMI
INTxx
NMIX
MD1,
MD0
MODE-Ctrl
GPIO
Waveform Generator
3ch.
16-bit PPG
3ch.
LVD
Multi-Function Serial
I/F
8ch.
PIN-Function-Ctrl
P0x,
P1x,
.
.
Pxx
SCKx
SINx
SOTx
Multi-Function Timer ×1
Document Number: 002-05671 Rev.*B
Page 35 of 86
MB9A130LB Series
9. Memory Size
See Memory size in Product Lineup to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
Reserved
Reserved
0x4003_C000
0x4003_B000
0x4003_9000
0x4003_8000
0x4400_0000
0x4200_0000
0x4000_0000
32Mbytes
Bit band alias
Peripherals
Reserved
0x2400_0000
0x2200_0000
32Mbytes
Bit band alias
Reserved
0x2008_0000
0x2000_0000
SRAM1
Reserved
See "lMemory map(2)"
for the memory size
details.
0x0010_0008
0x0010_0000
0x4003_6000
0x4003_5000
0x4003_4000
0x4003_3000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
RTC
Reserved
MFS
Reserved
LVD/DS mode
Reserved
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
A/DC
Reserved
Base Timer
PPG
Reserved
Security/CR Trim
0x4002_1000
0x4002_0000
MFT unit0
Flash
Reserved
0x0000_0000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
SW WDT
HW WDT
Clock/Reset
Reserved
0x4000_1000
0x4000_0000
Document Number: 002-05671 Rev.*B
Flash I/F
Page 36 of 86
MB9A130LB Series
Memory Map (2)
MB9AF132KB/LB
MB9AF131KB/LB
0x2008_0000
0x2008_0000
Reserved
Reserved
0x2000_2000
0x2000_0000
0x2000_2000
SRAM1
8 Kbytes
0x2000_0000
Reserved
Reserved
0x0010_0008
0x0010_0004
0x0010_0000
SRAM1
8 Kbytes
0x0010_0008
CR trimming
Security
0x0010_0004
0x0010_0000
CR trimming
Security
Reserved
Reserved
SA2 (60 KB)
0x0000_0000
SA1 (4 KB)
0x0001_0000
SA2 (60 KB)
0x0000_0000
Flash 64 Kbytes
SA3 (64 KB)
Flash 128 Kbytes
0x0002_0000
SA1 (4 KB)
*: See MB9AAA0N/1A0N/A30N/130N/130L Series Flash Programming Manual to confirm the detail of Flash memory.
Document Number: 002-05671 Rev.*B
Page 37 of 86
MB9A130LB Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Reserved
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_1FFF
Reserved
0x4002_2000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt Controller
0x4003_1000
0x4003_1FFF
Interrupt Source Check Register
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
Reserved
0x4003_5000
0x4003_50FF
Low Voltage Detector
0x4003_5100
0x4003_5FFF
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial Interface
0x4003_9000
0x4003_9FFF
Reserved
0x4003_A000
0x4003_AFFF
Reserved
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_FFFF
Reserved
0x4004_0000
0x4004_FFFF
Reserved
0x4005_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x4006_1FFF
0x4006_2000
0x4006_2FFF
Reserved
0x4006_3000
0x4006_3FFF
Reserved
0x4006_4000
0x41FF_FFFF
Reserved
Document Number: 002-05671 Rev.*B
AHB
APB0
APB1
APB2
Flash I/F register
Reserved
Software Watchdog timer
Reserved
Base Timer
Reserved
Deep stand-by mode Controller
Reserved
Reserved
AHB
Reserved
Page 38 of 86
MB9A130LB Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX = 0
This is the period when the INITX pin is the L level.
 INITX = 1
This is the period when the INITX pin is the H level.
 SPL = 0
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to 0.
 SPL = 1
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep Standby mode, pins switch to the general-purpose I/O port.
Document Number: 002-05671 Rev.*B
Page 39 of 86
MB9A130LB Series
Pin status type
List of Pin Status
Power-o
n reset or INITX
Device
low
internal
input
voltage
reset
state
detection
state
Function
state
group
Power
Power supply
supply
stable
unstable
INITX = 0 INITX = 1
Main
crystal
Input
Input
Input
oscillator enabled enabled enabled
input pin
Run
mode or
Sleep
mode
state
Power
supply
stable
INITX = 1
Input
enabled
Timer mode,
RTC mode, or
Stop mode state
Deep Standby RTC
mode or Deep
Standby Stop mode
state
Return from
Deep Standby
mode state
Power supply
stable
Power supply stable
Power supply
stable
INITX = 1
SPL = 0 SPL = 1
INITX = 1
SPL = 0
SPL = 1
INITX = 1
-
Input
enabled
Maintain
previous
state /
When
External
oscillation
main
Maintain stop*1,
Setting
Setting
Setting
clock
previous output
disabled disabled disabled
input
state
maintain
A
selected
previous
state /
Internal
input fixed
at 0
Output
maintain
Maintain previous
GPIO
Setting
Setting
Setting
previous state /
selected disabled disabled disabled
state
Internal
input fixed
at 0
Maintain Maintain
previous previous
state /
state /
When
When
Main
Hi-Z /
Hi-Z /
Hi-Z /
oscillation oscillation
crystal
Internal
Internal
Internal
stop*1,
stop*1,
oscillator input fixed input fixed input fixed
Hi-Z
Hi-Z
output pin at 0
at 0
at 0
output /
output /
B
Internal
Internal
input fixed input fixed
at 0
at 0
C
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
INITX
input pin
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Document Number: 002-05671 Rev.*B
Input
enabled
Input
enabled
Input
enabled
Hi-Z /
Input
enabled /
When
oscillation
stop*1,
Hi-Z /
Internal
input fixed
at 0
Output
maintain
previous
state /
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO selected
input fixed
at 0
Output
maintain
Hi-Z /
previous
Internal
state /
input fixed
Internal
at 0
input fixed
at 0
Maintain
Maintain
previous
previous
state /
state /
When
When
oscillation
oscillation
1
stop* ,
stop*1, Hi-Z
Hi-Z
output /
output /
Internal
Internal
input fixed
input fixed
at 0
at 0
Hi-Z /
Maintain
Internal
previous
input fixed
state
at 0
Pull-up / Pull-up /
Input
Input
enabled enabled
Input enabled
Hi-Z /
Maintain
Internal
input fixed previous state
at 0
Maintain
previous
state /
When
oscillation
stop*1,
Hi-Z
output /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Pull-up /
Input
enabled
Maintain
previous state /
When
oscillation
stop*1, Hi-Z
output /
Internal input
fixed at "0"
Maintain
previous state
Pull-up / Input
enabled
Page 40 of 86
MB9A130LB Series
Pin status type
Power-o
Return
Run
Device
Deep Standby RTC
n reset or INITX
from
mode or
Timer mode,
low
internal
mode or Deep
Deep
input
Sleep
RTC mode, or
voltage
reset
state
mode
Stop mode state Standby Stop mode Standby
detection
state
state
mode
state
Function
state
state
group
Power
Power
Power
Power supply
Power supply
Power supply
supply
supply
supply
stable
stable
stable
unstable
stable
stable
INITX = 0 INITX = 1 INITX = 1
INITX = 1
INITX = 1
INITX = 1
SPL = 0 SPL = 1 SPL = 0 SPL = 1
Mode
Input
Input
Input
Input
Input
Input
Input
Input
Input
D
input pin enabled enabled enabled enabled enabled enabled enabled enabled enabled
JTAG
selected
Hi-Z
GPIO
selected
Setting
disabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Setting
disabled
Setting
disabled
Hi-Z /
Internal
input fixed
at 0
Setting
disabled
Setting
disabled
Maintain
previous
state
E
External
interrupt Setting
enabled disabled
selected
Resource
F other than
above
selected Hi-Z
GPIO
selected
WKUP
enabled
Setting
disabled
External
interrupt Setting
enabled disabled
G selected
Resource
other than
above
selected Hi-Z
GPIO
selected
Resource
selected
H
GPIO
selected
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Document Number: 002-05671 Rev.*B
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
GPIO
selected
Hi-Z /
Internal
input fixed
Maintain
at 0
previous
state
Hi-Z /
WKUP
Internal
input
input fixed
enabled
at 0
Maintain
previous
state
GPIO
selected
Hi-Z /
Internal
input fixed
Maintain
at 0
previous
state
GPIO
Hi-Z /
selected
Internal
input fixed Maintain
previous
at 0
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z /
WKUP
input
enabled
GPIO
selected
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
Maintain
previous
state
GPIO
Hi-Z /
selected
Internal
input fixed Maintain
previous
at 0
state
Page 41 of 86
Pin status type
MB9A130LB Series
Power-o
Run
Device
n reset or INITX
mode or
low
internal
input
Sleep
voltage
reset
state
mode
detection
state
state
Function
state
group
Power
Power
Power supply
supply
supply
stable
unstable
stable
INITX = 0 INITX = 1 INITX = 1
NMIX
selected
I
Resource
other than
above
selected
Setting
disabled
J
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Resource
other than
above
selected Setting
disabled
GPIO
selected
Analog
input
selected
Setting
disabled
Hi-Z
GPIO
selected
Analog
input
selected
Setting
disabled
Hi-Z
External
interrupt
K enabled
selected
Resource
Setting
other than
disabled
above
selected
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Return
Deep Standby RTC
from
Timer mode,
mode or Deep
Deep
RTC mode, or
Stop mode state Standby Stop mode Standby
state
mode
state
Power
Power supply
Power supply
supply
stable
stable
stable
INITX = 1
INITX = 1
INITX = 1
SPL = 0 SPL = 1 SPL = 0 SPL = 1
Maintain
previous
state
GPIO
selected
Hi-Z /
Maintain
WKUP
WKUP
previous Hi-Z /
input
input
state
enabled
Internal
enabled
input fixed
Maintain
at 0
previous
state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
Hi-Z /
selected
Setting
Setting
Internal
disabled disabled
input fixed
Maintain
at 0
previous
state
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled enabled enabled enabled enabled enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Setting
disabled
GPIO
selected
Document Number: 002-05671 Rev.*B
Setting
disabled
Maintain
previous
state
Maintain
previous
state
GPIO
selected
Hi-Z /
Internal
input fixed
Maintain
at 0
previous
state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
Hi-Z /
selected
Internal
input fixed
Maintain
at 0
previous
state
Hi-Z /
Hi-Z /
Internal
Internal
input fixed input fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled enabled
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
Maintain
previous
state
Page 42 of 86
Pin status type
MB9A130LB Series
Power-o
Device
n reset or INITX
low
internal
input
voltage
reset
state
detection
state
Function
state
group
Power
Power supply
supply
stable
unstable
INITX = 0 INITX = 1
Hi-Z /
Hi-Z /
Internal
Internal
Analog
input fixed input fixed
Hi-Z
input
at 0 /
at 0 /
selected
Analog
Analog
input
input
enabled enabled
WKUP
enabled
L
External
interrupt
enabled
selected Setting
disabled
Resource
other than
above
selected
Setting
disabled
Setting
disabled
Return
Deep Standby RTC
from
Timer mode,
mode or Deep
Deep
RTC mode, or
Stop mode state Standby Stop mode Standby
state
mode
state
Power
Power
Power supply
Power supply
supply
supply
stable
stable
stable
stable
INITX = 1
INITX = 1
INITX = 1
INITX = 1
SPL = 0 SPL = 1 SPL = 0 SPL = 1
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input fixed input fixed input fixed input fixed input fixed input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled enabled enabled enabled enabled enabled
Hi-Z /
Hi-Z /
WKUP
Internal
WKUP
input
input fixed
input
enabled
at 0
enabled
Run
mode or
Sleep
mode
state
Maintain
previous
state
Maintain
previous
state
Input
enabled
External
sub clock Setting
input
disabled
M selected
GPIO
selected
Setting
disabled
GPIO
selected
GPIO
selected
Hi-Z /
Internal
input fixed
Maintain
at 0
previous
state
GPIO
selected
Sub
crystal
oscillator
input pin
Maintain
previous
state
Input
enabled
Input
enabled
Input
enabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Setting
disabled
Setting
disabled
Maintain
previous
state
Document Number: 002-05671 Rev.*B
Input
enabled
Maintain
previous
state /
When
oscillation
stop*2,
output
maintain
previous
state /
Internal
input fixed
at 0
Output
maintain
previous
state /
Internal
input fixed
at 0
Input
enabled
Hi-Z /
Input
enabled /
When
oscillation
stop*2,
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Input
enabled
Maintain
previous
state /
When
oscillation
stop*2,
output
maintain
previous
state /
Internal
input fixed
at 0
Output
maintain
previous
state /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Input
enabled
Input
enabled
Hi-Z /
Input
enabled /
When
oscillation
stop*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state /
When
Return
from
Deep
Stand-by
STOP
mode,
GPIO
selected
Hi-Z /
Maintain
Internal
previous
input fixed
state
at 0
Page 43 of 86
Pin status type
MB9A130LB Series
Power-o
Run
Device
n reset or INITX
mode or
low
internal
input
Sleep
voltage
reset
state
mode
detection
state
state
Function
state
group
Power
Power
Power supply
supply
supply
stable
unstable
stable
INITX = 0 INITX = 1 INITX = 1
-
Return
Deep Standby RTC
from
Timer mode,
mode or Deep
Deep
RTC mode, or
Stop mode state Standby Stop mode Standby
state
mode
state
Power
Power supply
Power supply
supply
stable
stable
stable
INITX = 1
INITX = 1
INITX = 1
SPL = 0 SPL = 1 SPL = 0 SPL = 1
-
Maintain
previous
state /
Sub
Hi-Z /
Hi-Z /
Hi-Z /
When
Maintain
crystal
Internal
Internal
Internal
oscillation
previous
oscillator input fixed input fixed input fixed
stops*2,
state
output pin
at 0
at 0
at 0
Hi-Z /
N
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Hi-Z /
Hi-Z /
Maintain
Maintain
Maintain
Internal
Internal
previous
previous
previous
input fixed
input fixed
state
state
state
at 0
at 0
GPIO
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous
state
GPIO/
Hi-Z /
Hi-Z /
Maintain
Maintain
Internal
Internal
Internal
previous
previous
input fixed input fixed input fixed
state
state
at 0
at 0
at 0
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Input
enabled
Maintain
previous
state
Hi-Z /
Input
enabled
Maintain
previous
state
GPIO
selected
O
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
P
*1: Oscillation is stopped at Sub run mode, Low-speed CR Run mode, Sub Sleep mode, Low-speed CR Sleep mode, Sub Timer
mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.
Document Number: 002-05671 Rev.*B
Page 44 of 86
MB9A130LB Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
voltage*1,*2
Symbol
Power supply
Analog power supply voltage*1,*3
Analog reference voltage*1,*3
VCC
AVCC
AVRH
Input voltage*1
VI
Rating
Min
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS - 0.5
Analog pin input voltage*1
VIA
VSS - 0.5
Output voltage*1
VO
VSS - 0.5
L level maximum output current*4
L level average output current*5
L level total maximum output current
L level total average output current*6
H level maximum output current*4
H level average output current*5
H level total maximum output current
H level total average output current*6
Power consumption
Storage temperature
IOL
IOLAV
∑IOL
∑IOLAV
IOH
IOHAV
∑IOH
∑IOHAV
PD
TSTG
- 55
Max
VSS + 6.5
VSS + 6.5
VSS + 6.5
VCC + 0.5
(≤ 6.5 V)
VSS + 6.5
AVCC + 0.5
(≤ 6.5 V)
VCC + 0.5
(≤ 6.5 V)
10
4
60
30
-10
-4
-60
-30
400
+ 150
Unit
Remarks
V
V
V
V
V
5V tolerant
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mW
°C
*1: These parameters are based on the condition that VSS = AVSS = 0.0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: Be careful not to exceed VCC + 0.5 V, for example, when the power is turned on.
*4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*5: The average output current is defined as the average current value flowing through any one of the corresponding pins for a
100 ms period.
*6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.
WARNING:
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
absolute maximum ratings. Do not exceed these ratings.
Document Number: 002-05671 Rev.*B
Page 45 of 86
MB9A130LB Series
12.2 Recommended Operating Conditions
(VSS = AVSS = 0.0V)
Parameter
Symbol
Conditions
Power supply voltage
Analog power supply voltage
VCC
AVCC
-
Analog reference voltage
AVRH
-
Smoothing capacitor
CS
-
Min
1.8
1.8
2.7
AVCC
1
TA
-
- 40
Operating
Temperature
LQA048,
VNA048,
LQD064,
LQG064,
VNC064
Value
Max
5.5
5.5
AVCC
AVCC
10
+ 85
Unit
V
V
V
μF
Remarks
AVCC = VCC
AVCC ≥ 2.7 V
AVCC < 2.7 V
For built-in Regulator *
°C
*: See C Pin in Handling Devices for the connection of the smoothing capacitor.
WARNING:
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or
combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to
contact their representatives beforehand.
Document Number: 002-05671 Rev.*B
Page 46 of 86
MB9A130LB Series
12.3 DC Characteristics
12.3.1 Current Rating
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin
name
PLL
Run mode
High-speed
CR
Run mode
ICC
Power
supply
current
VCC
Sub
Run mode
Low-speed
CR
Run mode
ICCS
Value
Typ*3
Max*4
Conditions
PLL
Sleep mode
High-speed
CR
Sleep mode
Sub
Sleep mode
Low-speed
CR
Sleep mode
CPU: 20 MHz,
Peripheral: 20 MHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU: 20 MHz,
Peripheral: clock
stopped,
NOP operation
CPU/Peripheral: 4
MHz*2
Flash memory 0 Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
CPU/Peripheral: 32 kHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU/Peripheral: 100
kHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
Unit
Remarks
20
25
mA
*1, *5
10
15
mA
*1, *5
4.5
5
mA
*1
0.25
0.35
mA
*1, *6
0.3
0.45
mA
*1
Peripheral: 20 MHz
9
13
mA
*1, *5
Peripheral: 4 MHz*2
2
2.5
mA
*1
Peripheral: 32 kHz
0.1
0.2
mA
*1, *6
Peripheral: 100 kHz
0.2
0.35
mA
*1
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=3.3 V
*4: TA=+85°C, VCC=5.5 V
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05671 Rev.*B
Page 47 of 86
MB9A130LB Series
Parameter
Symbol
Pin
name
Conditions
Main
Timer mode
ICCT
Sub
Timer mode
ICCR
Power
supply
current
RTC mode
VCC
ICCH
ICCRD
ICCHD
Stop mode
Deep
Standby
RTC mode
Deep
Standby
Stop mode
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
Typ*2
Value
Max*3
Unit
Remarks
1
3.6
mA
*1, *4
1.7
3.9
mA
*1, *4
8.5
70
μA
*1, *5
18
170
μA
*1, *5
TA = + 25C,
When LVD is off
1.8
7.5
μA
*1, *5
TA = + 85C,
When LVD is off
7
62
μA
*1, *5
TA = + 25C,
When LVD is off
0.7
7
μA
*1
TA = + 85C,
When LVD is off
6
60
μA
*1
TA = + 25C,
When LVD is off
1.6
3
μA
*1, *5
TA = + 85C,
When LVD is off
3.6
14.5
μA
*1, *5
TA = + 25C,
When LVD is off
0.5
2.5
μA
*1
TA = + 85C,
When LVD is off
2.5
12.5
μA
*1
*1: When all ports are fixed.
*2: VCC = 3.3 V
*3: VCC = 5.5 V
*4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05671 Rev.*B
Page 48 of 86
MB9A130LB Series
Low Voltage Detection Current
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40C to + 85C)
Parameter
Low-voltage
detection circuit
(LVD) power
supply current
Symbol
ICCLVD
Pin
name
VCC
Value
Typ*
Max
Conditions
For occurrence of reset or for
occurrence of interrupt in normal
mode operation
For occurrence of reset and for
occurrence of interrupt in normal
mode operation
For occurrence of interrupt in
low-power mode operation
10
20
Unit
Remarks
μA
When not
detected
14
30
μA
0.3
2
μA
When not
detected
*: When VCC = 3.3 V
Flash Memory Current
(VCC = 1.8 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase
current
Pin
name
Symbol
ICCFLASH
VCC
Conditions
At Write/Erase
Value
Typ
10.8
Max
11.9
Unit
Remarks
mA
A/D Converter Current
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Power supply
current
Reference power
supply current
Pin
name
Symbol
ICCAD
ICCAVRH
AVCC
AVRH
Document Number: 002-05671 Rev.*B
Conditions
Value
Typ
Max
Unit
At 1unit
operation
1.4
2.5
mA
At stop
0.1
0.35
μA
At 1unit
operation
AVRH=5.5 V
0.8
1.5
mA
At stop
0.1
0.3
μA
Remarks
Page 49 of 86
MB9A130LB Series
12.3.2 Pin Characteristics
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
H level input
voltage
(hysteresis
input)
L level input
voltage
(hysteresis
input)
H level
output voltage
L level
output voltage
Input leak
current
Pull-up
resistance
value
Input
capacitance
Symbol
VIHS
VILS
VOH
Pin name
MD0, MD1,
PE0, PE2,
PE3,
P46, P47,
INITX
P21, P22,
P23,
P50, P51,
P52,
P80, P81,
P82
CMOS
hysteresis
input pins other
than the above
MD0, MD1,
PE0, PE2,
PE3,
P46, P47,
INITX
CMOS
hysteresis
input pins other
than the above
Pxx
VOL
Pxx
IIL
-
RPU
Pull-up pin
CIN
Other than
VCC, VSS,
AVCC, AVSS,
AVRH
Document Number: 002-05671 Rev.*B
Conditions
Value
Typ
Min
Unit
Max
-
VCC ×
0.8
-
VCC +
0.3
V
-
VCC×
0.7
-
VSS +
5.5
V
-
VCC ×
0.7
-
VCC +
0.3
V
-
VSS 0.3
-
VCC×
0.2
V
-
VSS 0.3
-
VCC×
0.3
V
VCC ≥ 4.5 V
IOH = - 4 mA
VCC 0.5
-
VCC
VCC < 4.5 V
IOH = - 1 mA
VCC 0.5
-
VCC
VSS
-
0.4
V
-
-5
-
+5
μA
VCC ≥ 4.5 V
25
50
100
VCC < 4.5 V
40
100
400
-
-
5
15
VCC ≥ 4.5 V
IOL = 4 mA
VCC < 4.5 V
IOL = 2 mA
Remarks
5V tolerant
V
kΩ
pF
Page 50 of 86
MB9A130LB Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Input frequency
fCH
Input clock cycle
tCYLH
Input clock pulse
width
-
Input clock rise
time and fall time
tCF,
tCR
Internal operating
clock*1
frequency
Internal operating
clock*1
cycle time
Pin
name
X0,
X1
Value
Conditions
Min
Max
Unit
VCC ≥ 2.0 V
VCC < 2.0 V
VCC ≥ 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
PWH/tCYLH,
PWL/tCYLH
4
4
4
4
50
62.5
20
4
20
16
250
250
MHz
MHz
MHz
MHz
ns
ns
45
55
%
-
-
5
ns
Remarks
When crystal oscillator is
connected
When using external
clock
When using external
clock
When using external
clock
When using external
clock
fCM
-
-
-
20
MHz
Master clock
fCC
-
-
-
20
MHz
Base clock (HCLK/FCLK)
fCP0
-
-
-
20
MHz
APB0 bus clock*2
fCP1
-
-
-
20
MHz
APB1 bus clock*2
fCP2
-
-
-
20
MHz
APB2 bus clock*2
tCYCC
-
-
50
-
ns
Base clock (HCLK/FCLK)
tCYCP0
-
-
50
-
ns
APB0 bus clock*2
tCYCP1
-
-
50
-
ns
APB1 bus clock*2
tCYCP2
-
-
50
-
ns
APB2 bus clock*2
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
X0
Document Number: 002-05671 Rev.*B
Page 51 of 86
MB9A130LB Series
12.4.2 Sub Clock Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Input frequency
fCL
Input clock cycle
tCYLL
Input clock pulse
width
Pin
name
X0A,
X1A
-
Value
Condition
s
Min
Typ
Max
Unit
Remarks
-
32
32.768
-
100
kHz
kHz
When crystal oscillator is connected
When using external clock
-
10
-
31.25
μs
When using external clock
PWH/tCYLL,
PWL/tCYLL
45
-
55
%
When using external clock
X0A
12.4.3 Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
VCC ≥
2.2 V
Clock frequency
fCRH
VCC <
2.2 V
Frequency
stabilization time
Value
Conditions
tCRWT
Min
TA = + 25°C
TA =
- 40°C to + 85°C
TA =
- 40°C to + 85°C
TA = + 25°C
TA =
- 40°C to + 85°C
TA =
- 40°C to + 85°C
-
Typ
Max
3.92
4
4.08
3.8
4
4.2
2.3
-
7.03
3.4
4
4.6
3.16
4
4.84
2.3
-
7.03
-
-
10
Unit
Remarks
When trimming*1
MHz
When not trimming
When trimming*1
MHz
When not trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.
This period is able to use High-speed CR clock as source clock.
Built-in Low-speed CR
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Clock frequency
Symbol
fCRL
Conditions
-
Document Number: 002-05671 Rev.*B
Value
Min
50
Typ
100
Max
150
Unit
Remarks
kHz
Page 52 of 86
MB9A130LB Series
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Min
Typ
Unit
Max
tLOCK
200
-
-
μs
fPLLI
fPLLO
fCLKPLL
4
1
10
-
-
20
5
20
20
MHz
multiplier
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock(CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
12.4.5 Operating Conditions of Main PLL (In the case of using built-in High-speed CR clock for input clock of Main PLL)
(VCC = 2.2V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Value
Symbol
Min
Typ
Max
Unit
tLOCK
200
-
-
μs
fPLLI
fPLLO
fCLKPLL
3.8
3
11.4
-
4
-
4.2
4
16.8
16.8
MHz
multiplier
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock(CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
Note:
Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency has been trimmed.
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the
master clock from exceeding the maximum frequency.
Main PLL connection
Main clock (CLKMO)
High-speed CR clock (CLKHC)
K
divider
PLL input
clock
PLL macro
oscillation clock
Main
PLL
M
divider
Main PLL
clock
(CLKPLL)
N
divider
Document Number: 002-05671 Rev.*B
Page 53 of 86
MB9A130LB Series
12.4.6 Reset Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
name
Symbol
Reset input time
tINITX
INITX
Value
Conditions
Min
-
Unit
Max
500
-
ns
1.5
-
ms
1.5
-
ms
Remarks
When RTC mode or Stop
mode
When Deep Standby mode
12.4.7 Power-on Reset Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Value
Pin
name
Min
Typ
Max
Unit
Remarks
Power supply rising time
dV/dt
0.1
-
-
V/ms
Power supply shut down time
tOFF
1
-
-
ms
Reset release voltage
VDETH
1.44
1.60
1.76
V
When voltage rises
1.39
1.55
1.71
V
When voltage drops
VCC
Reset detection voltage
VDETL
Time until releasing
Power-on reset
tPRT
0.46
-
11.4
ms
dV/dt ≥ 0.1mV/μs
Reset detection delay time
tOFFD
-
-
0.4
ms
dV/dt ≥ -0.04mV/μs
VDETH
VDETL
VCC
dV
0.2V
dt
0.2V
tOFF
tPRT
Internal reset
CPU Operation
Document Number: 002-05671 Rev.*B
Reset active
tOFFD
Release
Reset active
start
Page 54 of 86
MB9A130LB Series
12.4.8 Base Timer Input Timing
Timer input timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
TIOAn/TIOBn
(when using as
ECK,TIN)
tTIWH,
tTIWL
-
Value
Min
Max
2tCYCP
tTIWH
-
Unit
Remarks
ns
tTIWL
ECK
VIHS
TIN
VIHS
VILS
VILS
Trigger input timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
TIOAn/TIOBn
(when using
as TGIN)
-
2tCYCP
tTRGH
TGIN
VIHS
Value
Min
Max
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.
Document Number: 002-05671 Rev.*B
Page 55 of 86
MB9A130LB Series
12.4.9 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Baud rate
Serial clock cycle
time
SCK ↓ → SOT
delay time
SIN → SCK ↑
setup time
SCK ↑ → SIN
hold time
Serial clock L
pulse width
Serial clock H
pulse width
Symbol
Pin
name
-
-
tSCYC
SCKx
tSLOVI
tIVSHI
tSHIXI
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
VCC < 2.7 V
Conditions
Min
-
2.7 V ≤
VCC < 4.5 V
Min
Max
5
-
Max
5
-
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Min
Unit
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
Master mode
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↓ → SOT
delay time
tSLOVE
SCKx,
SOTx
-
75
-
50
-
30*1
40*2
ns
SIN → SCK ↑
setup time
tIVSHE
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK ↑ → SIN
hold time
SCK falling time
SCK rising time
tSHIXE
tF
tR
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
*1 When PZR = 0.
*2 When PZR = 1.
Notes:
The above characteristics apply to clock synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 50 pF.
Document Number: 002-05671 Rev.*B
Page 56 of 86
MB9A130LB Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05671 Rev.*B
Page 57 of 86
MB9A130LB Series
CSIO (SPI = 0, SCINV = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Baud rate
Serial clock cycle
time
Symbol
-
-
tSCYC
SCKx
SCK ↑ → SOT
delay time
tSHOVI
SIN → SCK ↓
setup time
tIVSLI
SCK ↓ → SIN
hold time
Serial clock L
pulse width
Serial clock H
pulse width
SCK ↑ → SOT
delay time
SIN → SCK ↓
setup time
SCK ↓ → SIN
hold time
SCK falling time
SCK rising time
Pin
name
tSLIXI
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
VCC < 2.7 V
Conditions
Min
-
2.7 V ≤
VCC < 4.5 V
Min
Max
5
-
Max
5
-
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Min
Unit
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
Master mode
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
tSHOVE
SCKx,
SOTx
-
75
-
50
-
30*1
40*2
ns
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
tIVSLE
tSLIXE
tF
tR
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
*1 When PZR = 0.
*2 When PZR = 1.
Notes:
The above characteristics apply to clock synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 50 pF.
Document Number: 002-05671 Rev.*B
Page 58 of 86
MB9A130LB Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05671 Rev.*B
Page 59 of 86
MB9A130LB Series
CSIO (SPI = 1, SCINV = 0)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Baud rate
Serial clock cycle
time
Symbol
-
-
tSCYC
SCKx
SCK ↑ → SOT
delay time
tSHOVI
SIN → SCK ↓
setup time
tIVSLI
SCK ↓ → SIN
hold time
tSLIXI
SOT → SCK ↓
delay time
Serial clock L
pulse width
Serial clock H
pulse width
SCK ↑ → SOT
delay time
SIN → SCK ↓
setup time
SCK ↓ → SIN
hold time
SCK falling time
SCK rising time
Pin
name
tSOVLI
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
VCC < 2.7 V
Conditions
Min
-
Master mode
2.7 V ≤
VCC < 4.5 V
Min
Max
5
-
Max
5
-
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Min
Unit
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
2tCYCP – 30
-
2tCYCP - 30
-
2tCYCP - 30
-
ns
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
tSHOVE
tIVSLE
tSLIXE
tF
tR
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
30*1
-
75
-
50
-
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
Slave mode
40*2
ns
*1 When PZR = 0.
*2 When PZR = 1.
Notes:
The above characteristics apply to clock synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 50 pF.
Document Number: 002-05671 Rev.*B
Page 60 of 86
MB9A130LB Series
tSCYC
VOH
SCK
VOL
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
tR
VOH
VOL
tIVSLE
SIN
VIL
tF
*
SOT
VIL
tSHSL
VIH
VIH
tSHOVE
VOH
VOL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05671 Rev.*B
Page 61 of 86
MB9A130LB Series
CSIO (SPI = 1, SCINV = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
2.7 V ≤
VCC < 2.7 V
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Min
Max
Min
Max
Min
Max
5
5
5
Mbps
Symbol
Pin
name
-
-
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
4tCYCP
-
ns
SCK ↓ → SOT
delay time
tSLOVI
SCKx,
SOTx
-40
+40
-30
+30
-20
+20
ns
SIN → SCK ↑
setup time
tIVSHI
75
-
50
-
30
-
ns
SCK ↑ → SIN
hold time
tSHIXI
0
-
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP – 30
-
2tCYCP - 30
-
ns
Parameter
Baud rate
Serial clock cycle
time
SOT → SCK ↑
delay time
Serial clock L
pulse width
Serial clock H
pulse width
tSOVHI
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
Conditions
-
Master mode
-
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↓ → SOT
delay time
tSLOVE
SCKx,
SOTx
-
75
-
50
-
30*1
40*2
ns
SIN → SCK ↑
setup time
tIVSHE
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK ↑ → SIN
hold time
SCK falling time
SCK rising time
tSHIXE
tF
tR
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
*1 When PZR = 0.
*2 When PZR = 1.
Notes:
The above characteristics apply to clock synchronous mode.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
When the external load capacitance CL = 50 pF.
Document Number: 002-05671 Rev.*B
Page 62 of 86
MB9A130LB Series
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
Master mode
tR
SCK
tF
tSHSL
VIH
VIH
VIL
tSLSH
VIL
VIL
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
SIN
VIH
VIL
Slave mode
UART external clock input (EXT = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Serial clock L pulse width
Serial clock H pulse width
SCK falling time
SCK rising time
Symbol
tSLSH
tSHSL
tF
tR
Conditions
CL = 50 pF
Unit
Max
5
5
Remarks
ns
ns
ns
ns
tF
tR
tSHSL
SCK
V IL
Document Number: 002-05671 Rev.*B
Value
Min
tCYCP + 10
tCYCP + 10
-
V IH
tSLSH
V IH
V IL
V IL
V IH
Page 63 of 86
MB9A130LB Series
12.4.10 External Input Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Condition
s
Value
Min
Max
Unit
ADTG
Input pulse width
tINH,
tINL
FRCKx
ICxx
DTTIxX
INTxx,
NMIX
WKUPx
-
2tCYCP*1
-
ns
-
2tCYCP*1
2tCYCP +
100*1
500
500
-
ns
-
ns
-
ns
ns
*2
*3
*4
Remarks
A/D converter trigger
input
Free-run timer input clock
Input capture
Waveform generator
External interrupt
NMI
Deep Standby wake up
*1: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which A/D converter, Multi-function Timer, External interrupt, Deep Standby mode Controller is
connected to, see Block Diagram in this data sheet.
*2: When in Run mode, in Sleep mode.
*3: When in Timer mode, in RTC mode, in Stop mode.
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.
Document Number: 002-05671 Rev.*B
Page 64 of 86
MB9A130LB Series
12.4.11 I2C Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
fSCL
Standard-mode
Min
Max
0
100
Fast-mode
Min
Max
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2 tCYCP*4
-
2 tCYCP*4
-
ns
Parameter
SCL clock frequency
(Repeated) START condition
hold time
SDA ↓ → SCL ↓
SCL clock L width
SCL clock H width
(Repeated) START condition
setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
STOP condition and
START condition
Noise filter
Symbol
tSUSTA
tHDDAT
tSP
Conditions
CL = 50 pF,
R=
(VP/IOL)*1
-
Unit
Remarks
*1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
VP indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement
of tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number which I2C is connected to, see Block Diagram in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
SDA
SCL
Document Number: 002-05671 Rev.*B
Page 65 of 86
MB9A130LB Series
12.4.12 JTAG Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
TMS,TDI setup
time
tJTAGS
TCK,
TMS,TDI
TMS,TDI hold
time
tJTAGH
TCK,
TMS,TDI
TDO delay time
tJTAGD
TCK,
TDO
Value
Conditions
VCC ≥ 4.5 V
Min
Max
Unit
15
-
ns
15
-
ns
VCC ≥ 4.5 V
-
30
2.7 V ≤ VCC < 4.5 V
VCC < 2.7 V
-
45
60
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
Remarks
ns
Note:
When the external load capacitance CL = 50 pF.
TCK
TMS/TDI
TDO
Document Number: 002-05671 Rev.*B
Page 66 of 86
MB9A130LB Series
12.5 12-bit A/D Converter
Electrical characteristics for the A/D converter
1.0
4.0
0.3
1.2
50
200
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Value
Unit
Remarks
Typ
Max
12
bit
± 3.0
LSB
AVCC ≥ 2.7 V
± 5.0
LSB
AVCC < 2.7 V
± 1.9
LSB
AVCC ≥ 2.7 V
± 2.9
LSB
AVCC < 2.7 V
± 20
mV
AVRH ±
mV
20
AVCC ≥ 2.7 V
μs
AVCC < 2.7 V
AVCC ≥ 2.7 V
10
μs
AVCC < 2.7 V
AVCC ≥ 2.7 V
1000
ns
AVCC < 2.7 V
-
-
-
1
μs
CAIN
-
-
-
pF
Analog input resistor
RAIN
-
-
-
Interchannel disparity
Analog port input leak
current
Analog input voltage
-
-
-
-
15
0.9
1.6
4.0
4
-
ANxx
-
-
0.3
μA
-
ANxx
AVRH
V
-
AVSS
2.7
AVCC
-
AVR
H
-
AVCC
V
Resolution
-
Pin
name
-
Integral Nonlinearity
INL
-
Differential Nonlinearity
DNL
-
Zero transition voltage
VZT
ANxx
-
Full-scale transition voltage
VFST
ANxx
-
Conversion time*1
-
-
Sampling time*2
tS
-
Compare clock cycle*3
tCCK
-
tSTT
Parameter
Period of operation enable
state transitions
Analog input capacity
Reference voltage
Symbol
Min
kΩ
AVCC ≥ 4.5 V
2.7 V ≤ AVCC < 4.5 V
AVCC < 2.7 V
LSB
AVCC ≥ 2.7 V
AVCC < 2.7 V
*1: The conversion time is the value of sampling time (tS) + compare time (tC).
The condition of the minimum conversion time is the following.
AVCC ≥ 2.7 V, HCLK=20 MHz
sampling time: 0.3 μs, compare time: 0.7 μs
AVCC < 2.7 V, HCLK=20 MHz
sampling time: 1.2 μs, compare time: 2.8 μs
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).
For setting*4 of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual
Analog Macro Part.
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.
For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.
The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.
*2: A necessary sampling time changes by external impedance.
Ensure to set the sampling time to satisfy (Equation 1).
*3: The compare time (tC) is the value of (Equation 2).
Document Number: 002-05671 Rev.*B
Page 67 of 86
MB9A130LB Series
ANxx
Analog input pin
Rext
Comparator
RAIN
Analog signal
source
CAIN
(Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9
tS:
Sampling time
RAIN: Input resistor of A/D = 0.9 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V
Input resistor of A/D = 1.6 kΩ at 2.7 V ≤ AVCC < 4.5 V
Input resistor of A/D = 4.0 kΩ at 1.8 V ≤ AVCC < 2.7 V
CAIN: Input capacity of A/D = 15 pF at 1.8 V ≤ AVCC ≤ 5.5 V
REXT: Output impedance of external circuit
(Equation 2) tC = tCCK × 14
tC:
Compare time
tCCK: Compare clock cycle
Document Number: 002-05671 Rev.*B
Page 68 of 86
MB9A130LB Series
Definition of 12-bit A/D Converter Terms
• Resolution
• Integral Nonlinearity
• Differential Nonlinearity
: Analog variation that is recognized by an A/D converter.
: Deviation of the line between the zero-transition point (0b000000000000 ←→
0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from
the actual conversion characteristics.
: Deviation from the ideal value of the input voltage that is required to change the output code
by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Actual conversion
characteristics
Ideal characteristics
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVSS
Actual conversion characteristics
AVRH
AVSS
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
V(N+1)T
0x(N-1)
AVRH
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05671 Rev.*B
Page 69 of 86
MB9A130LB Series
12.6 Low-Voltage Detection Characteristics
12.6.1 Low-Voltage Detection Reset
(TA = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Min
1.43
1.53
1.80
1.90
Value
Typ
1.53
1.63
1.93
2.03
Max
1.63
1.73
2.06
2.16
Unit
Detected voltage
Released voltage
Detected voltage
Released voltage
VDLR
VDHR
VDLR
VDHR
LVD stabilization wait
time
tLVDRW
-
-
-
633 ×
tCYCP *
μs
Detection delay time
tLVDRD
dV/dt ≥ -4mV/µs
-
-
60
μs
SVHR = 0001
SVHR = 0100
V
V
V
V
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05671 Rev.*B
Page 70 of 86
MB9A130LB Series
12.6.2 Interrupt of Low-voltage Detection
Normal mode
(TA = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Min
1.87
1.97
1.96
2.06
2.05
2.15
2.15
2.25
2.24
2.34
2.33
2.43
2.43
2.53
2.61
2.71
2.80
2.90
2.99
3.09
3.36
3.46
3.45
3.55
3.73
3.83
3.83
3.93
3.92
4.02
Value
Typ
2.00
2.10
2.10
2.20
2.20
2.30
2.30
2.40
2.40
2.50
2.50
2.60
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.60
3.70
3.70
3.80
4.00
4.10
4.10
4.20
4.20
4.30
2.13
2.23
2.24
2.34
2.35
2.45
2.45
2.55
2.56
2.66
2.67
2.77
2.77
2.87
2.99
3.09
3.20
3.30
3.41
3.51
3.84
3.94
3.95
4.05
4.27
4.37
4.37
4.47
4.48
4.58
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Max
Unit
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
LVD stabilization
wait time
tLVDIW
-
-
-
633 × tCYCP*
μs
Detection delay time
tLVDID
dV/dt ≥
-4mV/µs
-
-
60
μs
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0101
SVHI = 0110
SVHI = 0111
SVHI = 1000
SVHI = 1001
SVHI = 1010
SVHI = 1011
SVHI = 1100
SVHI = 1101
SVHI = 1110
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05671 Rev.*B
Page 71 of 86
MB9A130LB Series
Low power mode
(TA = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Min
1.80
1.90
1.89
1.99
1.98
2.08
2.07
2.17
2.16
2.26
2.25
2.35
2.34
2.44
2.52
2.62
2.70
2.80
2.88
2.98
3.24
3.34
3.33
3.43
3.60
3.70
3.69
3.79
3.78
3.88
Value
Typ
2.00
2.10
2.10
2.20
2.20
2.30
2.30
2.40
2.40
2.50
2.50
2.60
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.60
3.70
3.70
3.80
4.00
4.10
4.10
4.20
4.20
4.30
Max
2.20
2.30
2.31
2.41
2.42
2.52
2.53
2.63
2.64
2.74
2.75
2.85
2.86
2.96
3.08
3.18
3.30
3.40
3.52
3.62
3.96
4.06
4.07
4.17
4.40
4.50
4.51
4.61
4.62
4.72
Unit
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
VDLIL
VDHIL
LVD stabilization
wait time
tLVDILW
-
-
-
8039 × tCYCP
*
μs
Detection delay time
tLVDILD
dV/dt ≥
-0.4mV/μs
-
-
800
μs
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0101
SVHI = 0110
SVHI = 0111
SVHI = 1000
SVHI = 1001
SVHI = 1010
SVHI = 1011
SVHI = 1100
SVHI = 1101
SVHI = 1110
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05671 Rev.*B
Page 72 of 86
MB9A130LB Series
12.7 Flash Memory Write/Erase Characteristics
12.7.1 Write / Erase time
(VCC = 2.0V to 5.5V, TA = - 40°C to + 85°C)
Value
Parameter
Unit
Max*
Remarks
1.6
0.4
7.5
2.1
s
Includes write time prior to internal erase
Half word (16-bit)
write time
25
400
μs
Not including system-level overhead time.
Chip erase time
4
19.2
s
Includes write time prior to internal erase
Sector erase
time
Large Sector
Small Sector
Typ*
*: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.
12.7.2 Write cycles and data hold time
Erase/write cycles (cycle)
1,000
10,000
100,000
Data hold time (year)
Remarks
20*
10*
5*
*: At average + 85C
Document Number: 002-05671 Rev.*B
Page 73 of 86
MB9A130LB Series
12.8 Return Time from Low-Power Consumption Mode
12.8.1 Return Factor: Interrupt/WKUP
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Typ
Max*
Unit
μs
Sleep mode
tCYCC
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
40
80
μs
630
1260
μs
630
1260
μs
1083
2100
μs
1099
2127
μs
Low-speed CR Timer mode
tICNT
Sub Timer mode
RTC mode,
Stop mode
Deep Standby RTC mode
Deep Standby Stop mode
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by external interrupt*)
External
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-05671 Rev.*B
Page 74 of 86
MB9A130LB Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)
Internal
resource
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family
Peripheral Manual.
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before
the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual.
Document Number: 002-05671 Rev.*B
Page 75 of 86
MB9A130LB Series
12.8.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Typ
Max*
Unit
359
647
μs
359
647
μs
929
1787
μs
Sub Timer mode
929
1787
μs
RTC/Stop mode
1099
2127
μs
Deep Standby RTC mode
Deep Standby Stop mode
1099
2127
μs
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Low-speed CR Timer mode
tRCNT
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Document Number: 002-05671 Rev.*B
Start
Page 76 of 86
MB9A130LB Series
Operation example of return from low power consumption mode (by internal resource reset*)
Internal
resource
reset
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Start
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family
Peripheral Manual.
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before
the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual.
The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on
Reset Timing in 12.4 AC Characteristics in Electrical Characteristics for the detail on the time
during the power-on reset/low-voltage detection reset.
When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the
main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time
or the Main PLL clock stabilization wait time.
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05671 Rev.*B
Page 77 of 86
MB9A130LB Series
13. Ordering Information
Part number
On-chip
Flash
memory
On-chip
SRAM
MB9AF131KBPMC-G-SNE2
64 Kbyte
8 Kbyte
MB9AF132KBPMC-G-SNE2
128 Kbyte
8 Kbyte
MB9AF131KBQN-G-AVE2
64 Kbyte
8 Kbyte
MB9AF132KBQN-G-AVE2
128 Kbyte
8 Kbyte
MB9AF131LBPMC1-G-SNE2
64 Kbyte
8 Kbyte
MB9AF132LBPMC1-G-SNE2
128 Kbyte
8 Kbyte
MB9AF131LBPMC-G-SNE2
64 Kbyte
8 Kbyte
MB9AF132LBPMC-G-SNE2
128 Kbyte
8 Kbyte
MB9AF131LBQN-G-AVE2
64 Kbyte
8 Kbyte
MB9AF132LBQN-G-AVE2
128 Kbyte
8 Kbyte
Document Number: 002-05671 Rev.*B
Package
Packing
Plastic  LQFP
(0.5mm pitch), 48-pin
(LQA048)
Plastic  QFN
(0.5mm pitch), 48-pin
(VNA048)
Plastic  LQFP
(0.5mm pitch), 64-pin
(LQD064)
Tray
Plastic  LQFP
(0.65mm pitch), 64-pin
(LQG064)
Plastic  QFN
(0.5mm pitch), 64-pin
(VNC064)
Page 78 of 86
MB9A130LB Series
14. Package Dimensions
Package Type
Package Code
LQFP 48 (0.5mm pitch)
LQA048
4
D
D1
5 7
36
25
37
24
E1
24
37
13
48
E
5
7
3
36
25
4
6
48
13
1
12
e
1
12
2 5 7
0.10 C A-B D
3
0.20 C A-B D
b
0.80
C A-B
D
8
2
A
9
A
A'
0.80 C
SYMBOL
L1
0.25
L
A1
c
b
10
SECTION A-A'
DIMENSIONS
MIN.
NOM. MAX.
0.00
0.20
1.70
A
A1
SEATING
PLANE
b
0.15
0.27
c
0.09
0.20
D
9.00 BSC
D1
7.00 BSC
e
0.50 BSC
E
9.00 BSC
E1
7.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
8
PACKAGE OUTLINE, 48 LEAD LQFP
7.0X7.0X1.7 MM LQA048 REV**
Document Number: 002-05671 Rev.*B
002-13731 **
Page 79 of 86
MB9A130LB Series
Package Type
Package Code
QFN 48
VNA048
0.10
D
C A B
D2
A
25
36
0.10 C
24
2X
(ND-1)
E
0.10
37
e
C A B
E2
5
13
9
INDEX MARK
8
48
12
R
1
L
B
TOP VIEW
e
b
4
0.10 C
0.10
0.05
C A B
C
BOTTOM VIEW
2X
0.10 C
A
0.05 C SEATING PLANE
A1
9
C
SIDE VIEW
DIMENSIONS
SYMBOL
MIN.
NOM.
A
A1
0.90
0.00
0.05
D
7.00 BSC
E
7.00 BSC
b
0.20
0.25
D2
5.50 BSC
E2
5.50 BSC
e
0.50 BSC
R
0.20 REF
L
MAX.
0.35
0.40
NOTE
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCINC CONFORMS TO ASME Y14.5-1994.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE
DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
5. ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
0.30
6. MAX. PACKAGE WARPAGE IS 0.05mm.
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT
SINK SLUG AS WELL AS THE TERMINALS.
0.45
10. JEDEC SPEC
IFICATIONNO . REF : N/A
PACKAGE OUTLINE, 48 LEAD QFN
7.0X7.0X0.9 MMVNA048 5.5X5.5 MMEPAD(SAWN) REV**
002-15528 **
Document Number: 002-05671 Rev.*B
Page 80 of 86
MB9A130LB Series
Package Type
Package Code
LQFP 64 (0.5mm pitch)
LQD064
4
D
D1
48
5 7
33
33
32
49
48
32
49
17
64
5
7
E1
E
4
3
6
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.08
C A-B
D
8
TOP VIEW
A
2
9
A
A'
0.08 C
SEATING
PLANE
L1
0.25
L
A1
c
b
SECTION A-A'
10
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
A
A1
1. 70
0.00
0.20
b
0.15
0.2
c
0.09
0.20
D
12.00 BSC.
D1
10.00 BSC.
e
0.50 BSC
E
12.00 BSC.
E1
10.00 BSC.
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
PACKAGE OUTLINE, 64 LEAD LQFP
10.0X10.0X1.7 MM LQD064 Rev**
002-11499 **
Document Number: 002-05671 Rev.*B
Page 81 of 86
MB9A130LB Series
Package Type
Package Code
LQFP 64 (0.65mm pitch)
LQG064
D
D1
48
4
5 7
33
33
32
49
48
32
49
17
64
E1 E
5
7
4
3
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.13
C A-B
D
8
TOP VIEW
2
A
A
A'
0.10 C
SEATI NG
PLA NE
0.2 5
L1
L
9
A1
10
c
b
SEC TION A -A'
SIDE VIEW
SYMBOL
DIMENSION
MIN.
NOM. MAX.
A1
0.00
0.20
b
0.27
c
0.09
1.70
A
0.32
0.37
0.20
D
14.00 BSC
D1
12.00 BSC
e
0.65 BSC
E
14.00 BSC
E1
12.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
PACKAGE OUTLINE, 64 LEAD LQFP
12.0X12.0X1.7 MM LQG064 REV**
002-13881 **
Document Number: 002-05671 Rev.*B
Page 82 of 86
MB9A130LB Series
Package Type
Package Code
QFN 64
VNC064
0.10
D
0.10 C
2X
D2
A
48
33
33
32
49
C A B
48
32
49
0.10
C A B
5
(ND-1)
E
e
17
64
1
INDEXMARK
8
E2
16
16
9
B
e
L
0.10 C
TOP VIEW
64
17
BOTTOM VIEW
2X
b
1
4
0.10
0.05
C A B
C
0.10 C
A
0.05 C
SEATINGPLANE
C
A1
SIDE VIEW
DIMENSIONS
NOTES:
SYMBOL
MIN. NOM. MAX.
A
A1
0.90
0.00
0.05
D
9.00 BSC
E
9.00 BSC
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4
b
0.20 0.25 0.30
D2
6.00 BSC
E2
6.00 BSC
6.
7.
e
0.50 BSC
8
R
0.20 REF
L
0.35
0.40 0.45
N
64
ND
16
5
9
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL
HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL,
THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE.
MAX. PACKAGE WARPAGE IS 0.05mm.
MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS.
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT
SINK SLUG AS WELL AS THE TERMINALS.
PACKAGE OUTLINE, 64 LEAD QFN
9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev*.*
002-13234 **
Document Number: 002-05671 Rev.*B
Page 83 of 86
MB9A130LB Series
15. Major Changes
Spansion Publication Number: DS706-00066
Page
Section
Revision 1.0
Revision 2.0
Features
2
· On-chip Memories
33
Handling Devices
Change Results
Initial release
Changed the description of on-chip SRAM
Added "· Stabilizing power supply voltage"
Added the following description
"Evaluate oscillation of your using crystal oscillator by your
mount board."
33
Handling Devices
Crystal oscillator circuit
37
Memory Map
Memory map(2)
Added the summary of Flash memory sector
47 - 49
Electrical Characteristics
3. DC Characteristics
(1) Current rating
· Changed the table format
· Added Timer mode current
· Added Flash Memory Current
· Moved A/D Converter Current
53
54
Electrical Characteristics
4. AC Characteristics
(4-1) Operating Conditions of Main
PLL
(4-2) Operating Conditions of Main
PLL
Electrical Characteristics
4. AC Characteristics
(6) Power-on Reset Timing
56 - 63
Electrical Characteristics
4. AC Characteristics
(8) CSIO/UART Timing
67
Electrical Characteristics
5. 12bit A/D Converter
70
73
74 - 77
78
Electrical Characteristics
7. Low-voltage Detection
Characteristics
Electrical Characteristics
8. Flash Memory Write/Erase
Characteristics
Electrical Characteristics
9. Return Time from Low-Power
Consumption Mode
Ordering Information
· Added the figure of Main PLL connection
· Changed the figure of timing
· Changed from Reset release delay time(tOND) to Time until
releasing Power-on reset(tPRT)
· Modified from UART Timing to CSIO/UART Timing
· Changed from Internal shift clock operation to Master mode
· Changed from External shift clock operation to Slave mode
· Added the typical value of Integral Nonlinearity, Differential
Nonlinearity, Zero transition voltage and Full-scale transition
voltage
· Added Conversion time at AVCC < 2.7 V
Deleted the figure
Change to the erase time of include write time prior to internal
erase
Added Return Time from Low-Power Consumption Mode
Changed notation of part number
NOTE: Please see “Document History” about later revised information.
Document Number: 002-05671 Rev.*B
Page 84 of 86
MB9A130LB Series
Document History
Document Title: MB9A130LB Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller
Document Number: 002-05671
Revision
ECN
**
-
Orig. of
Submission
Change
Date
AKIH
06/09/2015
Description of Change
Migrated to Cypress and assigned document number 002-05671.
No change to document contents or format.
*A
5162460
AKIH
03/10/2016
Updated to Cypress format.
Adapted new Cypress logo
Modified RTC description in “Features, Real-Time Clock(RTC)”. Changed
starting count value from 01 to 00. Deleted “second, or day of the week” in
the Interrupt function.
Changed package code as the following in chapter :
2. Packages
3. Pin Assignment
*B
5742425
YSKA
05/23/2017
13. Ordering Information
14. Package Dimensions.
FPT-48P-M49 -> LQA048, LCC-48P-M73 -> VNA048
FTP-64P-M38 -> LQD064, FPT-64P-M39 -> LQG064,
LCC-64P-M24 -> VNC064
Corrected “J-TAG" to “JTAG" in 4. List of Pin Functions.
Added Note for JTAG pin in 4. List of Pin Functions.
Added the Baud rate spec in 12.4.9 CSIO/UART Timing.
Document Number: 002-05671 Rev.*B
Page 85 of 86
MB9A130LB Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
cypress.com/pmic
Touch Sensing
USB Controllers
Wireless/RF
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components
Technical Support
cypress.com/support
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
.
© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of
the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application
or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for
reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems,
nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“ Unintended Uses”). A critical component is any component of a
device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part,
and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress
harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress
in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05671 Rev.*B
May 23, 2017
Page 86 of 86
Similar pages