TI1 CSD19538Q2 100v n-channel nexfet power mosfet Datasheet

Sample &
Buy
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
CSD19538Q2
SLPS582 – JULY 2016
CSD19538Q2 100-V N-Channel NexFET™ Power MOSFET
1 Features
•
•
•
•
•
•
•
1
Product Summary
Ultra-Low Qg and Qgd
Low-Thermal Resistance
Avalanche Rated
Lead Free
RoHS Compliant
Halogen Free
SON 2-mm × 2-mm Plastic Package
TA = 25°C
TYPICAL VALUE
Drain-to-Source Voltage
100
V
Qg
Gate Charge Total (10 V)
4.3
nC
Qgd
Gate Charge Gate-to-Drain
RDS(on)
Drain-to-Source On-Resistance
VGS(th)
Threshold Voltage
Power Over Ethernet (PoE)
Power Sourcing Equipment (PSE)
Motor Control
This 100-V, 49-mΩ, SON 2-mm × 2-mm NexFET™
power MOSFET is designed to minimize losses in
power conversion applications.
Top View
1
6
mΩ
V
MEDIA
QTY
PACKAGE
SHIP
3000
CSD19538Q2T
7-Inch Reel
250
SON
2.00-mm x 2.00-mm
Plastic Package
Tape
and
Reel
Absolute Maximum Ratings
TA = 25°C
VALUE
UNIT
VDS
Drain-to-Source Voltage
100
V
VGS
Gate-to-Source Voltage
±20
V
Continuous Drain Current (Package Limited)
14.4
Continuous Drain Current (Silicon Limited),
TC = 25°C
13.1
D
5
2
S
4
D
PD
S
P0108-01
Continuous Drain Current(1)
4.6
Pulsed Drain Current(2)
34.4
Power Dissipation(1)
2.5
Power Dissipation, TC = 25°C
20.2
TJ,
Tstg
Operating Junction Temperature,
Storage Temperature
EAS
Avalanche Energy, Single Pulse
ID = 12.6 A, L = 0.1 mH, RG = 25 Ω
A
A
W
–55 to 150
°C
8
mJ
(1) Typical RθJA = 50°C/W on a 1-in2, 2-oz Cu pad on a 0.06-in
thick FR4 PCB.
(2) Max RθJC = 6.2°C/W, pulse duration ≤ 100 μs, duty cycle ≤
1%.
.
.
RDS(on) vs VGS
Gate Charge
10
200
TC = 25qC, ID = 5 A
TC = 125qC, ID = 5 A
180
VGS - Gate-to-Source Voltage (V)
RDS(on) - On-State Resistance (m:)
49
3.2
7-Inch Reel
IDM
3
VGS = 10 V
DEVICE
D
G
mΩ
CSD19538Q2
ID
D
nC
58
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
3 Description
D
0.8
VGS = 6 V
Device Information(1)
2 Applications
•
•
•
UNIT
VDS
160
140
120
100
80
60
40
20
0
ID = 5 A
9 VDS = 100 V
8
7
6
5
4
3
2
1
0
0
2
4
6
8
10
12
14
16
VGS - Gate-to-Source Voltage (V)
18
20
D007
0
0.5
1
1.5
2
2.5
3
3.5
Qg - Gate Charge (nC)
4
4.5
5
D004
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
CSD19538Q2
SLPS582 – JULY 2016
www.ti.com
Table of Contents
1
2
3
4
5
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
1
1
1
2
3
7
5.1 Electrical Characteristics........................................... 3
5.2 Thermal Information .................................................. 3
5.3 Typical MOSFET Characteristics.............................. 4
6
Receiving Notification of Documentation Updates....
Community Resources..............................................
Trademarks ...............................................................
Electrostatic Discharge Caution ................................
Glossary ....................................................................
7
7
7
7
7
Mechanical, Packaging, and Orderable
Information ............................................................. 8
7.1 Q2 Package Dimensions .......................................... 8
7.2 Q2 Tape and Reel Information................................ 11
Device and Documentation Support.................... 7
4 Revision History
2
DATE
REVISION
NOTES
July 2016
*
Initial release.
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
CSD19538Q2
www.ti.com
SLPS582 – JULY 2016
5 Specifications
5.1 Electrical Characteristics
TA = 25°C (unless otherwise stated)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
STATIC CHARACTERISTICS
BVDSS
Drain-to-source voltage
VGS = 0 V, ID = 250 μA
IDSS
Drain-to-source leakage current
VGS = 0 V, VDS = 80 V
1
μA
IGSS
Gate-to-source leakage current
VDS = 0 V, VGS = 20 V
100
nA
VGS(th)
Gate-to-source threshold voltage
VDS = VGS, ID = 250 μA
V
RDS(on)
Drain-to-source on-resistance
gfs
Transconductance
100
2.8
V
3.2
3.8
VGS = 6 V, ID = 5 A
58
72
VGS = 10 V, ID = 5 A
49
59
VDS = 10 V, ID = 5 A
19
mΩ
S
DYNAMIC CHARACTERISTICS
Ciss
Input capacitance
Coss
Output capacitance
Crss
Reverse transfer capacitance
RG
Series gate resistance
Qg
Gate charge total (10 V)
Qgd
Gate charge gate-to-drain
Qgs
Gate charge gate-to-source
Qg(th)
Gate charge at Vth
Qoss
Output charge
td(on)
Turnon delay time
tr
Rise time
td(off)
Turnoff delay time
tf
Fall time
VGS = 0 V, VDS = 50 V, ƒ = 1 MHz
VDS = 50 V, ID = 5 A
VDS = 50 V, VGS = 0 V
VDS = 50 V, VGS = 10 V,
IDS = 5 A, RG = 0 Ω
349
454
pF
69
90
pF
12.6
16.4
pF
4.6
9.2
Ω
4.3
5.6
nC
0.8
nC
1.6
nC
1.0
nC
12.3
nC
5
ns
3
ns
7
ns
2
ns
DIODE CHARACTERISTICS
VSD
Diode forward voltage
ISD = 5 A, VGS = 0 V
0.85
1.0
V
Qrr
Reverse recovery charge
nC
Reverse recovery time
VDS= 50 V, IF = 5 A,
di/dt = 300 A/μs
94
trr
32
ns
5.2 Thermal Information
TA = 25°C (unless otherwise stated)
THERMAL METRIC
(1)
RθJC
Junction-to-case thermal resistance
RθJA
Junction-to-ambient thermal resistance (1) (2)
(1)
(2)
MIN
TYP
MAX
UNIT
6.2
°C/W
65
RθJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in (3.81-cm × 3.81cm), 0.06-in (1.52-mm) thick FR4 PCB. RθJC is specified by design, whereas RθJA is determined by the user’s board design.
Device mounted on FR4 material with 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu.
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
3
CSD19538Q2
SLPS582 – JULY 2016
GATE
www.ti.com
GATE
Source
Source
Max RθJA = 250°C/W
when mounted on a
minimum pad area of
2-oz (0.071-mm) thick
Cu.
Max RθJA = 65°C/W
when mounted on 1-in2
(6.45-cm2) of 2-oz
(0.071-mm) thick Cu.
DRAIN
DRAIN
M0161-02
M0161-01
5.3 Typical MOSFET Characteristics
TA = 25°C (unless otherwise stated)
Figure 1. Transient Thermal Impedance
4
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
CSD19538Q2
www.ti.com
SLPS582 – JULY 2016
Typical MOSFET Characteristics (continued)
30
30
27
27
IDS - Drain-to-Source Current (A)
IDS - Drain-to-Source Current (A)
TA = 25°C (unless otherwise stated)
24
21
18
15
12
9
6
VGS = 6 V
VGS = 8 V
VGS = 10 V
3
TC = 125° C
TC = 25° C
TC = -55° C
24
21
18
15
12
9
6
3
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
VDS - Drain-to-Source Voltage (V)
4.5
5
1
2
3
4
5
VGS - Gate-to-Source Voltage (V)
D002
6
7
D003
VDS = 5 V
Figure 2. Saturation Characteristics
Figure 3. Transfer Characteristics
10000
Ciss = Cgd + Cgs
Coss = Cds + Cgd
Crss = Cgd
9
8
C - Capacitance (pF)
VGS - Gate-to-Source Voltage (V)
10
7
6
5
4
3
1000
100
10
2
1
1
0
0
0.5
1
1.5
2
2.5
3
3.5
Qg - Gate Charge (nC)
ID = 5 A
4
4.5
0
5
10
20
D004
100
D005
Figure 5. Capacitance
200
RDS(on) - On-State Resistance (m:)
3.8
VGS(th) - Threshold Voltage (V)
90
VDS = 100 V
Figure 4. Gate Charge
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
-75
30
40
50
60
70
80
VDS - Drain-to-Source Voltage (V)
TC = 25qC, ID = 5 A
TC = 125qC, ID = 5 A
180
160
140
120
100
80
60
40
20
0
-50
-25
0
25
50
75 100
TC - Case Temperature (qC)
125
150
175
0
2
D006
4
6
8
10
12
14
16
VGS - Gate-to-Source Voltage (V)
18
20
D007
ID = 250 µA
Figure 6. Threshold Voltage vs Temperature
Figure 7. On-State Resistance vs Gate-to-Source Voltage
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
5
CSD19538Q2
SLPS582 – JULY 2016
www.ti.com
Typical MOSFET Characteristics (continued)
TA = 25°C (unless otherwise stated)
100
2
VGS = 6 V
VGS = 10 V
ISD - Source-to-Drain Current (A)
Normalized On-State Resistance
2.2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
-75
TC = 25° C
TC = 125° C
10
1
0.1
0.01
0.001
0.0001
-50
-25
0
25
50
75 100
TC - Case Temperature (° C)
125
150
175
0
0.2
D008
0.4
0.6
0.8
VSD - Source-to-Drain Voltage (V)
1
1.2
D009
ID = 5 A
Figure 8. Normalized On-State Resistance vs Temperature
Figure 9. Typical Diode Forward Voltage
100
IAV - Peak Avalanche Current (A)
IDS - Drain-to-Source Current (A)
100
10
1
0.1
DC
10 ms
1 ms
0.01
0.1
100 µs
10 µs
1
10
100
VDS - Drain-to-Source Voltage (V)
1000
TC = 25q C
TC = 125q C
10
1
0.01
0.1
TAV - Time in Avalanche (ms)
D010
1
D011
Single Pulse, Max RθJC = 6.2°C/W
Figure 10. Maximum Safe Operating Area
Figure 11. Single Pulse Unclamped Inductive Switching
IDS - Drain-to-Source Current (A)
16
14
12
10
8
6
4
2
0
-50
-25
0
25
50
75
100 125
TC - Case Temperature (qC)
150
175
D012
Figure 12. Maximum Drain Current vs Temperature
6
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
CSD19538Q2
www.ti.com
SLPS582 – JULY 2016
6 Device and Documentation Support
6.1 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
6.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
6.3 Trademarks
NexFET, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
6.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
6.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
7
CSD19538Q2
SLPS582 – JULY 2016
www.ti.com
7 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
7.1 Q2 Package Dimensions
2.1
1.9
A
B
PIN 1 INDEX AREA
2.1
1.9
0.8 MAX
C
SEATING PLANE
0.05
0.00
0.75±0.1
PKG
(0.2)
(0.2) TYP
(0.47)
0.3±0.05
3
4
7
4X
0.65
(0.5)
PKG
2X
1.3
8
0.95±0.1
6
1
(0.2)
PIN 1 ID
(45 X0.3)
6X
1±0.1
6X
0.3
0.2
0.35
0.25
0.1
0.05
C A
C
B
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning
and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical
performance.
8
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
CSD19538Q2
www.ti.com
SLPS582 – JULY 2016
Q2 Package Dimensions (continued)
7.1.1 Recommended PCB Pattern
(1)
PKG
6X (0.45)
1
6
8
6X (0.3)
(0.95)
(0.325)
PKG
4X (0.65)
(0.65)
7
4
3
(R0.05) TYP
(0.3)
(0.095)
(0.75)
(1.95)
0.05 MIN
ALL AROUND
0.05 MAX
ALL AROUND
SOLDER MASK
OPENING
METAL
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
1. For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing
Through PCB Layout Techniques.
2. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas
Instruments literature number SLUA271 (www.ti.com/lit/slua271).
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
9
CSD19538Q2
SLPS582 – JULY 2016
www.ti.com
Q2 Package Dimensions (continued)
7.1.2 Recommended Stencil Pattern
(0.9)
METAL
ALL AROUND, TYP
PKG
6X (0.45)
1
6
6X (0.3)
8
(0.86)
(0.325)
PKG
4X (0.65)
(0.65)
3
(R0.05) TYP
7
(0.29)
4
(0.095)
(0.7)
(1.95)
1. All linear dimensions are in millimeters.
2. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525
may have alternate design recommendations.
10
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
CSD19538Q2
www.ti.com
SLPS582 – JULY 2016
7.2 Q2 Tape and Reel Information
4.00 ±0.10
Ø 1.50 ±0.10
4.00 ±0.10
Ø 1.00 ±0.25
1.00 ±0.05
2.30 ±0.05
10° Max
3.50 ±0.05
8.00
+0.30
–0.10
1.75 ±0.10
2.00 ±0.05
0.254 ±0.02
2.30 ±0.05
10° Max
M0168-01
Notes: 1. Measured from centerline of sprocket hole to centerline of pocket
2. Cumulative tolerance of 10 sprocket holes is ±0.20
3. Other material available
4. Typical SR of form tape Max 109 OHM/SQ
5. All dimensions are in mm, unless otherwise specified.
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: CSD19538Q2
11
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jul-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
CSD19538Q2
ACTIVE
WSON
DQK
6
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-55 to 150
1958
CSD19538Q2T
ACTIVE
WSON
DQK
6
250
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-55 to 150
1958
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
12-Jul-2016
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages