BOARDCOM DEMO-MGA-72543 Phemt* low noise amplifi er with bypass switch Datasheet

MGA-72543
PHEMT* Low Noise Amplifier with Bypass Switch
Data Sheet
Description
Features
Avago’s MGA-72543 is an economical, easy-to-use GaAs
MMIC Low Noise Amplifier (LNA),which is designed for an
adaptive CDMA receiver LNA and adaptive CDMA transmit
driver amplifier.
The MGA-72543 features a minimum noise figure of 1.4 dB
and 14 dB associated gain from a single stage, feedback
FET amplifier. The output is internally matched to 50Ω.
The input is optimally internally matched for lowest noise
figure into 50Ω. The input may be additionally externally
matched for low VSWR through the addition of a single
series inductor. When set into the bypass mode,both input
and output are internally matched to 50Ω.
The MGA-72543 offers an integrated solution of LNA with
adjustable IIP3. The IIP3 can be fixed to a desired current
level for the receiver’s linearity requirements. The LNA has
a bypass switch function,which sets the current to zero
and provides low insertion loss. The bypass mode also
boosts dynamic range when high level signal is being
received.
 Lead-free Option Available
 Operating Frequency: 0.1 GHz ~ 6.0 GHz
 Noise Figure: 1.4 dB at 2 GHz
 Gain: 14 dB at 2 GHz
 Bypass Switch on Chip Loss = -2.5 dB (Id <5 μA)
IIP3 = +35 dBm
 Adjustable Input IP3: +2 to +14 dBm
 2.7 V to 4.2 V Operation
 Very Small Surface Mount Package
Applications
 CDMA (IS-95, J-STD-008) Receiver LNA Transmit
Driver Amp
 TDMA (IS-136)Handsets
Surface Mount Package
SOT-343 (SC-70)
For the CDMA driver amplifier applications, the MGA72543 provides suitable gain and linearity to meet the
ACPR requirements when the handset transmits the
highest power. When transmitting lower power, the MGA72543 can be bypassed, saving the drawing current.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 0)
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
*Pseudomorphic High Electron Mobility Transistor
Pin Connections and Package Marking
3
INPUT
& Vref
4
GND
1
72x
The MGA-72543 is a GaAs MMIC, processed on Avago’s
cost effective PHEMT (Pseudomorphic High Electron Mobility Transistor). It is housed in the SOT343 (SC70 4-lead)
package, and is part of the Avago Technologies CDMAdvantage RF chipset.
GND
2
OUTPUT
& Vd
Package marking is 3 characters. The last
character represents date code.
MGA-72543 Absolute Maximum Ratings [1]
Symbol
Parameter
Units
Absolute
Maximum
Operation
Maximum
Vd
Maximum Input to Output Voltage
V
5.5
4.2
Vref
Maximum Input to Ground DC Voltage
V
+0.3
-5.5
+0.1
-4.2
Id
Supply Current
mA
70
60
Pd
Power Dissipation[2,3]
mW
300
250
Pin
CW RF Input Power
dBm
+20
+13
Tj
Junction Temperature
°C
170
150
TSTG
Storage Temperature
°C
-65 to +150
-40 to +85
Thermal Resistance: [2]
 jc = 200°C/W
Notes:
1. Operation of this device in excess of any of these limits may cause permanent damage.
2. Tcase = 25°C.
Simplified Schematic
Functional Block Diagram
RF IN
Input
&
V ref
Control
Output
& Vd
SW & Bias Control
GainFET
GND
2
RF OUT
GND
MGA-72543 Electrical Specifications
Tc = +25°C, Zo = 50Ω, Id = 20 mA, Vd = 3V, unless noted.
Symbol
Parameters and Test Conditions
Vc[1,3]
Units
Min.
Typ.
Max.

0.37
0.51
0.65
0.035
1.5
1.8
0.06
15.5
0.13
f = 2.0 GHz
Vd = 3.0V (Vds = 2.5V)
Id = 20 mA
V
NF
test[1]
f = 2.0 GHz
Vd = 3.0V (= Vds + Vc)
Id = 20 mA
dB
Ga
test[1]
f = 2.0 GHz
Vd = 3.0V (= Vds + Vc)
Id = 20 mA
dB
13.5
14.4
Id = 20 mA
dB
8.5
10.5
test[1]
IIP3
f = 2.04 GHz
Vd = 3.0V (= Vds + Vc)
0.67
IL
test[1]
f = 2.0 GHz
Vd = 3.0V (Vds = 0V, Vc = 3V)
Id = 0.0 mA
dB
2.5
Ig
test[1]
f = 2.0 GHz
Vd = 3.0V (Vds = 0V, Vc = 3V)
Id = 0.0 mA
μA
2.0
Minimum Noise Figure
As measured in Figure 2 Test Circuit
(opt computed from s-parameter and
noise parameter performance as
measured in a 50Ω impedance fixture)
f = 1.0 GHz
f = 1.5 GHz
f = 2.0 GHz
f = 2.5 GHz
f = 4.0 GHz
f = 6.0 GHz
dB
1.35
1.38
1.42
1.45
1.54
1.70
Associated Gain at Nfo
As measured in Figure 2 Test Circuit
(opt computed from s-parameter and
noise parameter performance as
measured in a 50Ω impedance fixture)
f = 1.0 GHz
f = 1.5 GHz
f = 2.0 GHz
f = 2.5 GHz
f = 4.0 GHz
f = 6.0 GHz
dB
Output Power at 1 dB Gain Compression
As measured in Figure 1 Test Circuit.
Frequency = 2.04 GHz
Id = 0 mA
Id = 5 mA
Id = 10 mA
Id = 20 mA
Id = 40 mA
Id = 60 mA
dBm
Id = 0 mA
Id = 5 mA
Id = 10 mA
Id = 20 mA
Id = 40 mA
Id = 60 mA
dBm
Adjacent Channel Power Rejection,
f = 2 GHZ, offset = 1.25 MHz, Pout = 10 dBm
(CDMA modulation scheme)
f = 800 MHz, offset = 900 KHz, Pout = 8 dBm
As measured in Figure 1 Test Circuit
Id = 30 mA
Id = 40 mA
Id = 20 mA
Id = 30 mA
dBc
-55
-60
-57
-60
Input Return Loss as measured in Fig. 1
f = 2.0 GHz
dB
10.2
0.22
Output Return Loss as measured in Fig. 1
f = 2.0 GHz
dB
19.5
1.1
f = 2.0 GHz
dB
-23.2
0.16
[2]
NFo
Ga[2]
P1dB[1]
IIP3[1]
ACP
RLin[1]
[1]
RLout
ISOL[1]
Input Third Order Intercept Point
As measured in Figure 1 Test Circuit
Frequency = 2.04 GHz
Isolation |S12
|2
as measured in Fig. 2
3.5
0.01
2.0
0.04
14.8
14.2
13.6
13.0
11.2
9.2
0.11
+15.3
+3.2
+8.3
+11.2
+14.9
+17.1
0.52
+35
+3.5
+6.2
+10.5
+12.1
+14.8
0.67
Notes:
1. Standard Deviation and Typical Data as measured in the test circuit in Figure 1. Data based at least 500 part sample size and 3 wafer lots.
2. Typical data computed from s-parameter and noise parameter data measured in a 50É∂ system. Data based on 40 parts from 3 wafer lots.
3. Vc = -Vref test
960 pF
Vd
RF
Input
56 pF
1
V ref
1000 W
4
2
Figure 1. MGA-72543 Production Test Circuit.
3
18 nH
RF
Output
V ref
Bias Tee
Vd
ICM Fixture
72x
3
72x
2.7 nH
50 pF
RF
Input
Bias
Tee
RF
Output
56 p F
Figure 2. MGA-72543 Test Circuit for S, Noise, and Power Parameters Over
Frequency.
MGA-72543 Typical Performance, Tc = 25°C, Zo = 50, Vd = 3V, Id = 20 mA unless stated otherwise. All data as measured in
Figure 2 test circuit (Input & Output presented to 50Ω).
18
18
2
15
15
12
12
G a (dB)
NF (dB)
1.8
1.6
1.4
9
6
3
2.7 V
3.0 V
3.3 V
1.2
1
INPUT IP 3 (dBm)
2.2
0
1
2
3
4
5
2.7 V
3.0 V
3.3 V
0
-3
6
0
1
FREQUENCY (GHz)
G a (dB)
1.6
1.4
1
2
3
2.7 V
3.0 V
3.3 V
0
1
4
5
15
15
12
12
9
6
-40 C
+22 C
+85 C
0
1
FREQUENCY (GHz)
2
3
3
4
5
4
5
9
6
3
-40 C
+25 C
+85 C
0
-3
6
0
1
FREQUENCY (GHz)
2
3
4
5
6
FREQUENCY (GHz)
Figure 6. Minimum Noise Figure vs.
Frequency and Temperature.
Figure 7. Associated Gain with F min
vs. Frequency and Temperature.
Figure 8. Input Third Order Intercept
Point vs. Frequency and Temperature.
5
5
0
In (LNA)
Out (LNA)
6
Figure 5. Input Third Order Intercept
Point vs. Frequency and Voltage.
18
-3
6
2
FREQUENCY (GHz)
18
0
0
-3
6
3
1.2
In (Swt)
Out (Swt)
3
2
4
INSERTION LOSS (dB)
VSWR (Bypass Switch)
4
VSWR (LNA)
5
INPUT IP 3 (dBm)
-40 C
+22 C
+85 C
1.8
NF (dB)
4
3
0
Figure 4. Associated Gain with F min
vs. Frequency and Voltage.
2.2
1
3
6
FREQUENCY (GHz)
Figure 3. Minimum Noise Figure vs.
Frequency and Voltage.
2
2
9
3
2
-1
-2
-3
-40 C
+25 C
+85 C
1
0
1
2
3
4
FREQUENCY (GHz)
Figure 9. LNA on (Switch off) VSWR
vs. Frequency.
4
5
6
1
0
1
2
3
4
FREQUENCY (GHz)
Figure 10. LNA off (Switch on) VSWR
vs. Frequency.
5
6
-4
0
1
2
3
4
FREQUENCY (GHz)
Figure 11. Insertion Loss (Switch on)
vs. Frequency and Temperature.
5
6
18
18
15
15
15
12
12
12
9
6
3
2.7 V
3.0 V
3.3 V
0
-3
0
1
2
3
4
5
9
6
3
0
FREQUENCY (GHz)
2.2
2.0
G a (dBm)
NF (dB)
1
2
3
4
5
1.8
1.6
21
15
18
12
15
9
6
60
-3
80
0
20
40
60
40
60
Id CURRENT (mA)
Figure 18. Output Power at 1 dB Compression
vs. Current and Temperature.
5
0
0
20
60
80
1
0.8
0.6
Gamma
Input
Output
3
0.4
-40 C
+25 C
+85 C
0.2
80
40
Figure 17. Input Third Order Intercept
Point vs. Current and Temperature.
2
-40 C
+25 C
+85 C
20
-40 C
+25 C
+85 C
V ref (V)
VSWR
1 dB Compression (dBm)
3
6
Id CURRENT (mA)
4
6
5
6
80
15
9
4
9
5
12
3
3
Figure 16. Associated Gain (Fmin)
vs. Current and Temperature.
18
0
2
Id CURRENT (mA)
Figure 15. Minimum Noise Figure vs.
Current and Temperature.
-3
1
12
-40 C
+25 C
+85 C
Id CURRENT (mA)
0
0
Figure 14. Input Third Order Intercept
Point vs. Frequency and Current.
18
0
1.2
40
10 mA
20 mA
40 mA
FREQUENCY (GHz)
3
1.4
20
-3
6
INPUT IP 3 (dBm)
-40 C
+25 C
+85 C
0
3
0
Figure 13. Output Power at 1 dB Compression
vs. Frequency and Temperature.
2.6
1.0
6
FREQUENCY (GHz)
Figure 12. Output Power at 1 dB Compression
vs. Frequency and Voltage.
2.4
9
-40 C
+25 C
+85 C
0
-3
6
INPUT IP 3 (dBm)
18
1 dB COMPRESSION (dBm)
1 dB COMPRESSION (dBm)
MGA-72543 Typical Performance, continued, Tc = 25°C, Zo = 50, Vd = 3V, Id = 20 mA, Frequency = 2 GHz, unless stated otherwise. All data as measured in Figure 2 test circuit (Input & Output presented to 50Ω).
1
0
20
40
Id CURRENT (mA)
Figure 19. Input and Output VSWR
and VSWR of | opt | vs. Current.
60
80
0
0
20
40
60
Id CURRENT (mA)
Figure 20. V ref vs. Current and Temperature.
80
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 0 mA, ZO = 50Ω, Vref
= -3.0V (from S and Noise Parameters in Figure 1 test circuit)
2
Freq.
S11
S21
S12
S22 |S21|
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB) (dB) (dB)
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
6
0.97
0.91
0.84
0.77
0.70
0.65
0.59
0.54
0.50
0.47
0.44
0.41
0.39
0.37
0.35
0.34
0.32
0.31
0.30
0.28
0.27
0.26
0.26
0.25
0.24
0.23
0.23
0.22
0.21
0.21
0.20
0.20
0.19
0.19
0.19
0.18
0.18
0.18
0.18
0.17
0.17
0.18
0.19
0.16
0.20
0.23
0.24
0.25
0.26
0.27
-13
-25
-34
-43
-50
-54
-60
-64
-67
-71
-73
-76
-78
-80
-82
-84
-86
-87
-89
-90
-92
-93
-94
-95
-96
-98
-99
-99
-100
-101
-102
-103
-104
-105
-106
-107
-108
-110
-112
-113
-123
-136
-149
-176
175
171
164
154
142
125
0.19
0.34
0.46
0.54
0.60
0.64
0.67
0.70
0.71
0.73
0.74
0.75
0.76
0.76
0.77
0.77
0.77
0.77
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.78
0.78
0.77
0.76
0.75
0.74
0.73
0.71
0.70
74
60
49
40
33
26
20
16
12
8
4
1
-2
-5
-7
-10
-12
-15
-17
-19
-21
-23
-25
-27
-29
-31
-33
-35
-37
-39
-41
-43
-45
-47
-49
-51
-52
-54
-56
-58
-67
-77
-86
-95
-105
-115
-125
-135
-146
-157
0.19
0.34
0.46
0.54
0.60
0.64
0.68
0.70
0.72
0.73
0.74
0.75
0.76
0.76
0.77
0.77
0.77
0.77
0.78
0.78
0.78
0.78
0.78
0.78
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.78
0.77
0.77
0.76
0.75
0.74
0.73
0.71
0.70
74
60
49
40
33
26
21
16
12
8
4
1
-2
-4
-7
-10
-12
-14
-17
-19
-21
-23
-25
-27
-29
-31
-33
-35
-37
-39
-41
-43
-45
-47
-49
-50
-52
-54
-56
-58
-67
-77
-86
-95
-105
-115
-125
-135
-146
-157
0.96
0.86
0.77
0.68
0.61
0.54
0.49
0.45
0.42
0.39
0.36
0.34
0.33
0.31
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.17
0.16
0.15
0.15
0.14
0.13
0.13
0.12
0.12
0.11
0.11
0.11
0.10
0.01
0.10
0.12
0.13
0.13
0.13
0.13
0.14
0.16
0.19
-16
-29
-40
-48
-54
-60
-64
-67
-70
-73
-75
-77
-80
-82
-83
-85
-86
-88
-89
-90
-92
-93
-94
-96
-97
-98
-100
-101
-103
-104
-106
-108
-110
-111
-113
-115
-117
-120
-122
-124
-138
-150
-161
-178
170
160
150
137
121
104
-14.5
-9.3
-6.8
-5.3
-4.4
-3.8
-3.4
-3.1
-2.9
-2.7
-2.6
-2.5
-2.4
-2.4
-2.3
-2.2
-2.3
-2.2
-2.2
-2.2
-2.2
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.0
-2.2
-2.2
-2.3
-2.4
-2.5
-2.6
-2.8
-2.9
-3.2
-0.3
-0.8
-1.5
-2.3
-3.1
-3.8
-4.6
-5.3
-6.0
-6.6
-7.1
-7.7
-8.1
-8.6
-9.0
-9.4
-9.8
-10.2
-10.6
-10.9
-11.2
-11.5
-11.8
-12.1
-12.4
-12.7
-12.9
-13.2
-13.4
-13.7
-13.9
-14.1
-14.3
-14.5
-14.7
-14.8
-14.9
-15.0
-15.1
-15.1
-15.3
-15.1
-14.6
-15.8
-13.8
-12.8
-12.3
-12.0
-11.8
-11.3
-0.4
-1.3
-2.3
-3.3
-4.3
-5.4
-6.2
-6.9
-7.6
-8.2
-8.8
-9.3
-9.8
-10.2
-10.6
-11.1
-11.5
-11.8
-12.2
-12.6
-12.9
-13.3
-13.7
-14.0
-14.4
-14.8
-15.2
-15.5
-15.9
-16.3
-16.7
-17.1
-17.5
-17.9
-18.2
-18.6
-18.9
-19.1
-19.4
-19.6
-20.1
-19.7
-18.7
-18.1
-17.8
-17.7
-17.5
-17.1
-16.2
-14.4
-14.2
-8.3
-5.3
-3.7
-2.8
-2.3
-2.1
-2.0
-1.9
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.8
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-2.0
-2.0
-2.1
-2.2
-2.2
-2.3
-2.4
-2.5
-2.6
-2.8
-14.5
-9.3
-6.8
-5.3
-4.4
-3.8
-3.4
-3.1
-2.9
-2.7
-2.6
-2.5
-2.4
-2.4
-2.3
-2.3
-2.3
-2.2
-2.2
-2.2
-2.2
-2.1
-2.1
-2.1
-2.0
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.1
-2.2
-2.2
-2.3
-2.4
-2.5
-2.6
-2.8
-2.9
-3.2
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 5 mA, ZO = 50Ω, Vref
= 0.7V (from S and Noise Parameters in Figure 2 test circuit)
2
Freq.
S11
S21
S12
S22 |S21|
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB)
(dB)
(dB)
0.10
0.50
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
0.82
0.78
0.76
0.75
0.74
0.73
0.72
0.72
0.71
0.70
0.69
0.69
0.68
0.67
0.66
0.66
0.65
0.64
0.63
0.63
0.59
0.56
0.53
0.51
0.50
0.49
0.49
0.50
0.49
0.47
0.47
-9
-24
-34
-38
-41
-45
-48
-51
-54
-58
-61
-64
-67
-70
-73
-76
-79
-82
-85
-88
-103
-118
-138
-152
-169
176
160
148
136
123
109
4.01
3.83
3.70
3.65
3.61
3.57
3.52
3.48
3.45
3.40
3.36
3.32
3.29
3.25
3.22
3.18
3.15
3.12
3.08
3.06
2.92
2.80
2.65
2.55
2.42
2.30
2.18
2.07
1.97
1.89
1.82
174
161
151
148
145
142
139
136
133
130
127
124
121
119
116
113
111
108
105
103
90
77
62
52
40
28
18
7
-4
-15
-26
Freq.
(GHz)
NFmin
(dB)
opt
Mag
Ang
0.80
0.90
1.00
1.50
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
1.58
1.46
1.43
1.57
1.67
1.66
1.68
1.69
1.72
1.73
1.74
1.74
1.78
1.80
1.83
1.87
1.87
1.94
1.94
0.59
0.53
0.46
0.33
0.31
0.31
0.29
0.29
0.29
0.27
0.28
0.27
0.25
0.23
0.22
0.21
0.22
0.23
0.26
31
33
37
47
55
58
60
62
66
69
71
74
87
103
121
143
164
-179
-150
7
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.08
0.08
0.08
0.08
0.08
0.09
0.09
0.01
0.10
0.11
0.12
0.12
0.12
0.13
0.13
0.14
0.14
0.15
19
13
15
16
17
18
18
18
19
19
19
18
18
18
17
17
16
16
15
15
11
7
1
-3
-9
-13
-17
-23
-28
-32
-37
0.60
0.58
0.56
0.56
0.56
0.56
0.56
0.55
0.55
0.55
0.54
0.54
0.54
0.53
0.53
0.53
0.52
0.52
0.51
0.51
0.48
0.44
0.40
0.38
0.36
0.34
0.32
0.31
0.29
0.28
0.26
-8
-15
-23
-26
-28
-30
-32
-35
-37
-39
-42
-44
-45
-47
-49
-51
-53
-55
-57
-59
-69
-80
-94
-104
-117
-129
-142
-154
-165
-176
171
12.1
11.7
11.4
11.3
11.2
11.1
10.9
10.8
10.7
10.6
10.5
10.4
10.3
10.2
10.1
10.1
10.0
9.9
9.8
9.7
9.3
8.9
8.4
8.1
7.7
7.2
6.8
6.3
5.9
5.5
5.2
1.7
2.1
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.0
4.5
5.0
5.5
5.8
6.0
6.1
6.1
6.0
6.2
6.5
6.5
4.5
4.8
5.0
5.0
5.0
5.1
5.1
5.2
5.2
5.2
5.3
5.4
5.4
5.5
5.5
5.6
5.6
5.7
5.8
5.9
6.4
7.1
7.9
8.4
8.9
9.3
9.8
10.1
10.7
11.2
11.8
14.6
13.9
13.6
13.4
13.2
13.1
12.9
12.8
12.6
12.5
12.3
12.2
12.1
11.9
11.8
11.7
11.5
11.4
11.3
11.2
10.7
10.2
9.6
9.2
8.8
8.3
7.8
7.5
7.0
6.6
6.3
-26.2
-25.4
-24.8
-24.6
-24.4
-24.2
-23.9
-23.7
-23.4
-23.2
-23.0
-22.7
-22.5
-22.3
-22.1
-21.9
-21.7
-21.5
-21.3
-21.1
-20.3
-19.7
-19.1
-18.7
-18.3
-18.1
-17.8
-17.5
-17.3
-17.1
-16.6
Rn/Zo
Ga
(dB)
|opt|RL
(dB)
Rn
(Ω)
P1dB
(dBm)
OIP3
(dBm)
IIP3
(dBm)
0.34
0.34
0.32
0.30
0.30
0.29
0.28
0.28
0.27
0.27
0.26
0.26
0.24
0.21
0.18
0.16
0.15
0.14
0.15
12.53
12.19
11.84
10.97
10.64
10.53
10.42
10.33
10.23
10.12
10.03
9.95
9.53
9.13
8.74
8.31
7.87
7.45
7.04
4.60
5.47
6.74
9.67
10.17
10.31
10.62
10.62
10.90
11.23
11.13
11.22
11.95
12.60
13.01
13.41
13.12
12.61
11.76
17.20
16.84
16.09
14.94
14.78
14.35
14.04
13.96
13.63
13.29
13.12
12.83
11.80
10.44
9.14
8.06
7.28
7.13
7.67
3.4
3.3
3.2
3.2
3.2
3.3
3.2
3.3
3.3
3.4
3.4
3.5
3.4
3.3
3.1
2.4
2.3
2.4
2.0
13.0
12.9
12.8
12.4
11.9
11.8
12.7
12.7
12.8
12.8
12.9
12.9
12.9
13.0
13.3
13.6
14.0
14.5
14.2
3.0
3.2
3.3
3.4
3.5
3.5
3.5
3.5
3.5
3.7
3.8
3.9
4.1
4.1
4.2
4.5
4.8
6.8
7.5
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 10 mA, ZO = 50Ω, Vref = 0.6V (from S and Noise Parameters in Figure 2 test circuit)
Freq.
S11
S21
S12
S22 |S21|2
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB)
(dB)
0.10
0.50
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
Freq.
(GHz)
0.80
0.80
0.90
1.00
1.50
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
8
0.79
0.74
0.72
0.71
0.70
0.69
0.68
0.67
0.66
0.66
0.65
0.64
0.63
0.62
0.61
0.60
0.59
0.59
0.58
0.57
0.54
0.50
0.48
0.46
0.45
0.45
0.45
0.46
0.45
0.44
0.44
-10
-26
-37
-40
-44
-47
-51
-54
-58
-61
-65
-68
-71
-74
-77
-81
-84
-87
-90
-93
-108
-124
-141
-158
-175
170
154
142
131
119
105
5.30
5.04
4.84
4.77
4.71
4.64
4.58
4.51
4.45
4.39
4.33
4.27
4.21
4.15
4.01
4.04
3.99
3.94
3.89
3.84
3.62
3.42
3.23
3.05
2.88
2.72
2.57
2.43
2.31
2.21
2.12
173
160
150
146
143
140
137
134
131
128
125
122
119
116
113
111
108
105
103
100
87
75
62
50
38
27
17
6
-5
-16
0
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.08
0.08
0.08
0.09
0.01
0.10
0.11
0.11
0.12
0.12
0.13
0.14
0.15
19
13
15
16
17
17
18
18
19
19
19
19
18
18
18
18
17
17
16
16
13
9
6
2
-3
-6
-10
-14
-19
-23
-28
0.49
0.47
0.45
0.45
0.45
0.45
0.45
0.45
0.44
0.44
0.44
0.43
0.43
0.43
0.42
0.42
0.42
0.41
0.41
0.40
0.37
0.34
0.31
0.29
0.27
0.26
0.24
0.24
0.22
0.21
0.20
-9
-17
-24
-27
-29
-31
-33
-36
-38
-40
-42
-44
-46
-48
-50
-52
-54
-55
-57
-59
-69
-79
-90
-103
-115
-128
-141
-154
-165
-176
169
14.5
14.0
13.7
13.6
13.5
13.3
13.2
13.1
13.0
12.8
12.7
12.6
12.5
12.4
12.3
12.1
12.0
11.9
11.8
11.7
11.2
10.7
10.2
9.7
9.2
8.7
8.2
7.7
7.3
6.9
6.6
2.1
2.6
2.9
3.0
3.2
3.2
3.4
3.4
3.6
3.7
3.8
3.9
4.0
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.4
6.0
6.4
6.8
6.9
7.0
6.9
6.7
6.9
7.2
7.1
6.3
6.6
6.9
6.9
6.9
6.9
7.0
7.0
7.1
7.1
7.2
7.3
7.3
7.4
7.5
7.5
7.6
7.7
7.8
7.9
8.6
9.3
10.1
10.8
11.5
11.8
12.3
12.5
13.0
13.5
14.0
17.3
16.5
16.0
15.8
15.6
15.4
15.2
15.1
14.9
14.7
14.5
14.3
14.2
14.0
13.8
13.7
13.5
13.4
13.2
13.1
12.4
11.8
11.2
10.6
10.1
9.6
9.1
8.7
8.2
7.8
7.5
(dB)
-26.9
-26.2
-25.7
-25.5
-25.3
-25.0
-24.8
-24.6
-24.3
-24.1
-23.9
-23.7
-23.5
-23.3
-23.1
-22.9
-22.7
-22.5
-22.4
-22.2
-21.5
-20.8
-20.3
-19.8
-19.4
-19.0
-18.6
-18.2
-17.9
-17.4
-16.7
NFmin opt
(dB)
Mag
Ang
Rn/Zo
Ga
(dB)
|opt|RL
(dB)
Rn
(Ω)
P1dB
(dBm)
OIP3
(dBm)
IIP3
(dBm)
1.58
1.33
1.33
1.34
1.41
1.44
1.45
1.47
1.47
1.49
1.52
1.51
1.50
1.55
1.56
1.58
1.60
1.62
1.68
1.67
0.34
0.23
0.24
0.24
0.24
0.23
0.22
0.22
0.21
0.21
0.21
0.20
0.20
0.19
0.17
0.15
0.14
0.13
0.13
0.15
12.53
14.45
14.27
14.00
13.10
12.71
12.58
12.45
12.32
12.21
12.08
11.98
11.86
11.32
10.81
10.31
9.82
9.32
8.86
8.45
4.60
6.96
7.27
8.30
11.42
11.95
12.21
12.58
12.66
12.83
13.27
13.10
13.21
13.98
14.79
15.24
15.23
14.59
13.61
11.99
17.20
11.52
11.84
12.24
11.94
11.35
11.02
10.85
10.66
10.55
10.26
10.23
10.02
9.33
8.31
7.46
6.92
6.51
6.58
7.33
3.4
9.3
9.3
9.3
8.8
8.5
8.4
8.3
8.3
8.3
8.4
8.4
8.5
8.7
8.8
9.0
9.3
9.6
10.0
9.8
13.0
17.9
17.8
17.7
17.5
17.4
17.2
17.3
17.5
17.6
17.7
17.8
17.9
18.1
18.3
19.1
19.4
19.8
20.2
19.8
3.0
4.1
4.2
4.3
5.0
5.1
5.2
5.2
4.5
4.8
5.0
5.4
5.6
6.1
6.8
7.9
8.7
9.1
11.0
11.6
0.59
0.45
0.43
0.38
0.27
0.25
0.25
0.23
0.23
0.23
0.22
0.22
0.22
0.20
0.18
0.17
0.17
0.19
0.21
0.25
31
37
37
42
51
56
60
62
66
68
71
74
78
92
110
131
154
177
-167
-136
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 20 mA, ZO = 50Ω, Vref = 0.5V (from S and Noise Parameters in Figure 2 test circuit)
Freq.
S11
S21
S12
S22 |S21|2
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB)
(dB)
0.10
0.50
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
Freq.
(GHz)
0.80
0.90
1.00
1.50
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
9
0.76
0.71
0.69
0.67
0.66
0.65
0.64
0.64
0.63
0.62
0.61
0.60
0.59
0.58
0.57
0.56
0.55
0.55
0.54
0.53
0.49
0.46
0.44
0.42
0.41
0.41
0.42
0.43
0.42
0.41
0.41
-11
-27
-38
-42
-46
-50
-54
-57
-60
-64
-67
-71
-74
-77
-81
-84
-87
-90
-93
-97
-112
-128
-145
-162
-179
166
150
139
127
116
102
6.35
6.00
5.74
5.65
5.57
5.48
5.39
5.32
5.23
5.15
5.06
4.98
4.90
4.83
4.75
4.68
4.61
4.54
4.48
4.41
4.11
3.85
3.61
3.39
3.18
2.99
2.83
2.67
2.53
2.42
2.33
173
159
148
145
142
138
135
132
129
126
123
120
117
114
111
109
106
103
101
98
85
73
60
49
37
26
16
6
-5
-15
-26
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.08
0.08
0.09
0.01
0.10
0.11
0.11
0.12
0.12
0.13
0.14
18
12
15
16
17
18
18
19
19
19
19
20
20
20
19
19
19
19
18
18
16
13
10
6
2
-1
-5
-10
-14
-18
-23
0.40
0.38
0.37
0.37
0.37
0.37
0.37
0.36
0.36
0.36
0.36
0.35
0.35
0.35
0.34
0.34
0.34
0.33
0.33
0.33
0.30
0.27
0.25
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
-11
-17
-25
-27
-29
-32
-33
-36
-38
-40
-42
-44
-46
-47
-49
-51
-52
-54
-56
-57
-66
-75
-86
-98
-111
-124
-138
-151
-162
-172
172
16.1
15.6
15.2
15.0
14.9
14.8
14.6
14.5
14.4
14.2
14.1
14.0
13.8
13.7
13.5
13.4
13.3
13.2
13.0
12.9
12.3
11.7
11.2
10.6
10.1
9.5
9.0
8.5
8.1
7.7
7.3
2.4
3.0
3.3
3.4
3.6
3.7
3.8
3.9
4.0
4.2
4.3
4.5
4.6
4.7
4.9
5.0
5.1
5.2
5.4
5.5
6.2
6.7
7.2
7.6
7.7
7.7
7.6
7.3
7.6
7.8
7.7
8.0
8.4
8.7
8.7
8.7
8.7
8.7
8.8
8.9
8.9
9.0
9.0
9.1
9.2
9.3
9.3
9.4
9.5
9.6
9.7
10.5
11.3
12.2
13.1
13.8
14.1
14.6
14.8
15.4
15.9
16.4
19.0
18.0
17.4
17.2
17.0
16.8
16.6
16.4
16.2
16.0
15.8
15.6
15.4
15.2
15.0
14.8
14.7
14.5
14.3
14.2
13.4
12.7
12.0
11.4
10.8
10.3
9.8
9.4
8.9
8.4
8.1
(dB)
-27.5
-26.9
-26.5
-26.3
-26.1
-25.9
-25.6
-25.4
-25.2
-25.0
-24.8
-24.6
-24.4
-24.2
-24.0
-23.8
-23.6
-23.4
-23.2
-23.1
-22.3
-21.6
-21.0
-20.4
-19.9
-19.5
-19.0
-18.5
-18.1
-17.5
-16.9
NFmin opt
(dB)
Mag
Ang
Rn/Zo
Ga
(dB)
|opt|RL
(dB)
Rn
(Ω)
P1dB
(dBm)
OIP3
(dBm)
IIP3
(dBm)
1.30
1.31
1.32
1.35
1.38
1.37
1.39
1.40
1.41
1.40
1.43
1.43
1.45
1.47
1.47
1.51
1.54
1.60
1.67
0.25
0.25
0.22
0.21
0.20
0.20
0.19
0.19
0.19
0.19
0.18
0.18
0.17
0.15
0.14
0.13
0.12
0.13
0.14
15.72
15.53
15.39
14.51
14.00
13.85
13.71
13.57
13.44
13.30
13.17
13.04
12.40
11.82
11.26
10.71
10.19
9.71
9.33
8.63
9.11
9.18
11.47
13.11
13.33
13.73
13.85
13.85
13.94
14.17
14.19
15.12
15.77
16.13
15.96
14.85
13.81
11.47
12.40
12.47
11.01
10.50
10.05
9.89
9.71
9.48
9.47
9.26
9.12
8.95
8.45
7.52
6.86
6.47
6.20
6.34
7.13
11.8
11.7
11.7
11.6
11.5
11.6
11.6
11.6
11.7
11.7
11.8
11.8
11.9
12.0
12.1
12.3
12.4
12.5
12.6
23.9
23.9
23.9
24.0
24.0
24.0
24.0
24.1
24.3
24.4
24.3
24.4
24.7
24.6
24.5
24.6
24.8
24.9
25.0
8.8
9.0
9.1
9.7
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
11.2
11.8
12.6
14.3
15.0
15.5
15.7
0.37
0.35
0.35
0.27
0.22
0.22
0.21
0.20
0.20
0.20
0.20
0.20
0.18
0.16
0.16
0.16
0.18
0.20
0.27
39
40
41
51
58
61
65
70
71
74
78
81
95
117
139
163
-175
-160
-129
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 40 mA, ZO = 50Ω, Vref = 0.3V (from S and Noise Parameters in Figure 2 test circuit)
Freq.
S11
S21
S12
S22 |S21|2
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB)
(dB)
0.10
0.50
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
Freq.
(GHz)
0.80
0.90
1.00
1.50
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
10
0.75
0.70
0.68
0.67
0.65
0.64
0.63
0.63
0.62
0.61
0.60
0.59
0.58
0.57
0.56
0.55
0.54
0.53
0.53
0.52
0.48
0.45
0.42
0.41
0.40
0.40
0.41
0.42
0.41
0.40
0.40
-11
-28
-39
-43
-47
-51
-55
-58
-62
-65
-69
-72
-75
-79
-82
-85
-89
-92
-95
-98
-114
-130
-147
-164
179
165
148
137
126
115
101
6.84
6.45
6.15
6.05
5.96
5.87
5.77
5.68
5.58
5.49
5.40
5.31
5.22
5.13
5.05
4.96
4.89
4.81
4.74
4.66
4.32
4.03
3.77
3.53
3.31
3.11
2.93
2.77
2.63
2.51
2.42
173
159
148
144
141
138
134
131
128
125
122
119
116
113
110
108
105
102
100
97
84
72
60
48
37
26
16
6
-5
-15
-25
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.07
0.08
0.08
0.09
0.09
0.10
0.11
0.11
0.12
0.13
0.14
17
11
14
15
16
17
18
19
19
20
20
20
20
20
21
21
20
20
20
20
18
16
14
11
7
3
0
-5
-9
-13
-18
0.36
0.34
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.32
0.32
0.32
0.32
0.32
0.31
0.31
0.31
0.31
0.30
0.30
0.28
0.25
0.23
0.21
0.19
0.18
0.17
0.17
0.16
0.15
0.14
-12
-17
-24
-26
-28
-30
-32
-34
-36
-38
-40
-41
-43
-44
-46
-47
-49
-50
-52
-53
-61
-69
-79
-90
-102
-114
-127
-140
-150
-158
-173
16.7
16.2
15.8
15.6
15.5
15.4
15.2
15.1
14.9
14.8
14.6
14.5
14.4
14.2
14.1
13.9
13.8
13.6
13.5
13.4
12.7
12.1
11.5
11.0
10.4
9.9
9.3
8.9
8.4
8.0
7.7
2.5
3.1
3.4
3.5
3.7
3.8
4.0
4.1
4.2
4.3
4.5
4.6
4.8
4.9
5.1
5.2
5.3
5.5
5.6
5.7
6.4
7.0
7.5
7.8
7.9
7.9
7.8
7.5
7.8
8.0
7.9
8.9
9.3
9.6
9.6
9.6
9.6
9.7
9.7
9.8
9.8
9.9
9.9
10.0
10.0
10.1
10.2
10.2
10.3
10.4
10.5
11.2
12.0
12.9
13.7
14.4
14.7
15.3
15.5
16.1
16.5
17.0
19.7
18.7
18.1
17.8
17.6
17.4
17.1
17.0
16.8
16.5
16.3
16.1
15.9
15.7
15.5
15.3
15.1
14.9
14.8
14.6
13.8
13.0
12.3
11.7
11.1
10.6
10.1
9.7
9.2
8.7
8.4
(dB)
-28.1
-27.6
-27.2
-27.0
-26.9
-26.7
-26.5
-26.3
-26.1
-25.9
-25.6
-25.4
-25.2
-25.1
-24.9
-24.7
-24.5
-24.3
-24.1
-23.9
-23.1
-22.4
-21.7
-21.1
-20.5
-20.0
-19.4
-18.9
-18.4
-17.8
-17.0
NFmin opt
(dB)
Mag
Ang
Rn/Zo
Ga
(dB)
|opt|RL
(dB)
Rn
(Ω)
P1dB
(dBm)
OIP3
(dBm)
IIP3
(dBm)
1.29
1.26
1.22
1.40
1.49
1.50
1.52
1.52
1.53
1.53
1.55
1.55
1.59
1.60
1.64
1.68
1.71
1.78
1.74
0.27
0.27
0.27
0.27
0.23
0.23
0.22
0.22
0.22
0.21
0.21
0.20
0.18
0.16
0.14
0.13
0.13
0.13
0.15
16.44
16.25
16.02
15.13
14.62
14.46
14.30
14.16
14.01
13.86
13.73
13.59
12.91
12.29
11.71
11.15
10.61
10.15
9.76
8.03
8.34
9.06
10.79
11.65
11.87
12.27
12.16
12.35
12.59
12.60
12.57
13.32
13.81
13.86
13.63
12.87
11.91
10.27
13.29
13.34
13.39
13.44
11.72
11.41
11.20
10.92
10.79
10.52
10.33
10.14
9.18
8.06
7.11
6.57
6.35
6.54
7.69
15.2
15.1
15.1
14.8
14.8
14.8
14.9
14.9
15.0
15.0
15.1
15.1
15.2
15.3
15.6
15.5
15.2
16.0
15.5
26.0
26.0
25.9
26.2
26.1
26.1
26.0
26.2
26.3
26.4
26.5
26.7
26.9
27.0
27.3
27.5
27.7
28.1
27.9
10.6
10.8
11.0
11.8
11.8
11.9
12.0
12.4
12.7
13.0
13.2
13.4
14.1
14.8
15.7
16.5
16.7
17.7
18.4
0.40
0.38
0.35
0.29
0.26
0.26
0.24
0.25
0.24
0.23
0.23
0.24
0.22
0.20
0.20
0.21
0.23
0.25
0.31
36
37
41
53
61
64
68
72
75
78
81
85
100
120
142
163
-175
-159
-133
MGA-72543 Typical Scattering Parameters and Noise Parameters
TC = 25°C, Vd = 3.0V, Id = 60 mA, ZO = 50Ω, Vref = 0.1V (from S and Noise Parameters in Figure 2 test circuit)
Freq.
S11
S21
S12
S22 |S21|2
RLin
RLout
Gmax
Isolation
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
(dB)
(dB)
(dB)
(dB)
0.10
0.50
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
Freq.
(GHz)
0.80
0.90
1.00
1.50
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
11
0.77
0.72
0.69
0.68
0.67
0.66
0.65
0.65
0.64
0.63
0.62
0.61
0.60
0.59
0.58
0.57
0.56
0.55
0.55
0.54
0.50
0.47
0.44
0.43
0.42
0.42
0.43
0.44
0.43
0.42
0.42
-10
-27
-39
-43
-47
-51
-54
-58
-62
-65
-69
-72
-75
-79
-82
-85
-89
-92
-95
-98
-114
-130
-147
-164
179
164
148
137
126
115
101
6.38
6.01
5.75
5.66
5.58
5.49
5.40
5.32
5.23
5.15
5.07
4.98
4.90
4.82
4.75
4.67
4.60
4.53
4.47
4.39
4.09
3.83
3.59
3.36
3.15
2.97
2.80
2.65
2.51
2.40
2.32
173
159
148
145
141
138
135
132
129
125
122
119
117
114
111
108
105
103
100
97
84
72
60
48
37
26
16
5
-6
-16
-26
0.04
0.04
0.04
0.04
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.06
0.06
0.07
0.07
0.08
0.08
0.09
0.09
0.10
0.11
0.11
0.12
0.13
17
10
13
14
15
16
17
18
18
19
19
19
19
20
20
20
20
20
20
19
18
17
15
12
9
6
3
-1
-5
-9
-14
0.37
0.36
0.35
0.35
0.35
0.35
0.35
0.35
0.34
0.34
0.34
0.34
0.34
0.34
0.33
0.33
0.33
0.33
0.32
0.32
0.30
0.28
0.25
0.23
0.22
0.21
0.20
0.20
0.19
0.18
0.17
-11
-16
-22
-24
-26
-28
-30
-32
-34
-36
-38
-39
-41
-42
-44
-45
-46
-48
-49
-51
-58
-66
-75
-86
-97
-108
-121
-132
-141
-149
-162
16.1
15.6
15.2
15.1
14.9
14.8
14.7
14.5
14.4
14.2
14.0
14.0
13.8
13.7
13.5
13.4
13.3
13.1
13.0
12.9
12.2
11.7
11.1
10.5
10.0
9.5
8.9
8.5
8.0
7.6
7.3
2.3
2.9
3.2
3.3
3.5
3.6
3.7
3.8
3.9
4.0
4.2
4.3
4.5
4.6
4.7
4.9
5.0
5.1
5.2
5.4
6.0
6.6
7.0
7.4
7.5
7.5
7.3
7.1
7.3
7.6
7.4
8.5
8.9
9.2
9.2
9.2
9.2
9.2
9.2
9.3
9.3
9.4
9.4
9.4
9.5
9.5
9.6
9.7
9.7
9.8
9.9
10.5
11.1
11.9
12.6
13.2
13.5
14.0
14.2
14.6
14.9
15.4
19.2
18.2
17.6
17.3
17.1
16.9
16.7
16.5
16.3
16.1
15.9
15.7
15.5
15.3
15.1
14.9
14.7
14.5
14.4
14.2
13.4
12.6
12.0
11.4
10.8
10.3
9.8
9.4
8.9
8.4
8.1
(dB)
-28.2
-27.8
-27.5
-27.3
-27.2
-27.0
-26.8
-26.6
-26.5
-26.3
-26.1
-25.9
-25.7
-25.5
-25.3
-25.2
-25.0
-24.8
-24.7
-24.5
-23.7
-23.1
-22.4
-21.8
-21.2
-20.6
-20.0
-19.4
-18.9
-18.2
-17.4
NFmin opt
(dB)
Mag
Ang
Rn/Zo
Ga
(dB)
|opt|RL
(dB)
Rn
(Ω)
P1dB
(dBm)
OIP3
(dBm)
IIP3
(dBm)
1.61
1.46
1.51
1.70
1.81
1.83
1.85
1.85
1.86
1.88
1.89
1.90
1.95
1.99
2.02
2.09
2.13
2.23
2.23
0.41
0.44
0.39
0.87
0.33
0.32
0.31
0.31
0.30
0.29
0.28
0.27
0.24
0.20
0.16
0.14
0.13
0.14
0.18
15.94
15.83
15.80
14.86
14.30
14.13
13.97
13.82
13.68
13.53
13.41
13.26
12.60
12.01
11.44
10.91
10.40
9.97
9.58
7.42
7.27
6.81
8.21
9.20
9.47
9.65
9.69
9.82
9.99
9.98
10.01
10.54
10.75
10.79
10.60
10.03
9.38
8.43
20.58
21.84
19.69
43.44
16.67
16.16
15.72
15.27
14.96
14.39
14.13
13.72
12.01
9.93
8.22
7.17
6.74
7.17
9.17
17.0
17.0
16.9
16.7
16.9
16.8
17.1
16.9
17.1
17.1
17.2
17.2
17.5
17.3
17.5
17.8
17.5
16.6
16.0
28.0
28.2
28.4
28.5
27.7
27.9
27.8
28.1
28.2
28.4
28.6
28.8
28.4
28.8
28.7
29.2
29.0
27.9
29.0
13.3
13.5
13.6
14.1
14.2
14.2
14.8
15.0
15.3
15.5
15.6
15.9
16.2
16.9
17.4
18.6
18.8
18.5
19.9
0.43
0.43
0.46
0.39
0.35
0.34
0.33
0.33
0.32
0.32
0.32
0.31
0.30
0.29
0.29
0.30
0.32
0.34
0.38
36
37
40
53
64
67
71
74
77
81
84
87
103
122
143
163
-178
-161
-138
MGA-72543 Typical Scattering Parameters (LNA/Switch Powered Off )
TC = 25°C, Vd = 0V, Id = 0 mA, ZO = 50Ω
Freq.
S11
S21
S12
(GHz)
Mag.
Ang.
Mag.
Ang.
Mag.
Ang.
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
12
0.80
0.75
0.71
0.69
0.66
0.65
0.64
0.64
0.63
0.63
0.63
0.64
0.64
0.64
0
0
0
0
0
171
157
144
132
121
112
103
94
86
0.097
0.122
0.141
0.157
0.171
0.184
0.195
0.204
0.211
0.216
0.218
0.224
0.227
0.229
50
39
31
25
18
12
6
0
0
0
0
0
0
0
0.097
0.122
0.141
0.157
0.171
0.184
0.195
0.204
0.211
0.216
0.218
0.224
0.227
0.229
50
39
31
25
18
12
6
0
0
0
0
0
0
0
S22
Mag.
0.81
0.81
0.80
0.80
0.80
0.80
0.81
0.80
0.80
0.81
0.81
0.82
0.82
0.82
Ang.
|S21|2
(dB)
RLin
(dB)
RLout
(dB)
167
160
152
145
137
129
122
115
108
102
95
89
83
76
-20.3
-18.3
-17.0
-16.1
-15.3
-14.7
-14.2
-13.8
-13.5
-13.3
-13.2
-13.0
-12.9
-12.8
1.9
2.5
3.0
3.2
3.6
3.7
3.9
3.9
4.0
4.0
4.0
3.9
3.9
3.9
1.8
1.8
1.9
1.9
1.9
1.9
1.8
1.9
1.9
1.8
1.8
1.7
1.7
1.7
Applications Information: Designing with the
MGA-72543 RFIC Amplifier/Bypass Switch
Description
The MGA-72543 is a single-stage, GaAs RFIC amplifier
with an
integrated bypass switch. A functional diagram of the
MGA-72543 is shown in Figure 1.
The MGA-72543 is designed for receivers and transmitters
operating from 100 MHz to 6 GHz with an emphasis on
1.9 GHz CDMA applications. The MGA-72543 combines
low noise performance with high linearity to make it
especially advantageous for use in receiver front-ends.
RF
INPUT
BYPASS MODE
RF
OUTPUT
AMPLIFIER
Figure 1. MGA-72543 Functional Diagram.
The purpose of the switch feature is to prevent distortion
of high signal levels in receiver applications by bypassing the amplifier altogether. The bypass switch can be
thought of as a 1-bit digital AGC circuit that not only prevents distortion by bypassing the MGA-72543 amplifier,
but also reduces front-end system gain by approximately
16 dB to avoid overdriving subsequent stages in the receiver such as the mixer.
An additional feature of the MGA-72543 is the ability to
externally set device current to balance output power
capability and high linearity with low DC power consumption. The adjustable current feature of the MGA-72543
allows it to deliver output power levels in excess of +15
dBm (P1dB), thus extending its use to other system applications such as transmitter driver stages.
current range of 10 – 30 mA, the magnitude of É°opt at
1900 MHz is typically less than 0.25 and additional impedance matching would only net about 0.1 dB improvement
in noise figure.
Without external matching, the input return loss for the
MGA-72543 is approximately 5 dB at 1900 MHz. If desired,
a small amount of NF can be traded off for a significant
improvement in input match. For example, the addition
of a series inductance of 2.7 to 3.9 nH at the input of the
MGA-72543 will improve the input return loss to greater
than 10 dB with a sacrifice in NF of only 0.1 dB.
The output of the MGA-72543 is internally matched to
provide an output SWR of approximately 2:1 at 1900
MHz. Input and output matches both improve at higher
frequencies.
Driver Amplifier Applications
The flexibility of the adjustable current feature makes the
MGA-72543 suitable for use in transmitter driver stages.
Biasing the amplifier at 40 – 50 mA enables it to deliver
an output power at 1-dB gain compression of up to +16
dBm. Power efficiency in the unsaturated driver mode is
on the order of 30%. If operated as a saturated amplifier,
both output power and efficiency will increase.
Since the MGA-72543 is internally matched for low noise
figure, it may be desirable to add external impedance
matching at the input to improve the power match for
driver applications. Since the reactive part of the input
of the device impedance is capacitive, a series inductor
at the input is often all that is needed to provide a suitable match for many applications. For 1900 MHz circuits,
a series inductance of 3.9 nH will match the input to a
return loss of approximately 13 dB.
As in the case of low noise bias levels, the output of the
MGA-72543 is already well matched to 50 É∂ and no additional matching is needed for most applications.
The MGA-72543 is designed to operate from a +3-volt
power supply and is contained in a miniature 4-lead,
SOT-343 (SC-70) package to minimize printed circuit
board space.
When used for driver stage applications, the bypass
switch feature of the MGA-72543 can be used to shut
down the amplifier to conserve supply current during
non-transmit periods. Supply current in the bypass state
is nominally 2 μA.
LNA Applications
Biasing
For low noise amplifier applications, the MGA-72543 is
typically biased in the 10 – 20 mA range. Minimum NF
occurs at 20 mA as noted in the performance curve of
NFmin vs. Id. Biasing at currents significantly less than
10 mA is not recommended since the characteristics of
the device began to change very rapidly at lower currents.
Biasing the MGA-72543 is similar to biasing a discrete
GaAs FET. Passive biasing of the MGA-72543 may be accomplished by either of two conventional methods, either
by biasing the gate or by using a source resistor.
The MGA-72543 is matched internally for low NF. Over a
13
• Gate Bias
• Source Resistor Bias
Using this method, Pins 1 and 4 of the amplifier are DC
grounded and a negative bias voltage is applied to Pin 3
as shown in Figure 2. This method has the advantage of
not only DC, but also RF grounding both of the ground
pins of the MGA-72543. Direct RF grounding of the
device’s ground pins results in slightly improved performance while decreasing potential instabilities, especially
at higher frequencies. The disadvantage is that a negative
supply voltage is required.
The source resistor method is the simplest way of biasing
the MGA-72543 using a single, positive supply voltage.
This method, shown in Figure 4, places the RF Input (Pin
3) at DC ground and requires both of the device grounds
(Pins 1 and 4) to be RF bypassed. Device current, Id, is
determined by the value of the source resistance, Rbias,
between either Pin 1 or Pin 4 of the MGA-72543 and DC
ground. Note: Pins 1 and 4 are connected internally in the
RFIC. Maximum device current (approximately 65 mA)
occurs for Rbias = 0.
INPUT
3
2
OUTPUT
& Vd
INPUT
1
3
2
4
OUTPUT
& Vd
4
1
Rbias
Vref
Figure 2. Gate Bias Method.
DC access to the input terminal for applying the gate bias
voltage can be made through either a RFC or high impedance transmission line as indicated in Figure 2.
The device current, Id, is determined by the voltage at
Vref (Pin 3) with respect to ground. A plot of typical Id vs.
Vref is shown in Figure 3. Maximum device current (approximately 65 mA) occurs at Vref = 0.
Figure 4. Source Resistor Bias.
A simple method recommended for DC grounding the
input terminal is to merely add a resistor from Pin 3 to
ground, as shown in Figure 4. The value of the shunt R can
be comparatively high since the only voltage drop across
it is due to minute leakage currents that in the μA range.
A value of 1 KΩ would adequately DC ground the input
while loading the RF signal by only 0.2 dB loss.
A plot of typical Id vs. Rbias is shown in Figure 5.
50
60
40
40
Id (mA)
Id (mA)
50
30
20
10
30
20
0
-0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20
10
Vref (V)
0
Figure 3. Device Current vs. Vref.
0
20
40
60
80
100
120
140
Rbias ()
The device current may also be estimated from the following equation:
Figure 5. Device Current vs. Rbias.
Vref = 0.11 Id – 0.96
The approximate value of the external resistor, Rbias, may
also be calculated from:
where Id is in mA and Vref is in volts.
The gate bias method would not normally be used unless
a negative supply voltage was readily available. For reference, this is the method used in the characterization test
circuits shown in Figures 1 and 2 of the MGA-72543 data
sheet.
14
Rbias = 964 (1 – 0.112 Id)
Id
where Rbias is in ohms and Id is the desired device current
in mA.
The source resistor technique is the preferred and most
common method of biasing the MGA-72543.
• Adaptive Biasing
For applications in which input power levels vary over a
wide range, it may be useful to dynamically adapt the bias
of the MGA-72543 to match the signal level. This involves
sensing the signal level at some point in the system and
automatically adjusting the bias current of the ampli fier
accordingly. The advantage of adaptive biasing is conservation of supply current (longer battery life) by using
only the amount of current necessary to handle the input
signal without distortion.
Adaptive biasing of the MGA-72543 can be accomplished
by either analog or digital means. For the analog control
case, an active current source (discrete device or IC) is
used in lieu of the source bias resistor. For simple digital
control, electronic switches can be used to control the
value of the source resistor in discrete increments. Both
methods of adaptive biasing are depicted in Figure 6.
A DC blocking capacitor at the output of the RFIC isolates
the supply voltage from succeeding circuits. If the source
resistor method of biasing is used, the RF input terminal of
the MGA-72543 is at DC ground potential and a blocking
capacitor is not required unless the input is connected directly to a preceding stage that has a DC voltage present.
Vd = +2.5 V
RFC
RF
Input
RF
Output
2
1
72
3
4
Vref = -0.5 V
3
2
1
3
4
Figure 7. DC Schematic for Gate Bias.
2
1
4
Vd = +3 V
RFC
Analog
Control
(b) Digital
RF
Output
72
RF
Input
(a) Analog
2
1
Digital
Control
3
4
Rbias
Figure 6. Adaptive Bias Control.
Figure 8. DC Schematic of Source Resistor Biasing.
• Applying the Device Voltage
Common to all methods of biasing, voltage Vd is applied
to the MGA-72543 through the RF Output connection (Pin
2). A RF choke is used to isolate the RF signal from the DC
supply. The bias line is capacitively bypassed to keep RF
from the DC supply lines and prevent resonant dips or
peaks in the response of the amplifier. Where practical, it
may be cost effective to use a length of high impedance
transmission line (preferably /4) in place of the RFC.
When using the gate bias method, the overall device
voltage is equal to the sum of Vref at Pin 3 and voltage Vd
at Pin 2. As an example, to bias the device at the typical
operating voltage of 3 volts, Vd would be set to 2.5 volts
for a Vref of -0.5 volts. Figure 7 shows a DC schematic of
a gate bias circuit.
Just as for the gate bias method, the overall device
voltage for source resistor biasing is equal to Vref + Vd.
Since Vref is zero when using a source resistor, Vd is the
same as the device operating voltage, typically 3 volts. A
source resistor bias circuit is shown in Figure 8.
15
• Biasing for Higher Linearity or Output Power
While the MGA-72543 is designed primarily for use up
to 50 mA in +3 volt applications, the output power can
be increased by using higher currents and/or higher
supply voltages. If higher bias levels are used, appropriate
caution should be observed for both the thermal limits
and the Absolute Maximum Ratings.
As a guideline for operation at higher bias levels, the
Maximum Operating conditions shown in the data sheet
table of Absolute Maximum Ratings should be followed.
This set of conditions is the maximum combination of
bias voltage, bias current, and device temperature that is
recommended for reliable operation. Note: In contrast to
Absolute Maximum ratings, in which exceeding any one
parameter may result in damage to the device, all of the
Maximum Operating conditions may reliably be applied
to the MGA-72543 simultaneously.
Controlling the Switch
Thermal Considerations
The state of the MGA-72543 (amplifier or bypass mode)
is controlled by the device current. For device currents
greater than 5 mA, the MGA-72543 functions as an amplifier. If the device current is set to zero, the MGA- 72543
is switched into a bypass mode in which the amplifier is
turned off and the signal is routed around the amplifier
with a loss of approximately 2.5 dB.
Good thermal design is always an important consideration in the reliable use of any device, since the Mean
Time To Failure (MTTF) of semiconductors is inversely
proportional to the operating temperature.
The bypass state is normally engaged in the presence of
high input levels to prevent distortion of the signal that
might occur in the amplifier. In the bypass state, the input
TOI is very high, typically +39 dBm at 1900 MHz.
The simplest method of placing the MGA-72543 into the
bypass mode is to open-circuit the ground terminals at
Pins 1 and 4. With the ground connection open, the internal control circuit of the MGA-72543 auto-switches from
the amplifier mode into a bypass state and the device
current drops to near zero. Nominal current in the bypass
state is 2 μA with a maximum of 15 μA.
3
2
1
4
Rbias
Bypass Switch
Enable
Figure 9. MGA-72543 Amplifier/Bypass State Switching.
An electronic switch can be used to control states as
shown in Figure 9. The control switch could be implemented with either a discrete transistor or simple IC.
The speed at which the MGA-72543 switches between
states is extremely fast and will normally be limited by
the time constants of external circuit components, such
as the bias circuit and the bypass and blocking capacitors.
The input and output of the MGA-72543 while in the
bypass state are internally matched to 50 É∂. The input
return loss can be further improved at 1900 MHz by
adding a 2.7 to 3.9 nH series inductor added to the input.
This is the same approximate value of inductor that is
used to improve input match when the MGA-72543 is in
the amplifier state.
16
The MGA-72543 is a comparatively low power dissipation
device and, as such, operates at conservative temperatures. When biased at 3 volts and 20 mA for LNA applications, the power dissipation is 3.0 volts x 20 mA, or 60 mW.
The temperature increment from the RFIC channel to its
case is then 0.060 watt x 200°C/watt, or only 12°C. Subtracting the channel-to-case temperature rise from the
suggested maximum junction temperature of 150°C, the
resulting maximum allowable case temperature is 138°C.
The worst case thermal situation occurs when the MGA72543 is operated at its Maximum Operating conditions in
an effort to maximize output power or achieve minimum
distortion. A similar calculation for the Maximum Operating bias of 4.2 volts and 60 mA yields a maximum allowable case temperature of 100°C. This calculation further
assumes the worst case of no RF power being extracted
from the device. When operated in a saturated mode,
both power-added efficiency and the maximum allowable
case temperature will increase.
Note: “Case” temperature for surface mount packages
such as the SOT-343 refers to the interface between the
package pins and the mounting surface, i.e., the temperature at the PCB mounting pads. The primary heat path
from the RFIC chip to the system heatsink is by means of
conduction through the package leads and ground vias
to the groundplane of the PCB.
PCB Layout and Grounding
When laying out a printed circuit board for the MGA72543, several points should be considered. Of primary
concern is the RF bypassing of the ground terminals when
the device is biased using the source resistor method.
• Package Footprint
• PCB Materials
A suggested PCB pad print for the miniature,4-lead SOT343 (SC-70) package used by the MGA-72543 is shown in
Figure 10. This pad print provides allowance for package
placement by auto- mated assembly equipment without
adding excessive parasitics that could impair the high
frequency performance of the MGA-72543.The layout is
shown with a footprint of the MGA-72543 superimposed
on the PCB pads for reference.
FR-4 or G-10 type dielectric materials are typical choices
for most low cost wireless applica- tions using single or
multilayer printed circuit boards. The thickness of singlelayer boards usually range from 0.020 to 0.031 inches.
Circuit boards thicker than 0.031 inches are not recommended due to excessive induc- tance in the ground
vias.
0.80
0.031
1.71
0.067
0.50
0.020
.080
0.031
1.15
0.045
Figure 10. Recommended PCB Pad Layout for
Avago’s SC70 4L/SOT-343 Products.
• RF bypass
An example evaluation PCB layout for the MGA-72543 is
shown in Figure 12. This evalua- tion circuit is designed
for operation from a +3-volt supply and includes provision
for a 2-bit DIP switch to set the state of the MGA-72543.
For evaluation purposes, the 2-bit switch is used to set the
device to either of four states: (1)bypass mode – switch
bypasses the amplifier, (2)low noise amplifier mode – low
bias current, (3)and (4) driver ampli- fier modes – high
bias currents.
A completed evaluation amplifier optimized for use at
1900 MHz is shown with all related compo- nents and
SMA connectors in Figure 13. A schematic diagram of the
evaluation circuit is shown in Figure 14 with component
values in Table 1. The on-board resistors R3 and R4 form
the equivalent source bias resistor Rbias as indicated in the
schematic diagram in Figure 14. In this example,resistor
values of R3 = 10Ω and R4 = 24Ω were chosen to set the
nominal device current for the four states to: (1) bypass
mode, 0 mA, (2) LNA mode, 20 mA, (3) driver, 35 mA, and,
(4) driver, 40 mA.
For layouts using the source resistor method of
biasing,both of the ground terminals of the MGA- 72543
must be well bypassed to maintain device stability. Beginning with the package pad print in Figure 10, an RF layout
similar to the one shown in Figure 11 is a good starting
point for using the MGA-72543 with capacitor-bypassed
ground terminals.It is a best practice to use multiple vias
to minimize overall ground path inductance.
Figure 11. Layout for RF Bypass.
Vd
MGA-71, MGA-72
HM 8/98
IN
Out
Vin
Two capacitors are used at each of the PCB pads for
both Pins 1 and 4. The value of the bypass capacitors is
a balance between providing a small reactance for good
RF grounding, yet not being so large that the capacitor’s
parasitics introduce undesirable resonances or loss. If
the source resistor biasing method is used,a ground pad
located near either Pin 1 or 4 pin may be used to connect
the current-setting resistor (Rbias) directly to DC ground.
If the Rbias resistor is not located immediately adjacent
to the MGA-72543 (as may be the case of dynamic control
of the device ’s linearity), then a small series resistor (e.g.,
10Ω) located near the ground terminal will help de-Q the
connection from the MGA-72543 to an external currentsetting circuit.
72
Vcon
1.30
0.051
Application Example
Figure 12. PCB Layout for Evaluation Circuit.
17
Other currents can be set by positioning the DIP switch
to the bypass state and adding an external bias resistor to
Vcon. Unless an external resistor is used to set the current,
the Vcon terminal is left open. DC blocking capacitors are
provided for the both the input and output.
The 2-pin, 0.100” centerline single row headers attached
to the Vd and Vcon connections on the PCB provide a
convenient means of making connections to the board
using either a mating connector or clip leads.
A Note on Performance
Actual performance of the MGA-72543 as measured in
an evaluation circuit may not exactly match the data
sheet specifications. The circuit board material, passive
components, RF bypasses, and connectors all introduce
losses and parasitics that degrade device performance.
For the evaluation circuit above, fabricated on 0.031-inch
thick GETEK[1] G200D (r = 4.2) dielectric material, circuit
losses of about 0.3 dB would be expected at both the input
an output sides of the RFIC at 1900 MHz. Measured noise
figure (3 volts, 20 mA bias) would then be approximately
1.8 dB and gain 13.8 dB.
Table 1. Component Values for 1900 MHz Amplifier.
R1 =
5.1 KΩ
C (3 ea)
=100 pF
R2 =
5.1 KΩ
C (3 ea)
=1000 pF
R3 =
10Ω
C1
=100 pF
R4 =
24Ω
C2
= 47 pF
L1 =
3.9 nH
C3
= 30 pF
RFC =
22 nH
C4
= 22 pF
SW1, SW2
DIP switch
C5
=22 pF
SC
Short
C6
=30 pF
Hints and Troubleshooting
• Preventing Oscillation
Stability of the MGA-72543 is dependent on having very
good RF grounding. Inadequate device grounding or
poor PCB layout techniques could cause the device to be
potentially unstable.
[1] General Electric Co.
Vd
C0
C
RFC
MGA-71, MGA-72
HM 8/98
Vd
C4
SC
L1
72
C8
C1
L1
Out
R3
R4
SW
1
C
C6
R1
C0
ON
4
3
C5
Vcon
Vin
RF
Input
C
C
2
72
C2
C5
R1
R2 C0
1
RFC
C3
C1
C4
C3
C
C0
IN
C2
2
C
SW1
R3
SW2
R4
Vin
R2
C0
C0
Rbias
Vcon
Figure 13. Completed Amplifier with Component Reference Designators.
18
Figure 14. Schematic Diagram of 1900 MHz Evaluation Amplifier.
RF
Output
Even though a design may be unconditionally stable (K >
1 and B1 > 0) over its full frequency range, other possibilities exist that may cause an amplifier circuit to oscillate.
One condition to check for is feedback in the bias circuit.
It is important to capacitively bypass the connections to
active bias circuits to ensure stable operation. In multistage circuits, feedback through bias lines can also lead
to oscillation.
Components of insufficient quality for the frequency
range of the amplifier can sometimes lead to instability. Also, component values that are chosen to be much
higher in value than is appropriate for the application can
present a problem. In both of these cases, the components may have reactive parasitics that make their impedances very different than expected. Chip capacitors may
have excessive inductance, or chip inductors can exhibit
resonances at unexpected frequencies.
• A Note on Supply Line Bypassing
Multiple bypass capacitors are normally used throughout
the power distribution within a wireless system. Consideration should be given to potential resonances formed by
the combination of these capacitors and the inductance
of the DC distribution lines. The addition of a small value
resistor in the bias supply line between bypass capacitors
will often de-Q the bias circuit and eliminate resonance
effects.
Statistical Parameters
Several categories of parameters appear within the
electrical specification portion of the MGA-72543 data
sheet. Parameters may be described with values that
are either “minimum or maximum,” “typical,” or “standard
deviations.”
The values for parameters are based on comprehensive
product characterization data, in which automated
measurements are made on a statistically significant
number of parts taken from nonconsecutive process lots
of semiconductor wafers. The data derived from product
characterization tends to be normally distributed, e.g., fits
the standard bell curve.
Parameters considered to be the most important to
system performance are bounded by minimum or
maximum values. For the MGA-72543, these parameters
are: Vc test, NFtest, Ga test, IIP3 test, and IL test. Each of the guaranteed parameters is 100% tested as part of the normal
manufacturing and test process.
Values for most of the parameters in the table of Electrical
Specifications that are described by typical data are the
mathematical mean (μ ), of the normal distribution taken
from the characterization data. For parameters where
19
measurements or mathematical averaging may not be
practical, such as S-parameters or Noise Parameters and
the performance curves, the data represents a nominal
part taken from the center of the characterization distribution. Typical values are intended to be used as a basis
for electrical design.
To assist designers in optimizing not only the immediate
amplifier circuit using the MGA-72543, but to also evaluate and optimize trade-offs that affect a complete wireless
system, the standard deviation () is provided for many of
the Electrical Specification parameters (at 25°C). The standard deviation is a measure of the variability about the
mean. It will be recalled that a normal distribution is completely described by the mean and standard deviation.
Standard statistics tables or calculations provide the probability of a parameter falling between any two values,
usually symmetrically located about the mean. Referring
to Figure 15 for example, the probability of a parameter
being between ±1 is 68.3%; between ±2 is 95.4%; and
between ±3 is 99.7%.
68%
95%
99%
-3σ
-2σ
-1σ
Mean () +1σ
(typical)
+2σ
+3σ
Parameter Value
Figure 15. Normal Distribution Curve.
Phase Reference Planes
The positions of the reference planes used to specify Sparameters and Noise Parameters for the MGA-72543 are
shown in Figure 16. As seen in the illustration, the reference planes are located at the point where the package
leads contact the test circuit.
REFERENCE
PLANES
TEST CIRCUIT
Figure 16. Phase Reference Planes.
Part Number Ordering Information
Part Number
No. of
Devices
Container
MGA-72543-TR1G
MGA-72543-TR2G
MGA-72543-BLKG
3000
10000
100
7” Reel
13” Reel
antistatic bag
Note:
For lead-free option, the part number will have the character
“G” at the end.
Package Dimensions
Recommended PCB Pad Layout for
Avago’s SC70 4L/SOT-343 Products
SC-70 4L/SOT-343
1.30 (.051)
BSC
1.30
(0.051)
1.00
(0.039)
HE
E
2.00
(0.079)
0.60
(0.024)
1.15 (.045) BSC
b1
0.9
(0.035)
D
1.15
(0.045)
A2
A
Dimensions in
A1
b
L
C
DIMENSIONS (mm)
SYMBOL
E
D
HE
A
A2
A1
b
b1
c
L
20
MIN.
1.15
1.85
1.80
0.80
0.80
0.00
0.15
0.55
0.10
0.10
MAX.
1.35
2.25
2.40
1.10
1.00
0.10
0.40
0.70
0.20
0.46
NOTES:
1. All dimensions are in mm.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash & metal burr.
4. All specifications comply to EIAJ SC70.
5. Die is facing up for mold and facing down for trim/form,
ie: reverse trim/form.
6. Package surface to be mirror finish.
mm
(inches)
Device Orientation
REEL
TOP VIEW
END VIEW
4 mm
CARRIER
TAPE
8 mm
USER
FEED
DIRECTION
72x
72x
72x
72x
COVER TAPE
Tape Dimensions
For Outline 4T
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
K0
10 MAX.
A0
DESCRIPTION
Tt (COVER TAPE THICKNESS)
10 MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.40 0.10
2.40 0.10
1.20 0.10
4.00 0.10
1.00 + 0.25
0.094 0.004
0.094 0.004
0.047 0.004
0.157 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 0.10
4.00 0.10
1.75 0.10
0.061 + 0.002
0.157 0.004
0.069 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 + 0.30 - 0.10
0.254 0.02
0.315 + 0.012
0.0100 0.0008
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.40 0.10
0.062 0.001
0.205 + 0.004
0.0025 0.0004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 0.05
0.138 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 0.05
0.079 0.002
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-4189EN
AV02-1296EN - June 8, 2012
Similar pages