Cypress MB96F6C6RBPMC-GSE1 F2mc-16fx 16-bit microcontroller Datasheet

MB966C0 Series
F2MC-16FX 16-bit Microcontroller
2
MB966C0 series is based on Cypress’s advanced F MC-16FX architecture (16-bit with instruction pipeline for RISC-like
2
performance). The CPU uses the same instruction set as the established F MC-16LX family thus allowing for easy migration of
2
2
2
F MC-16LX Software to the new F MC-16FX products. F MC-16FX product improvements compared to the previous generation
include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up
time. For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to
32MHz operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns
going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the
internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of
the CPU speed.
Features
Technology
On-chip voltage regulator
0.18µm CMOS
Internal voltage regulator supports a wide MCU supply
voltage range (Min=2.7V), offering low power consumption
CPU
Low voltage detection function
 F2MC-16FX CPU
Reset is generated when supply voltage falls below
programmable reference voltage
 Optimized instruction set for controller applications
(bit, byte, word and long-word data types, 23 different
addressing modes, barrel shift, variety of pointers)
 8-byte instruction queue
Code Security
Protects Flash Memory content from unintended read-out
 Signed multiply (16-bit × 16-bit) and divide (32-bit/16-bit)
instructions available
DMA
Automatic transfer function independent of CPU, can be
assigned freely to resources
System clock
 On-chip PLL clock multiplier (×1 to ×8, ×1 when PLL stop)
Interrupts
 4MHz to 8MHz crystal oscillator
(maximum frequency when using ceramic resonator
depends on Q-factor)
 Up to 8MHz external clock for devices with fast clock input
feature
 32.768kHz subsystem quartz clock
 100kHz/2MHz internal RC clock for quick and safe startup,
clock stop detection function, watchdog
 Clock source selectable from mainclock oscillator, subclock
oscillator and on-chip RC oscillator, independently for CPU
and 2 clock domains of peripherals
 The subclock oscillator is enabled by the Boot ROM program
controlled by a configuration marker after a Power or
External reset
 Low Power Consumption - 13 operating modes (different
Run, Sleep, Timer, Stop modes)
 Fast Interrupt processing
 8 programmable priority levels
 Non-Maskable Interrupt (NMI)
CAN
 Supports CAN protocol version 2.0 part A and B
 ISO16845 certified
 Bit rates up to 1Mbps
 32 message objects
 Each message object has its own identifier mask
 Programmable FIFO mode (concatenation of message
objects)
 Maskable interrupt
 Disabled Automatic Retransmission mode for Time Triggered
CAN applications
Cypress Semiconductor Corporation
Document Number: 002-04723 Rev.*A
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised March 29, 2016
MB966C0 Series
 Programmable loop-back mode for self-test operation
 Signals an interrupt upon external event
 Rising edge, Falling edge or Both (rising & falling) edges
USART
sensitive
 Full duplex USARTs (SCI/LIN)
 Wide range of baud rate settings using a dedicated reload
timer
 Special synchronous options for adapting to different
Output Compare Units
 16-bit wide
 Signals an interrupt when a match with Free-running Timer
synchronous serial protocols
occurs
 LIN functionality working either as master or slave LIN device
 Extended support for LIN-Protocol to reduce interrupt load
 A pair of compare registers can be used to generate an
output signal
Programmable Pulse Generator
2
IC
 16-bit down counter, cycle and duty setting registers
 Up to 400kbps
 Master and Slave functionality, 7-bit and 10-bit addressing
 Can be used as 2 × 8-bit PPG
 Interrupt at trigger, counter borrow and/or duty match
A/D converter
 PWM operation and one-shot operation
 SAR-type
 Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock
 8/10-bit resolution
 Signals interrupt on conversion end, single conversion mode,
continuous conversion mode,
stop conversion mode, activation by software, external
trigger, reload timers and PPGs
as counter clock or of selected Reload timer underflow as
clock input
 Can be triggered by software or reload timer
 Can trigger ADC conversion
 Timing point capture
 Range Comparator Function
 Start delay
 Scan Disable Function
 ADC Pulse Detection Function
Quadrature Position/Revolution Counter (QPRC)
 Up/down count mode, Phase difference count mode, Count
Source Clock Timers
mode with direction
Three independent clock timers (23-bit RC clock timer, 23-bit
Main clock timer, 17-bit Sub clock timer)
 16-bit position counter
 16-bit revolution counter
Hardware Watchdog Timer
 Two 16-bit compare registers with interrupt
 Hardware watchdog timer is active after reset
 Detection edge of the three external event input pins AIN,
BIN and ZIN is configurable
 Window function of Watchdog Timer is used to select the
lower window limit of the watchdog interval
LCD Controller
Reload Timers
 LCD controller with up to 4COM × 44SEG
 16-bit wide
 Internal or external voltage generation
 Prescaler with 1/2 , 1/2 , 1/2 , 1/2 , 1/2 , 1/2 of peripheral
1
2
3
4
5
6
clock frequency
 Fixed 1/3 bias
 Event count function
 Programmable frame period
 Clock source selectable from four options (main clock,
Free-Running Timers
 Signals an interrupt on overflow, supports timer clear upon
match with Output Compare (0, 4)
 Prescaler with 1, 1/2 , 1/2 , 1/2 , 1/2 , 1/2 , 1/2 , 1/2 , 1/2 of
1
 Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
2
3
peripheral clock frequency
Input Capture Units
4
5
6
7
8
peripheral clock, subclock or RC oscillator clock)
 Internal divider resistors or external divider resistors
 On-chip data memory for display
 LCD display can be operated in Timer Mode
 Blank display: selectable
 16-bit wide
Document Number: 002-04723 Rev.*A
Page 2 of 71
MB966C0 Series
 All SEG, COM and V pins can be switched between general
and specialized purposes
Sound Generator
 8-bit PWM signal is mixed with tone frequency from 16-bit
reload counter
 PWM clock by internal prescaler: 1, 1/2, 1/4, 1/8 of peripheral
clock
Built-in On Chip Debugger (OCD)
 One-wire debug tool interface
 Break function:
 Hardware
 -Software
break: 6 points (shared with code event)
break: 4096 points
 Event function
 Code
event: 6 points (shared with hardware break)
event: 6 points
 Event sequencer: 2 levels + reset
 -Data
Real Time Clock
 Operational on main oscillation (4MHz), sub oscillation
(32kHz) or RC oscillation (100kHz/2MHz)
 Capable to correct oscillation deviation of Sub clock or RC
oscillator clock (clock calibration)
 Execution time measurement function
 Trace function: 42 branches
 Security function
 Read/write accessible second/minute/hour registers
Flash Memory
 Can signal interrupts every half
 Dual operation flash allowing reading of one Flash bank
second/second/minute/hour/day
 Internal clock divider and prescaler provide exact 1s clock
External Interrupts
while programming or erasing the other bank
 Command sequencer for automatic execution of
programming algorithm and for supporting DMA for
programming of the Flash Memory
 Edge or Level sensitive
 Supports automatic programming, Embedded Algorithm
 Interrupt mask bit per channel
 Write/Erase/Erase-Suspend/Resume commands
 Each available CAN channel RX has an external interrupt for
 A flag indicating completion of the automatic algorithm
wake-up
 Selected USART channels SIN have an external interrupt for
wake-up
Non Maskable Interrupt
 Erase can be performed on each sector individually
 Sector protection
 Flash Security feature to protect the content of the Flash
 Low voltage detection during Flash erase or write
 Disabled after reset, can be enabled by Boot-ROM
depending on ROM configuration block
 Once enabled, cannot be disabled other than by reset
 High or Low level sensitive
 Pin shared with external interrupt 0
I/O Ports
 Most of the external pins can be used as general purpose I/O
 All push-pull outputs (except when used as I2C SDA/SCL
line)
 Bit-wise programmable as input/output or peripheral signal
 Bit-wise programmable input enable
 One input level per GPIO-pin (either Automotive or CMOS
hysteresis)
 Bit-wise programmable pull-up resistor
 Some pins offer high current output capability for LED
driving.
Document Number: 002-04723 Rev.*A
Page 3 of 71
MB966C0 Series
Contents
1. Product Lineup .................................................................................................................................................................. 5
2. Block Diagram ................................................................................................................................................................... 6
3. Pin Assignment ................................................................................................................................................................. 7
4. Pin Description .................................................................................................................................................................. 8
5. Pin Circuit Type ............................................................................................................................................................... 10
6. I/O Circuit Type................................................................................................................................................................ 14
7. Memory Map .................................................................................................................................................................... 21
8. RAMSTART Addresses................................................................................................................................................... 22
9. User ROM Memory Map for Flash Devices ................................................................................................................... 23
10. Serial Programming Communication Interface ............................................................................................................ 24
11. Interrupt Vector Table ..................................................................................................................................................... 25
12. Handling Precautions ..................................................................................................................................................... 29
12.1 Precautions for Product Design ................................................................................................................................... 29
12.2 Precautions for Package Mounting.............................................................................................................................. 30
12.3 Precautions for Use Environment ................................................................................................................................ 31
13. Handling Devices ............................................................................................................................................................ 32
14. Electrical Characteristics ............................................................................................................................................... 36
14.1 Absolute Maximum Ratings ......................................................................................................................................... 36
14.2 Recommended Operating Conditions.......................................................................................................................... 39
14.3 DC Characteristics....................................................................................................................................................... 40
14.3.1 Current Rating .............................................................................................................................................................. 40
14.3.2 Pin Characteristics ....................................................................................................................................................... 44
14.4 AC Characteristics ....................................................................................................................................................... 47
14.4.1 Main Clock Input Characteristics .................................................................................................................................. 47
14.4.2 Sub Clock Input Characteristics ................................................................................................................................... 49
14.4.3 Built-in RC Oscillation Characteristics .......................................................................................................................... 50
14.4.4 Internal Clock Timing ................................................................................................................................................... 50
14.4.5 Operating Conditions of PLL ........................................................................................................................................ 51
14.4.6 Reset Input................................................................................................................................................................... 51
14.4.7 Power-on Reset Timing................................................................................................................................................ 52
14.4.8 USART Timing ............................................................................................................................................................. 53
14.4.9 External Input Timing ................................................................................................................................................... 55
2
14.4.10 I C Timing ................................................................................................................................................................. 56
14.5 A/D Converter.............................................................................................................................................................. 57
14.5.1 Electrical Characteristics for the A/D Converter ........................................................................................................... 57
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time ......................................................................................... 58
14.5.3 Definition of A/D Converter Terms ............................................................................................................................... 59
14.6 High Current Output Slew Rate ................................................................................................................................... 61
14.7 Low Voltage Detection Function Characteristics ......................................................................................................... 62
14.8 Flash Memory Write/Erase Characteristics ................................................................................................................. 64
15. Example Characteristics ................................................................................................................................................ 65
16. Ordering Information ...................................................................................................................................................... 68
17. Package Dimension ........................................................................................................................................................ 69
18. Major Changes ................................................................................................................................................................ 70
Document History ................................................................................................................................................................. 70
Document Number: 002-04723 Rev.*A
Page 4 of 71
MB966C0 Series
1. Product Lineup
Features
MB966C0
Remark
Product Type
Subclock
Dual Operation Flash Memory
RAM
Flash Memory Product
Subclock can be set by software
-
128.5KB + 32KB
8KB
MB96F6C5R, MB96F6C5A
256.5KB + 32KB
16KB
MB96F6C6R
LQFP-120
FPT-120P-M21
4ch
5ch
LIN-USART 0 to 2/4/5
2ch
LIN-USART 0/1
1ch
32ch
No
Yes
Yes
Yes
5ch
2ch
8ch
(5 channels for LIN-USART)
4ch
12ch (16-bit) / 24ch (8-bit)
Yes
Yes
No
I2C 0
AN 0 to 31
2ch
QPRC 0/1
Package
DMA
USART
with automatic LIN-Header
transmission/reception
with 16 byte RX- and
TX-FIFO
I2C
8/10-bit A/D Converter
with Data Buffer
with Range Comparator
with Scan Disable
with ADC Pulse Detection
16-bit Reload Timer (RLT)
16-bit Free-Running Timer (FRT)
16-bit Input Capture Unit (ICU)
16-bit Output Compare Unit (OCU)
8/16-bit Programmable Pulse Generator (PPG)
with Timing point capture
with Start delay
with Ramp
Quadrature Position/Revolution Counter
(QPRC)
CAN Interface
1ch
External Interrupts (INT)
Non-Maskable Interrupt (NMI)
Sound Generator (SG)
16ch
1ch
2ch
LCD Controller
4COM × 44SEG
Real Time Clock (RTC)
Clock Calibration Unit (CAL)
Clock Output Function
1ch
97 (Dual clock mode)
99 (Single clock mode)
1ch
2ch
Low Voltage Detection Function
Yes
Hardware Watchdog Timer
On-chip RC-oscillator
On-chip Debugger
Yes
Yes
Yes
I/O Ports
Product Options
R: MCU with CAN
A: MCU without CAN
RLT 0 to 3/6
FRT 0/1
ICU 0 to 7
(ICU 0/1/4 to 6 for LIN-USART)
OCU 0 to 3
PPG 0 to 7/12 to 15
CAN 0
32 Message Buffers
INT 0 to 15
SG 0/1
COM 0 to 3
SEG 0 to 4/7 to 45
Low voltage detection function can
be
disabled by software
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the general I/O port according to your function use.
Document Number: 002-04723 Rev.*A
Page 5 of 71
MB966C0 Series
2. Block Diagram
CKOT0, CKOT0_R, CKOT1, CKOT1_R
CKOTX0, CKOTX1, CKOTX1_R
X0, X1
X0A, X1A
RSTX
MD
NMI
DEBUG I/F
16FX
CPU
OCD
Interrupt
Controller
Clock &
Mode Controller
Flash
Memory A
16FX Core Bus (CLKB)
Peripheral
Bus Bridge
Watchdog
SDA0
SCL0
AVcc
AVss
AVRH
AVRL
AN0 to AN31
2
IC
1ch
8/10-bit ADC
32ch
TIN0 to TIN3
TOT0 to TOT3
TOT1_R, TOT2_R
FRCK0
FRCK0_R
IN0, IN1
IN0_R to IN3_R
OUT0 to OUT3
OUT0_R to OUT3_R
FRCK1
IN6, IN7
IN4_R to IN7_R
V0 to V3
COM0 to COM3
SEG0 to SEG4
SEG7 to SEG45
Document Number: 002-04723 Rev.*A
16-bit
Reload Timer
0/1/2/3/6
5ch
I/O Timer 0
FRT0
ICU 0/1/2/3
OCU 0/1/2/3
Peripheral Bus 1 (CLKP1)
ADTG
TIN1_R, TIN2_R
Peripheral
Bus Bridge
Peripheral Bus 2 (CLKP2)
DMA
Controller
RAM
CAN Interface
1ch
Sound
Generator
2ch
USART
5ch
Boot ROM
Voltage
Regulator
RX0
Vcc
Vss
C
TX0
SGO0, SGO1, SGO0_R, SGO1_R
SGA0, SGA1, SGA0_R, SGA1_R
SIN0 to SIN2, SIN4, SIN5, SIN5_R
SOT0 to SOT2, SOT4, SOT5, SOT5_R
SCK0 to SCK2, SCK4, SCK5, SCK5_R
TTG0 to TTG7, TTG12 to TTG15
PPG
12ch (16-bit) /
24ch (8-bit)
PPG0 to PPG7, PPG12 to PPG15
PPG0_R to PPG5_R, PPG12_R, PPG13_R
PPG0_B to PPG7_B, PPG12_B to PPG15_B
AIN0, AIN1
QPRC
2ch
ZIN0, ZIN1
I/O Timer 1
FRT1
ICU 4/5/6/7
LCD
controller/
driver
4COM×44SEG
BIN0, BIN1
Real Time
Clock
WOT, WOT_R
External
Interrupt
16ch
INT0 to INT15
INT1_R to INT7_R
Page 6 of 71
MB966C0 Series
3. Pin Assignment
Vcc
P00_2 / SEG14 / INT5_R
P00_1 / SEG13 / INT4_R
P00_0 / SEG12 / INT3_R
P12_7 / SEG11 / INT1_R
P12_6 / SEG10 / TOT2_R / PPG3_B
P12_5 / SEG9 / TIN2_R / PPG2_B
P12_4 / SEG8 / OUT3_R
P12_3 / SEG7 / OUT2_R
P12_2 / TOT1_R / PPG1_B
P12_1 / TIN1_R / PPG0_B
P12_0 / SEG4 / IN1_R / BIN1
P11_7 / SEG3 / IN0_R / AIN1
P11_6 / SEG2 / FRCK0_R / ZIN1
P11_5 / SEG1 / PPG4_R
P11_4 / SEG0 / PPG3_R
P11_3 / COM3 / PPG2_R
P11_2 / COM2 / PPG1_R
P11_1 / COM1 / PPG0_R
P11_0 / COM0
RSTX
P04_1 / X1A*3
P04_0 / X0A*3
Vss
X1
X0
MD
P17_0
DEBUG I/F
Vss
(Top view)
90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
LQFP - 120
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
Vcc
P10_3 / PPG7 / AN31
P10_2 / SCK2 / PPG6 / AN30*1
P10_1 / SOT2 / TOT3 / AN29
P10_0 / SIN2 / TIN3 / INT11 / AN28*1
P09_7 / PPG15
Vss
Vcc
P09_6 / PPG14
P09_5 / PPG13
P09_4 / PPG12
P09_3 / AN27
P09_2 / AN26
P09_1 / AN25
P09_0 / AN24
P08_7 / AN23 / PPG7_B
P08_6 / AN22 / PPG6_B
P08_5 / AN21
P17_2 / PPG13_R
P17_1 / PPG12_R
P08_4 / AN20
P08_3 / AN19
P08_2 / AN18
P08_1 / AN17
P08_0 / AN16
P05_7 / AN15 / TOT2 / SGA1_R
P05_6 / AN14 / TIN2 / SGO1_R
P05_5 / AN13
P05_4 / AN12 / INT2_R / WOT_R
Vss
Vss
C
P03_7 / INT1 / SIN1 / SEG40*1
P13_0 / INT2 / SOT1 / SEG41
P13_1 / INT3 / SCK1 / SEG42*1
P13_2 / PPG0 / TIN0 / FRCK1 / SEG43
P13_3 / PPG1 / TOT0 / WOT / SEG44
P13_4 / SIN0 / INT6 / SEG45*1
P13_5 / SOT0 / ADTG / INT7
P13_6 / SCK0 / CKOTX0*1
P13_7 / PPG2 / CKOT0
P04_4 / PPG3 / SDA0*2
P04_5 / PPG4 / SCL0*2
P06_0 / AN0 / IN2_R / SCK5*1
P06_1 / AN1 / IN3_R / SOT5
P06_2 / AN2 / INT5 / SIN5*1
P06_3 / AN3 / FRCK0
P06_4 / AN4 / IN0 / TTG0 / TTG4
P06_5 / AN5 / IN1 / TTG1 / TTG5
P06_6 / AN6 / TIN1 / IN4_R
P06_7 / AN7 / TOT1 / IN5_R
AVcc
AVRH
AVRL
AVss
P05_0 / AN8
P05_1 / AN9
P05_2 / AN10 / OUT2 / SGO1
P05_3 / AN11 / OUT3 / SGA1
Vcc
Vss
P00_3 / SEG15 / INT6_R
P00_4 / SEG16 / INT7_R
P00_5 / SEG17 / IN6 / TTG2 / TTG6
P00_6 / SEG18 / IN7 / TTG3 / TTG7
P00_7 / SEG19 / SGO0 / INT14
P01_0 / SEG20 / SGA0
P01_1 / SEG21 / CKOT1 / OUT0
P01_2 / SEG22 / CKOTX1 / OUT1 / INT15
P01_3 / SEG23 / PPG5
P01_4 / SEG24 / SIN4 / INT8*1
P01_5 / SEG25 / SOT4
P01_6 / SEG26 / SCK4 / TTG12*1
P01_7 / SEG27 / CKOTX1_R / INT9 / TTG13 / ZIN0
P02_0 / SEG28 / CKOT1_R / INT10 / TTG14 / AIN0
P02_1 / SEG29 / IN6_R / TTG15
P02_2 / SEG30 / IN7_R / CKOT0_R / INT12 / BIN0
P02_3 / SEG31 / SGO0_R / PPG12_B
P02_4 / SEG32 / SGA0_R / PPG13_B
P02_5 / SEG33 / OUT0_R / INT13 / SIN5_R*1
P02_6 / SEG34 / OUT1_R
P02_7 / SEG35 / PPG5_R
P03_0 / V0 / SEG36 / PPG4_B
P03_1 / V1 / SEG37 / PPG5_B
P03_2 / V2 / SEG38 / PPG14_B / SOT5_R
P03_3 / V3 / SEG39 / PPG15_B / SCK5_R*1
P03_4 / RX0 / INT4*1
P03_5 / TX0
P03_6 / INT0 / NMI
Vcc
(FPT-120P-M21)
*1: CMOS input level only
2
*2: CMOS input level only for I C
*3: Please set ROM Configuration Block (RCB) to use the subclock.
Other than those above, general-purpose pins have only Automotive input level.
Document Number: 002-04723 Rev.*A
Page 7 of 71
MB966C0 Series
4. Pin Description
Pin name
Feature
Description
ADTG
ADC
A/D converter trigger input pin
AINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
ANn
ADC
A/D converter channel n input pin
AVcc
Supply
Analog circuits power supply pin
AVRH
ADC
A/D converter high reference voltage input pin
AVRL
ADC
A/D converter low reference voltage input pin
AVss
Supply
Analog circuits power supply pin
BINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
C
Voltage regulator
Internally regulated power supply stabilization capacitor pin
CKOTn
Clock Output function
Clock Output function n output pin
CKOTn_R
Clock Output function
Relocated Clock Output function n output pin
CKOTXn
Clock Output function
Clock Output function n inverted output pin
CKOTXn_R
Clock Output function
Relocated Clock Output function n inverted output pin
COMn
LCD
LCD Common driver pin
DEBUG I/F
OCD
On Chip Debugger input/output pin
FRCKn
Free-Running Timer
Free-Running Timer n input pin
FRCKn_R
Free-Running Timer
Relocated Free-Running Timer n input pin
INn
ICU
Input Capture Unit n input pin
INn_R
ICU
Relocated Input Capture Unit n input pin
INTn
External Interrupt
External Interrupt n input pin
INTn_R
External Interrupt
Relocated External Interrupt n input pin
MD
Core
Input pin for specifying the operating mode
NMI
External Interrupt
Non-Maskable Interrupt input pin
OUTn
OCU
Output Compare Unit n waveform output pin
OUTn_R
OCU
Relocated Output Compare Unit n waveform output pin
Pnn_m
GPIO
General purpose I/O pin
PPGn
PPG
Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R
PPG
Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B
PPG
Programmable Pulse Generator n output pin (16bit/8bit)
RSTX
Core
Reset input pin
RXn
CAN
CAN interface n RX input pin
SCKn
USART
USART n serial clock input/output pin
SCKn_R
USART
Relocated USART n serial clock input/output pin
SCLn
I2C
I2C interface n clock I/O input/output pin
SDAn
I2C
I2C interface n serial data I/O input/output pin
SEGn
LCD
LCD Segment driver pin
SGAn
Sound Generator
Sound Generator amplitude output pin
SGAn_R
Sound Generator
Relocated Sound Generator amplitude output pin
SGOn
Sound Generator
Sound Generator sound/tone output pin
SGOn_R
Sound Generator
Relocated Sound Generator sound/tone output pin
Document Number: 002-04723 Rev.*A
Page 8 of 71
MB966C0 Series
Pin name
Feature
Description
SINn
USART
USART n serial data input pin
SINn_R
USART
Relocated USART n serial data input pin
SOTn
USART
USART n serial data output pin
SOTn_R
USART
Relocated USART n serial data output pin
TINn
Reload Timer
Reload Timer n event input pin
TINn_R
Reload Timer
Relocated Reload Timer n event input pin
TOTn
Reload Timer
Reload Timer n output pin
TOTn_R
Reload Timer
Relocated Reload Timer n output pin
TTGn
PPG
Programmable Pulse Generator n trigger input pin
TXn
CAN
CAN interface n TX output pin
Vn
LCD
LCD voltage reference pin
Vcc
Supply
Power supply pin
Vss
Supply
Power supply pin
WOT
RTC
Real Time clock output pin
WOT_R
RTC
Relocated Real Time clock output pin
X0
Clock
Oscillator input pin
X0A
Clock
Subclock Oscillator input pin
X1
Clock
Oscillator output pin
X1A
Clock
Subclock Oscillator output pin
ZINn
QPRC
Quadrature Position/Revolution Counter Unit n input pin
Document Number: 002-04723 Rev.*A
Page 9 of 71
MB966C0 Series
5. Pin Circuit Type
Pin no.
I/O circuit type*
Pin name
1
Supply
Vss
2
F
C
3
P
P03_7 / INT1 / SIN1 / SEG40
4
J
P13_0 / INT2 / SOT1 / SEG41
5
P
P13_1 / INT3 / SCK1 / SEG42
6
J
P13_2 / PPG0 / TIN0 / FRCK1 / SEG43
7
J
P13_3 / PPG1 / TOT0 / WOT / SEG44
8
P
P13_4 / SIN0 / INT6 / SEG45
9
H
P13_5 / SOT0 / ADTG / INT7
10
M
P13_6 / SCK0 / CKOTX0
11
H
P13_7 / PPG2 / CKOT0
12
N
P04_4 / PPG3 / SDA0
13
N
P04_5 / PPG4 / SCL0
14
I
P06_0 / AN0 / IN2_R / SCK5
15
K
P06_1 / AN1 / IN3_R / SOT5
16
I
P06_2 / AN2 / INT5 / SIN5
17
K
P06_3 / AN3 / FRCK0
18
K
P06_4 / AN4 / IN0 / TTG0 / TTG4
19
K
P06_5 / AN5 / IN1 / TTG1 / TTG5
20
K
P06_6 / AN6 / TIN1 / IN4_R
21
K
P06_7 / AN7 / TOT1 / IN5_R
22
Supply
AVcc
23
G
AVRH
24
G
AVRL
25
Supply
AVss
26
K
P05_0 / AN8
27
K
P05_1 / AN9
28
K
P05_2 / AN10 / OUT2 / SGO1
29
K
P05_3 / AN11 / OUT3 / SGA1
30
Supply
Vcc
31
Supply
Vss
32
K
P05_4 / AN12 / INT2_R / WOT_R
33
K
P05_5 / AN13
34
K
P05_6 / AN14 / TIN2 / SGO1_R
35
K
P05_7 / AN15 / TOT2 / SGA1_R
36
V
P08_0 / AN16
37
V
P08_1 / AN17
Document Number: 002-04723 Rev.*A
Page 10 of 71
MB966C0 Series
Pin no.
I/O circuit type*
Pin name
38
V
P08_2 / AN18
39
V
P08_3 / AN19
40
V
P08_4 / AN20
41
H
P17_1 / PPG12_R
42
H
P17_2 / PPG13_R
43
V
P08_5 / AN21
44
V
P08_6 / AN22 / PPG6_B
45
V
P08_7 / AN23 / PPG7_B
46
V
P09_0 / AN24
47
V
P09_1 / AN25
48
V
P09_2 / AN26
49
V
P09_3 / AN27
50
Y
P09_4 / PPG12
51
Y
P09_5 / PPG13
52
Y
P09_6 / PPG14
53
Supply
Vcc
54
Supply
Vss
55
Y
P09_7 / PPG15
56
W
P10_0 / SIN2 / TIN3 / INT11 / AN28
57
V
P10_1 / SOT2 / TOT3 / AN29
58
W
P10_2 / SCK2 / PPG6 / AN30
59
V
P10_3 / PPG7 / AN31
60
Supply
Vcc
61
Supply
Vss
62
O
DEBUG I/F
63
H
P17_0
64
C
MD
65
A
X0
66
A
X1
67
Supply
Vss
68
B
P04_0 / X0A
69
B
P04_1 / X1A
70
C
RSTX
71
J
P11_0 / COM0
72
J
P11_1 / COM1 / PPG0_R
73
J
P11_2 / COM2 / PPG1_R
74
J
P11_3 / COM3 / PPG2_R
75
J
P11_4 / SEG0 / PPG3_R
76
J
P11_5 / SEG1 / PPG4_R
Document Number: 002-04723 Rev.*A
Page 11 of 71
MB966C0 Series
Pin no.
I/O circuit type*
Pin name
77
J
P11_6 / SEG2 / FRCK0_R / ZIN1
78
J
P11_7 / SEG3 / IN0_R / AIN1
79
J
P12_0 / SEG4 / IN1_R / BIN1
80
H
P12_1 / TIN1_R / PPG0_B
81
H
P12_2 / TOT1_R / PPG1_B
82
J
P12_3 / SEG7 / OUT2_R
83
J
P12_4 / SEG8 / OUT3_R
84
J
P12_5 / SEG9 / TIN2_R / PPG2_B
85
J
P12_6 / SEG10 / TOT2_R / PPG3_B
86
J
P12_7 / SEG11 / INT1_R
87
J
P00_0 / SEG12 / INT3_R
88
J
P00_1 / SEG13 / INT4_R
89
J
P00_2 / SEG14 / INT5_R
90
Supply
Vcc
91
Supply
Vss
92
J
P00_3 / SEG15 / INT6_R
93
J
P00_4 / SEG16 / INT7_R
94
J
P00_5 / SEG17 / IN6 / TTG2 / TTG6
95
J
P00_6 / SEG18 / IN7 / TTG3 / TTG7
96
J
P00_7 / SEG19 / SGO0 / INT14
97
J
P01_0 / SEG20 / SGA0
98
J
P01_1 / SEG21 / CKOT1 / OUT0
99
J
P01_2 / SEG22 / CKOTX1 / OUT1 / INT15
100
J
P01_3 / SEG23 / PPG5
101
P
P01_4 / SEG24 / SIN4 / INT8
102
J
P01_5 / SEG25 / SOT4
103
P
P01_6 / SEG26 / SCK4 / TTG12
104
J
P01_7 / SEG27 / CKOTX1_R / INT9 / TTG13 / ZIN0
105
J
P02_0 / SEG28 / CKOT1_R / INT10 / TTG14 / AIN0
106
J
P02_1 / SEG29 / IN6_R / TTG15
107
J
P02_2 / SEG30 / IN7_R / CKOT0_R / INT12 / BIN0
108
J
P02_3 / SEG31 / SGO0_R / PPG12_B
109
J
P02_4 / SEG32 / SGA0_R / PPG13_B
110
P
P02_5 / SEG33 / OUT0_R / INT13 / SIN5_R
111
J
P02_6 / SEG34 / OUT1_R
112
J
P02_7 / SEG35 / PPG5_R
113
L
P03_0 / V0 / SEG36 / PPG4_B
114
L
P03_1 / V1 / SEG37 / PPG5_B
115
L
P03_2 / V2 / SEG38 / PPG14_B / SOT5_R
Document Number: 002-04723 Rev.*A
Page 12 of 71
MB966C0 Series
Pin no.
I/O circuit type*
Pin name
116
Q
P03_3 / V3 / SEG39 / PPG15_B / SCK5_R
117
M
P03_4 / RX0 / INT4
118
H
P03_5 / TX0
119
H
P03_6 / INT0 / NMI
120
Supply
Vcc
*: See “I/O Circuit Type” for details on the I/O circuit types.
Document Number: 002-04723 Rev.*A
Page 13 of 71
MB966C0 Series
6. I/O Circuit Type
Type
Circuit
Remarks
A
High-speed oscillation circuit:
 Programmable between
X1
oscillation mode (external
crystal or resonator connected
to X0/X1 pins) and Fast
external Clock Input (FCI)
mode (external clock
connected to X0 pin)
R
0
1
X out
 Feedback resistor = approx.
1.0MΩ
 The amplitude: 1.8V±0.15V
FCI
X0
to operate by the internal
supply voltage
FCI or Osc disable
Document Number: 002-04723 Rev.*A
Page 14 of 71
MB966C0 Series
Type
Circuit
Remarks
B
Pull-up control
Low-speed oscillation circuit shared
with GPIO functionality:
 Feedback resistor = approx.
5.0MΩ
P-ch
Standby
control
for input
shutdown
P-ch
N-ch
Pout
 GPIO functionality selectable
(CMOS level output (IOL =
4mA, IOH = -4mA), Automotive
input with input shutdown
function and programmable
pull-up resistor)
Nout
R
Automotive input
X1A
R
X out
0
1
FCI
X0A
FCI or Osc disable
Pull-up control
P-ch
Standby
control
for input
shutdown
P-ch
Pout
N-ch
Nout
R
Automotive input
C
CMOS hysteresis input pin
R
Hysteresis
inputs
Document Number: 002-04723 Rev.*A
Page 15 of 71
MB966C0 Series
Type
Circuit
Remarks
F
Power supply input protection circuit
P-ch
N-ch
G
 A/D converter ref+ (AVRH)/
ref- (AVRL) power supply input
pin with protection circuit
P-ch
 Without protection circuit
against VCC for pins
AVRH/AVRL
N-ch
H
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 Automotive input with input
P-ch
P-ch
Pout
N-ch
Nout
shutdown function
 Programmable pull-up resistor
R
Standby control
for input shutdown
Automotive input
I
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 CMOS hysteresis input with
P-ch
P-ch
Pout
input shutdown function
 Programmable pull-up resistor
 Analog input
N-ch
Nout
R
Hysteresis input
Standby control
for input shutdown
Analog input
Document Number: 002-04723 Rev.*A
Page 16 of 71
MB966C0 Series
Type
Circuit
Remarks
J
Pull-up control
 CMOS level output
(IOL = 4mA, IOH = -4mA)
 Automotive input with input
P-ch
P-ch
Pout
shutdown function
 Programmable pull-up resistor
 SEG or COM output
N-ch
Nout
R
Automotive input
Standby control
for input shutdown
SEG or COM output
K
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 Automotive input with input
P-ch
P-ch
Pout
shutdown function
 Programmable pull-up resistor
 Analog input
N-ch
Nout
R
Automotive input
Standby control
for input shutdown
Analog input
L
Pull-up control
 CMOS level output
(IOL = 4mA, IOH = -4mA)
 Automotive input with input
P-ch
P-ch
Pout
shutdown function
 Programmable pull-up resistor
 Vn input or SEG output
N-ch
Nout
R
Automotive input
Standby control
for input shutdown
Vn input or SEG output
Document Number: 002-04723 Rev.*A
Page 17 of 71
MB966C0 Series
Type
Circuit
Remarks
M
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 CMOS hysteresis input with
input shutdown function
P-ch
P-ch
Pout
N-ch
Nout
R
 Programmable pull-up resistor
Hysteresis input
Standby control
for input shutdown
N
 CMOS level output
Pull-up control
(IOL = 3mA, IOH = -3mA)
 CMOS hysteresis input with
input shutdown function
P-ch
P-ch
N-ch
R
Pout
 Programmable pull-up resistor
Nout*
*: N-channel transistor has slew rate
control according to I2C spec,
irrespective of usage.
Hysteresis input
Standby control
for input shutdown
O
 Open-drain I/O
 Output 25mA, Vcc = 2.7V
 TTL input
N-ch
Nout
R
Standby control
for input shutdown
Document Number: 002-04723 Rev.*A
TTL input
Page 18 of 71
MB966C0 Series
Type
Circuit
Remarks
P
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 CMOS hysteresis inputs with
P-ch
P-ch
Pout
input shutdown function
 Programmable pull-up resistor
 SEG or COM output
N-ch
Nout
R
Hysteresis input
Standby control
for input shutdown
SEG or COM output
Q
 CMOS level output
Pull-up control
(IOL = 4mA, IOH = -4mA)
 CMOS hysteresis inputs with
P-ch
P-ch
Pout
input shutdown function
 Programmable pull-up resistor
 Vn input or SEG output
N-ch
Nout
R
Hysteresis input
Standby control
for input shutdown
Vn input or SEG output
V
 CMOS level output
Pull-up control
P-ch
P-ch
Pout
(programmable IOL = 4mA, IOH
= -4mA and IOL = 20mA, IOH =
-20mA)
 Automotive input with input
shutdown function
 Programmable pull-up resistor
N-ch
Nout
 Analog input
R
Automotive input
Standby control
for input shutdown
Analog input
Document Number: 002-04723 Rev.*A
Page 19 of 71
MB966C0 Series
Type
Circuit
Remarks
W
 CMOS level output
Pull-up control
P-ch
P-ch
Pout
(programmable IOL = 4mA, IOH
= -4mA and IOL = 20mA, IOH =
-20mA)
 CMOS hysteresis input with
input shutdown function
 Programmable pull-up resistor
N-ch
Nout
 Analog input
R
Hysteresis input
Standby control
for input shutdown
Analog input
Y
 CMOS level output
Pull-up control
P-ch
P-ch
Pout
(programmable IOL = 4mA, IOH
= -4mA and IOL = 20mA, IOH =
-20mA)
 Automotive input with input
shutdown function
 Programmable pull-up resistor
N-ch
Nout
R
Standby control
for input shutdown
Document Number: 002-04723 Rev.*A
Automotive input
Page 20 of 71
MB966C0 Series
7. Memory Map
FF:FFFFH
USER ROM*1
DE:0000H
DD:FFFFH
Reserved
10:0000H
0F:C000H
Boot-ROM
Peripheral
0E:9000H
Reserved
01:0000H
00:8000H
RAMSTART0*2
ROM/RAM
MIRROR
Internal RAM
bank0
Reserved
00:0C00H
00:0380H
Peripheral
00:0180H
GPR*3
00:0100H
DMA
00:00F0H
Reserved
00:0000H
Peripheral
*1: For details about USER ROM area, see “User ROM Memory Map for Flash Devices” on the following pages.
*2: For RAMSTART addresses, see the table on the next page.
*3: Unused GPR banks can be used as RAM area.
GPR: General-Purpose Register
The DMA area is only available if the device contains the corresponding resource.
The available RAM and ROM area depends on the device.
Document Number: 002-04723 Rev.*A
Page 21 of 71
MB966C0 Series
8. RAMSTART Addresses
Bank 0
RAM size
Devices
RAMSTART0
MB96F6C5
8KB
00:6200H
MB96F6C6
16KB
00:4200H
Document Number: 002-04723 Rev.*A
Page 22 of 71
MB966C0 Series
9. User ROM Memory Map for Flash Devices
MB96F6C5
CPU mode
address
Flash memory
mode address
FF:FFFFH
3F:FFFFH
FF:0000H
3F:0000H
FE:FFFFH
3E:FFFFH
FE:0000H
3E:0000H
FD:FFFFH
3D:FFFFH
FD:0000H
3D:0000H
FC:FFFFH
3C:FFFFH
FC:0000H
3C:0000H
MB96F6C6
Flash size
Flash size
128.5KB + 32KB
256.5KB + 32KB
SA39 - 64KB
SA39 - 64KB
SA38 - 64KB
SA38 - 64KB
Bank A of Flash A
SA37 - 64KB
SA36 - 64KB
FB:FFFFH
Reserved
Reserved
DF:A000H
DF:9FFFH
1F:9FFFH
DF:8000H
1F:8000H
DF:7FFFH
1F:7FFFH
DF:6000H
1F:6000H
DF:5FFFH
1F:5FFFH
DF:4000H
1F:4000H
DF:3FFFH
1F:3FFFH
DF:2000H
1F:2000H
DF:1FFFH
1F:1FFFH
DF:0000H
1F:0000H
DE:FFFFH
DE:0000H
SA4 - 8KB
SA4 - 8KB
SA3 - 8KB
SA3 - 8KB
SA2 - 8KB
SA2 - 8KB
SA1 - 8KB
SA1 - 8KB
SAS - 512B*
SAS - 512B*
Reserved
Reserved
Bank B of Flash A
Bank A of Flash A
*: Physical address area of SAS-512B is from DF:0000H to DF:01FFH.
Others (from DF:0200H to DF:1FFFH) is mirror area of SAS-512B.
Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000H -DF:01FFH.
SAS cannot be used for E2PROM emulation.
Document Number: 002-04723 Rev.*A
Page 23 of 71
MB966C0 Series
10. Serial Programming Communication Interface
USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)
MB966C0
Pin Number
USART Number
8
9
Normal Function
SIN0
USART0
SOT0
10
SCK0
3
SIN1
4
USART1
SOT1
5
SCK1
56
SIN2
57
USART2
SOT2
58
SCK2
101
SIN4
102
USART4
103
Document Number: 002-04723 Rev.*A
SOT4
SCK4
Page 24 of 71
MB966C0 Series
11. Interrupt Vector Table
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
0
3FCH
CALLV0
No
-
CALLV instruction
1
3F8H
CALLV1
No
-
CALLV instruction
2
3F4H
CALLV2
No
-
CALLV instruction
3
3F0H
CALLV3
No
-
CALLV instruction
4
3ECH
CALLV4
No
-
CALLV instruction
5
3E8H
CALLV5
No
-
CALLV instruction
6
3E4H
CALLV6
No
-
CALLV instruction
7
3E0H
CALLV7
No
-
CALLV instruction
8
3DCH
RESET
No
-
Reset vector
9
3D8H
INT9
No
-
INT9 instruction
10
3D4H
EXCEPTION
No
-
Undefined instruction execution
11
3D0H
NMI
No
-
Non-Maskable Interrupt
12
3CCH
DLY
No
12
Delayed Interrupt
13
3C8H
RC_TIMER
No
13
RC Clock Timer
14
3C4H
MC_TIMER
No
14
Main Clock Timer
15
3C0H
SC_TIMER
No
15
Sub Clock Timer
16
3BCH
LVDI
No
16
Low Voltage Detector
17
3B8H
EXTINT0
Yes
17
External Interrupt 0
18
3B4H
EXTINT1
Yes
18
External Interrupt 1
19
3B0H
EXTINT2
Yes
19
External Interrupt 2
20
3ACH
EXTINT3
Yes
20
External Interrupt 3
21
3A8H
EXTINT4
Yes
21
External Interrupt 4
22
3A4H
EXTINT5
Yes
22
External Interrupt 5
23
3A0H
EXTINT6
Yes
23
External Interrupt 6
24
39CH
EXTINT7
Yes
24
External Interrupt 7
25
398H
EXTINT8
Yes
25
External Interrupt 8
26
394H
EXTINT9
Yes
26
External Interrupt 9
27
390H
EXTINT10
Yes
27
External Interrupt 10
28
38CH
EXTINT11
Yes
28
External Interrupt 11
29
388H
EXTINT12
Yes
29
External Interrupt 12
30
384H
EXTINT13
Yes
30
External Interrupt 13
31
380H
EXTINT14
Yes
31
External Interrupt 14
32
37CH
EXTINT15
Yes
32
External Interrupt 15
33
378H
CAN0
No
33
CAN Controller 0
34
374H
-
-
34
Reserved
35
370H
-
-
35
Reserved
36
36CH
-
-
36
Reserved
37
368H
-
-
37
Reserved
38
364H
PPG0
Yes
38
Programmable Pulse Generator 0
39
360H
PPG1
Yes
39
Programmable Pulse Generator 1
Document Number: 002-04723 Rev.*A
Page 25 of 71
MB966C0 Series
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
40
35CH
PPG2
Yes
40
Programmable Pulse Generator 2
41
358H
PPG3
Yes
41
Programmable Pulse Generator 3
42
354H
PPG4
Yes
42
Programmable Pulse Generator 4
43
350H
PPG5
Yes
43
Programmable Pulse Generator 5
44
34CH
PPG6
Yes
44
Programmable Pulse Generator 6
45
348H
PPG7
Yes
45
Programmable Pulse Generator 7
46
344H
-
-
46
Reserved
47
340H
-
-
47
Reserved
48
33CH
-
-
48
Reserved
49
338H
-
-
49
Reserved
50
334H
PPG12
Yes
50
Programmable Pulse Generator 12
51
330H
PPG13
Yes
51
Programmable Pulse Generator 13
52
32CH
PPG14
Yes
52
Programmable Pulse Generator 14
53
328H
PPG15
Yes
53
Programmable Pulse Generator 15
54
324H
-
-
54
Reserved
55
320H
-
-
55
Reserved
56
31CH
-
-
56
Reserved
57
318H
-
-
57
Reserved
58
314H
RLT0
Yes
58
Reload Timer 0
59
310H
RLT1
Yes
59
Reload Timer 1
60
30CH
RLT2
Yes
60
Reload Timer 2
61
308H
RLT3
Yes
61
Reload Timer 3
62
304H
-
-
62
Reserved
63
300H
-
-
63
Reserved
64
2FCH
RLT6
Yes
64
Reload Timer 6
65
2F8H
ICU0
Yes
65
Input Capture Unit 0
66
2F4H
ICU1
Yes
66
Input Capture Unit 1
67
2F0H
ICU2
Yes
67
Input Capture Unit 2
68
2ECH
ICU3
Yes
68
Input Capture Unit 3
69
2E8H
ICU4
Yes
69
Input Capture Unit 4
70
2E4H
ICU5
Yes
70
Input Capture Unit 5
71
2E0H
ICU6
Yes
71
Input Capture Unit 6
72
2DCH
ICU7
Yes
72
Input Capture Unit 7
73
2D8H
-
-
73
Reserved
74
2D4H
-
-
74
Reserved
75
2D0H
-
-
75
Reserved
76
2CCH
-
-
76
Reserved
77
2C8H
OCU0
Yes
77
Output Compare Unit 0
78
2C4H
OCU1
Yes
78
Output Compare Unit 1
79
2C0H
OCU2
Yes
79
Output Compare Unit 2
80
2BCH
OCU3
Yes
80
Output Compare Unit 3
Document Number: 002-04723 Rev.*A
Page 26 of 71
MB966C0 Series
Vector
number
Offset in
vector table
Index in
ICR to
program
Cleared by
DMA
Vector name
Description
81
2B8H
-
-
81
Reserved
82
2B4H
-
-
82
Reserved
83
2B0H
-
-
83
Reserved
84
2ACH
-
-
84
Reserved
85
2A8H
-
-
85
Reserved
86
2A4H
-
-
86
Reserved
87
2A0H
-
-
87
Reserved
88
29CH
-
-
88
Reserved
89
298H
FRT0
Yes
89
Free-Running Timer 0
90
294H
FRT1
Yes
90
Free-Running Timer 1
91
290H
-
-
91
Reserved
92
28CH
-
-
92
Reserved
93
288H
RTC0
No
93
Real Time Clock
94
284H
CAL0
No
94
Clock Calibration Unit
95
280H
SG0
No
95
Sound Generator 0
96
27CH
IIC0
Yes
96
I2C interface 0
97
278H
-
-
97
Reserved
98
274H
ADC0
Yes
98
A/D Converter 0
99
270H
-
-
99
Reserved
100
26CH
-
-
100
Reserved
101
268H
LINR0
Yes
101
LIN USART 0 RX
102
264H
LINT0
Yes
102
LIN USART 0 TX
103
260H
LINR1
Yes
103
LIN USART 1 RX
104
25CH
LINT1
Yes
104
LIN USART 1 TX
105
258H
LINR2
Yes
105
LIN USART 2 RX
106
254H
LINT2
Yes
106
LIN USART 2 TX
107
250H
-
-
107
Reserved
108
24CH
-
-
108
Reserved
109
248H
LINR4
Yes
109
LIN USART 4 RX
110
244H
LINT4
Yes
110
LIN USART 4 TX
111
240H
LINR5
Yes
111
LIN USART 5 RX
112
23CH
LINT5
Yes
112
LIN USART 5 TX
113
238H
-
-
113
Reserved
114
234H
-
-
114
Reserved
115
230H
-
-
115
Reserved
116
22CH
-
-
116
Reserved
117
228H
-
-
117
Reserved
118
224H
-
-
118
Reserved
119
220H
-
-
119
Reserved
120
21CH
-
-
120
Reserved
Document Number: 002-04723 Rev.*A
Page 27 of 71
MB966C0 Series
Vector
number
Offset in
vector table
Cleared by
DMA
Vector name
Index in
ICR to
program
Description
121
218H
SG1
No
121
Sound Generator 1
122
214H
-
-
122
Reserved
123
210H
-
-
123
Reserved
124
20CH
-
-
124
Reserved
125
208H
-
-
125
Reserved
126
204H
-
-
126
Reserved
127
200H
-
-
127
Reserved
128
1FCH
-
-
128
Reserved
129
1F8H
-
-
129
Reserved
130
1F4H
-
-
130
Reserved
131
1F0H
-
-
131
Reserved
132
1ECH
-
-
132
Reserved
133
1E8H
FLASHA
Yes
133
Flash memory A interrupt
134
1E4H
-
-
134
Reserved
135
1E0H
-
-
135
Reserved
136
1DCH
-
-
136
Reserved
137
1D8H
QPRC0
Yes
137
Quad Position/Revolution counter 0
138
1D4H
QPRC1
Yes
138
Quad Position/Revolution counter 1
139
1D0H
ADCRC0
No
139
A/D Converter 0 - Range Comparator
140
1CCH
ADCPD0
No
140
A/D Converter 0 - Pulse detection
141
1C8H
-
-
141
Reserved
142
1C4H
-
-
142
Reserved
143
1C0H
-
-
143
Reserved
Document Number: 002-04723 Rev.*A
Page 28 of 71
MB966C0 Series
12. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
12.1 Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
 Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
 Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
 Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and
input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the
device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or
over-current conditions at the design stage.
(2) Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current
flows. Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
 Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to
abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current
levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to
abnormal noise, surge levels, etc.
(2) Be sure that abnormal current flows do not occur during the power-on sequence.
 Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
 Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-04723 Rev.*A
Page 29 of 71
MB966C0 Series
 Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support,
etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages
arising from such use without prior approval.
12.2 Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales
representative.
 Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board,
or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be
subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to
Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
 Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily
deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open
connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of
recommended conditions.
 Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction
strength may be reduced under some conditions of use.
 Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption
of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel,
reducing moisture resistance and causing packages to crack. To prevent, do the following:
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures
between 5°C and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
(3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with
a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
 Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-04723 Rev.*A
Page 30 of 71
MB966C0 Series
 Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following
precautions:
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation
may be needed to remove electricity.
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the
level of 1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
(4) Ground all fixtures and instruments, or protect with anti-static measures.
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
12.3 Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
(1) Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels
are anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such
cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the
device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should
provide shielding as appropriate.
(5) Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If
devices begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-04723 Rev.*A
Page 31 of 71
MB966C0 Series
13. Handling Devices
Special care is required for the following when handling the device:
• Latch-up prevention
• Unused pins handling
• External clock usage
• Notes on PLL clock mode operation
• Power supply pins (Vcc/Vss)
• Crystal oscillator and ceramic resonator circuit
• Turn on sequence of power supply to A/D converter and analog inputs
• Pin handling when not using the A/D converter
• Notes on Power-on
• Stabilization of power supply voltage
• Serial communication
• Mode Pin (MD)
1. Latch-up prevention
CMOS IC chips may suffer latch-up under the following conditions:
- A voltage higher than VCC or lower than VSS is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AVCC power supply is applied before the VCC voltage.
Latch-up may increase the power supply current dramatically, causing thermal damages to the device.
For the same reason, extra care is required to not let the analog power-supply voltage (AVCC, AVRH) exceed
the digital power-supply voltage.
2. Unused pins handling
Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register
PIER = 0).
Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent
damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be
more than 2kΩ.
Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with
either input disabled or external pull-up/pull-down resistor as described above.
3. External clock usage
The permitted frequency range of an external clock depends on the oscillator type and configuration.
See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as
follows:
Document Number: 002-04723 Rev.*A
Page 32 of 71
MB966C0 Series
(1) Single phase external clock for Main oscillator
When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open.
And supply 1.8V power to the external clock.
X0
X1
Document Number: 002-04723 Rev.*A
Page 33 of 71
MB966C0 Series
(2) Single phase external clock for Sub oscillator
When using a single phase external clock for the Sub oscillator, “External clock mode” must be selected and
X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.
(3) Opposite phase external clock
When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has
the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.
X0
X1
4. Notes on PLL clock mode operation
If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the
microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.
5. Power supply pins (Vcc/Vss)
It is required that all VCC-level as well as all VSS-level power supply pins are at the same potential. If there is more than one VCC or
VSS level, the device may operate incorrectly or be damaged even within the guaranteed operating range.
Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.
The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.
Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1µF between Vcc
and Vss pins as close as possible to Vcc and Vss pins.
6. Crystal oscillator and ceramic resonator circuit
Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest
possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost
effort, that the lines of oscillation circuit do not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area
for stabilizing the operation.
It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer,
especially when using low-Q resonators at higher frequencies.
7. Turn on sequence of power supply to A/D converter and analog inputs
It is required to turn the A/D converter power supply (AVCC, AVRH, AVRL) and analog inputs (ANn) on after turning the digital
power supply (VCC) on.
It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must
not exceed AVCC . Input voltage for ports shared with analog input ports also must not exceed AVCC (turning the analog and digital
power supplies simultaneously on or off is acceptable).
8. Pin handling when not using the A/D converter
If the A/D converter is not used, the power supply pins for A/D converter should be connected such as AVCC = VCC, AVSS = AVRH
=AVRL = VSS.
Document Number: 002-04723 Rev.*A
Page 34 of 71
MB966C0 Series
9. Notes on Power-on
To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower
than 50µs from 0.2V to 2.7V.
10. Stabilization of power supply voltage
If the power supply voltage varies acutely even within the operation safety range of the VCC power supply voltage, a malfunction
may occur. The VCC power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must
be stabilized in such a way that VCC ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall
within 10% of the standard VCC power supply voltage and the transient fluctuation rate becomes 0.1V/µs or less in instantaneous
fluctuation for power supply switching.
11. Serial communication
There is a possibility to receive wrong data due to noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit
the data if an error occurs.
12. Mode Pin (MD)
Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the
printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.
Document Number: 002-04723 Rev.*A
Page 35 of 71
MB966C0 Series
14. Electrical Characteristics
14.1 Absolute Maximum Ratings
Parameter
Power supply voltage*
Analog power supply
voltage*1
Symbol
1
Rating
Condition
Min
Max
Unit
Remarks
VCC
-
VSS - 0.3
VSS + 6.0
V
AVCC
-
VSS - 0.3
VSS + 6.0
V
VCC = AVCC*2
Analog reference
voltage*1
AVRH,
AVRL
-
VSS - 0.3
VSS + 6.0
V
AVCC≥ AVRH,
AVCC ≥ AVRL,
AVRH > AVRL,
AVRL ≥ AVSS
LCD power supply
voltage*1
V0 to V3
-
VSS - 0.3
VSS + 6.0
V
V0 to V3 must not exceed
VCC
Input voltage*1
VI
-
VSS - 0.3
VSS + 6.0
V
VI ≤ VCC + 0.3V*3
Output voltage*1
VO
-
VSS - 0.3
VSS + 6.0
V
VO ≤ VCC + 0.3V*3
ICLAMP
-
-4.0
+4.0
mA
Σ|ICLAMP|
-
-
32
mA
IOL
IOLHCO
-
-
15
20
mA
mA
IOLAV
-
-
4
mA
Normal port
IOLAVHCO
-
-
15
mA
High current port
ΣIOL
-
-
80
mA
Normal port
ΣIOLHCO
-
-
150
mA
High current port
ΣIOLAV
-
-
40
mA
Normal port
ΣIOLAVHCO
-
-
100
mA
High current port
"H" level maximum
output current
IOH
-
-
-15
mA
Normal port
IOHHCO
-
-
-20
mA
High current port
"H" level average output
current
IOHAV
-
-
-4
mA
Normal port
IOHAVHCO
-
-
-15
mA
High current port
-
-
-80
mA
Normal port
-
-
-150
mA
High current port
-
-
-40
mA
Normal port
-
-100
446*6
mA
mW
High current port
PD
TA= +125°C
TA
-
-40
+125*7
°C
TSTG
-
-55
+150
°C
Maximum Clamp
Current
Total Maximum Clamp
Current
"L" level maximum
output current
"L" level average output
current
"L" level maximum
overall output current
"L" level average overall
output current
"H" level maximum
overall output current
"H" level average
overall output current
Power consumption*5
Operating ambient
temperature
Storage temperature
ΣIOH
ΣIOHHCO
ΣIOHAV
ΣIOHAVHCO
Applicable to general
purpose I/O pins *4
Applicable to general
purpose I/O pins *4
Normal port
High current port
*1: This parameter is based on VSS = AVSS = 0V.
*2: AVCC and VCC must be set to the same voltage. It is required that AVCC does not exceed VCC and that the voltage at the analog
inputs does not exceed AVCC when the power is switched on.
*3: VI and VO should not exceed VCC + 0.3V. VI should also not exceed the specified ratings. However if the maximum current
to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output
voltages of general I/O ports depend on VCC.
*4: • Applicable to all general purpose I/O pins (Pnn_m).
• Use within recommended operating conditions.
Document Number: 002-04723 Rev.*A
Page 36 of 71
MB966C0 Series
•
•
•
•
•
•
•
Use at DC voltage (current).
The +B signal should always be applied a limiting resistance placed between the +B signal and the
microcontroller.
The value of the limiting resistance should be set so that when the +B signal is applied the input current to
the
microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass
through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided
from the pins, so that incomplete operation may result.
Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
voltage may not be sufficient to operate the Power reset.
The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current
(4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to
maximum 6.0V.
Document Number: 002-04723 Rev.*A
Page 37 of 71
MB966C0 Series
• Sample recommended circuits:
Protective diode
VCC
Limiting
resistance
P-ch
+B input (0V to 16V)
N-ch
R
*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal
conductance of the package on the PCB.
The actual power dissipation depends on the customer application and can be calculated as follows:
PD = PIO + PINT
PIO = Σ (VOL × IOL + VOH × IOH) (I/O load power dissipation, sum is performed on all I/O ports)
PINT = VCC × (ICC + IA) (internal power dissipation)
ICC is the total core current consumption into VCC as described in the “DC characteristics” and depends on the selected operation
mode and clock frequency and the usage of functions like Flash programming.
IA is the analog current consumption into AVCC.
*6: Worst case value for a package mounted on single layer PCB at specified TA without air flow.
*7: Write/erase to a large sector in flash memory is warranted with TA ≤ + 105°C.
WARNING
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
absolute maximum ratings. Do not exceed these ratings.
Document Number: 002-04723 Rev.*A
Page 38 of 71
MB966C0 Series
14.2 Recommended Operating Conditions
(VSS = AVSS = 0V)
Parameter
Symbol
Power supply voltage
VCC, AVCC
Smoothing capacitor at
C pin
CS
Value
Typ
Min
Max
Unit
2.7
-
5.5
V
2.0
-
5.5
V
0.5
1.0 to 3.9
4.7
µF
Remarks
Maintains RAM data in stop mode
1.0µF (Allowance within ± 50%)
3.9µF (Allowance within ± 20%)
Please use the ceramic capacitor or the capacitor
of the frequency response of this level.
The smoothing capacitor at VCC must use the one
of a capacity value that is larger than CS.
WARNING
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the
device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or
combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact
their representatives beforehand.
Document Number: 002-04723 Rev.*A
Page 39 of 71
MB966C0 Series
14.3 DC Characteristics
14.3.1 Current Rating
Parameter
Symbol
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Conditions
Unit
Remarks
Min
Typ
Max
Pin
name
-
28
-
mA
TA = +25°C
-
-
38
mA
TA = +105°C
-
-
39.5
mA
TA = +125°C
-
3.5
-
mA
TA = +25°C
-
-
8
mA
TA = +105°C
-
-
9.5
mA
TA = +125°C
-
1.8
-
mA
TA = +25°C
-
-
6
mA
TA = +105°C
-
-
7.5
mA
TA = +125°C
-
0.16
-
mA
TA = +25°C
-
-
3.5
mA
TA = +105°C
-
-
5
mA
TA = +125°C
-
0.1
-
mA
TA = +25°C
-
-
3.3
mA
TA = +105°C
-
-
4.8
mA
TA = +125°C
PLL Run mode with CLKS1/2 = CLKB
= CLKP1/2 = 32MHz
ICCPLL
Flash 0 wait
(CLKRC and CLKSC stopped)
Main Run mode with CLKS1/2 =
CLKB = CLKP1/2 = 4MHz
Flash 0 wait
ICCMAIN
(CLKPLL, CLKSC and CLKRC
stopped)
RC Run mode with CLKS1/2 = CLKB
= CLKP1/2 = CLKRC = 2MHz
Power supply
current in Run
modes*1
ICCRCH
Vcc
Flash 0 wait
(CLKMC, CLKPLL and CLKSC
stopped)
RC Run mode with CLKS1/2 = CLKB
= CLKP1/2 = CLKRC = 100kHz
ICCRCL
Flash 0 wait
(CLKMC, CLKPLL and CLKSC
stopped)
Sub Run mode with CLKS1/2 = CLKB
= CLKP1/2 = 32kHz
ICCSUB
Flash 0 wait
(CLKMC, CLKPLL and CLKRC
stopped)
Document Number: 002-04723 Rev.*A
Page 40 of 71
MB966C0 Series
Parameter
Symbol
Pin
name
PLL Sleep mode with
CLKS1/2 = CLKP1/2 = 32MHz
(CLKRC and CLKSC stopped)
ICCSPLL
Main Sleep mode with
CLKS1/2 = CLKP1/2 = 4MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKRC and CLKSC
stopped)
ICCSMAIN
Power supply
current in Sleep
modes*1
ICCSRCH
ICCSRCL
ICCSSUB
Document Number: 002-04723 Rev.*A
Conditions
Vcc
RC Sleep mode with CLKS1/2
= CLKP1/2 = CLKRC = 2MHz,
SMCR:LPMSS = 0
(CLKMC, CLKPLL and CLKSC
stopped)
RC Sleep mode with CLKS1/2
= CLKP1/2 = CLKRC = 100kHz
(CLKMC, CLKPLL and CLKSC
stopped)
Sub Sleep mode with
CLKS1/2 = CLKP1/2 = 32kHz,
(CLKMC, CLKPLL and CLKRC
stopped)
Value
Typ
Min
Max
Unit
Remarks
-
9.5
-
mA
TA = +25°C
-
-
15
mA
TA = +105°C
-
-
16.5
mA
TA = +125°C
-
1.1
-
mA
TA = +25°C
-
-
4.7
mA
TA = +105°C
-
-
6.2
mA
TA = +125°C
-
0.6
-
mA
TA = +25°C
-
-
4.1
mA
TA = +105°C
-
-
5.6
mA
TA = +125°C
-
0.07
-
mA
TA = +25°C
-
-
2.9
mA
TA = +105°C
-
-
4.4
mA
TA = +125°C
-
0.04
-
mA
TA = +25°C
-
-
2.7
mA
TA = +105°C
-
-
4.2
mA
TA = +125°C
Page 41 of 71
MB966C0 Series
Parameter
Symbol
Pin
name
PLL Timer mode with CLKPLL =
32MHz (CLKRC and CLKSC stopped)
ICCTPLL
Main Timer mode with
CLKMC = 4MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKRC and CLKSC
stopped)
ICCTMAIN
Power supply
current in Timer
modes*2
ICCTRCH
Conditions
Vcc
ICCTRCL
ICCTSUB
Document Number: 002-04723 Rev.*A
RC Timer mode with
CLKRC = 2MHz,
SMCR:LPMSS = 0
(CLKPLL, CLKMC and CLKSC
stopped)
RC Timer mode with
CLKRC = 100kHz
(CLKPLL, CLKMC and CLKSC
stopped)
Sub Timer mode with
CLKSC = 32kHz
(CLKMC, CLKPLL and CLKRC
stopped)
Value
Typ
Min
Max
Unit
Remarks
-
1800
2250
µA
TA = +25°C
-
-
3220
µA
TA = +105°C
-
-
4200
µA
TA = +125°C
-
285
330
µA
TA = +25°C
-
-
1200
µA
TA = +105°C
-
-
2155
µA
TA = +125°C
-
160
215
µA
TA = +25°C
-
-
1110
µA
TA = +105°C
-
-
2065
µA
TA = +125°C
-
35
75
µA
TA = +25°C
-
-
910
µA
TA = +105°C
-
-
1870
µA
TA = +125°C
-
25
65
µA
TA = +25°C
-
-
885
µA
TA = +105°C
-
-
1845
µA
TA = +125°C
Page 42 of 71
MB966C0 Series
Parameter
Power supply current in
Stop mode*3
Flash Power Down
current
Symbol
Pin
name
Conditions
-
ICCH
ICCFLASHPD
-
Value
Min
Typ
Max
Unit
Remarks
-
20
60
µA
TA = +25°C
-
-
880
µA
TA = +105°C
-
-
1840
µA
TA = +125°C
-
36
70
µA
-
5
-
µA
TA = +25°C
-
-
12.5
µA
TA = +125°C
-
12.5
-
mA
TA = +25°C
-
-
20
mA
TA = +125°C
Vcc
Power supply current
for active Low
Voltage detector*4
Flash Write/
Erase current*5
ICCLVD
ICCFLASH
Low voltage detector
enabled
-
*1: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and
a 32kHz external clock connected to the Sub oscillator. See chapter “Standby mode and voltage regulator control circuit” of the
Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power
supply current in Run mode does not include Flash Write / Erase current.
*2: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.
When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.
The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock
connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.
*3: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.
When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.
*4: When low voltage detector is enabled, ICCLVD must be added to Power supply current.
*5: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.
Document Number: 002-04723 Rev.*A
Page 43 of 71
MB966C0 Series
14.3.2 Pin Characteristics
Parameter
"H" level input
voltage
Symbol
Pin name
VIH
Port inputs
Pnn_m
External clock in
"Fast Clock Input mode"
External clock in
"Oscillation mode"
VIHX0S
X0
VIHX0AS
X0A
VIHR
RSTX
-
VIHM
MD
-
VIHD
DEBUG I/F
-
VIL
"L" level input
voltage
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Conditions
Unit
Remarks
Min
Typ
Max
Port inputs
Pnn_m
External clock in "Fast Clock
Input mode"
External clock in
"Oscillation mode"
VILX0S
X0
VILX0AS
X0A
VILR
RSTX
-
VILM
MD
-
VILD
DEBUG I/F
-
Document Number: 002-04723 Rev.*A
VCC
× 0.7
VCC
× 0.8
VD
× 0.8
VCC
× 0.8
VCC
× 0.8
VCC
- 0.3
2.0
VSS
- 0.3
VSS
- 0.3
VSS
VSS
- 0.3
VSS
- 0.3
VSS
- 0.3
VSS
- 0.3
-
VCC
+ 0.3
VCC
+ 0.3
VD
VCC
+ 0.3
VCC
+ 0.3
VCC
+ 0.3
VCC
+ 0.3
VCC
× 0.3
VCC
× 0.5
VD
× 0.2
VCC
× 0.2
VCC
× 0.2
VSS
+ 0.3
0.8
V
CMOS Hysteresis input
V
AUTOMOTIVE
Hysteresis input
V
VD=1.8V±0.15V
V
V
CMOS Hysteresis input
V
CMOS Hysteresis input
V
TTL Input
V
CMOS Hysteresis input
V
AUTOMOTIVE
Hysteresis input
V
VD=1.8V±0.15V
V
V
CMOS Hysteresis input
V
CMOS Hysteresis input
V
TTL Input
Page 44 of 71
MB966C0 Series
Parameter
"H" level
output voltage
"L" level
output voltage
Symbol
Pin name
VOH4
4mA type
VOH20
High Drive
type*
VOH3
3mA type
VOL4
4mA type
VOL20
High Drive
type*
VOL3
3mA type
VOLD
DEBUG I/F
Document Number: 002-04723 Rev.*A
Conditions
4.5V ≤ VCC ≤ 5.5V
IOH = -4mA
2.7V ≤ VCC < 4.5V
IOH = -1.5mA
4.5V ≤ VCC ≤ 5.5V
IOH = -20mA
2.7V ≤ VCC < 4.5V
IOH = -13mA
4.5V ≤ VCC ≤ 5.5V
IOH = -3mA
2.7V ≤ VCC < 4.5V
IOH = -1.5mA
4.5V ≤ VCC ≤ 5.5V
IOL = +4mA
2.7V ≤ VCC < 4.5V
IOL = +1.7mA
4.5V ≤ VCC ≤ 5.5V
IOL = +20mA
2.7V ≤ VCC < 4.5V
IOL = +13mA
2.7V ≤ VCC < 5.5V
IOL = +3mA
VCC = 2.7V
IOL = +25mA
Min
Value
Typ
Max
Unit
VCC
- 0.5
-
VCC
V
VCC
- 0.6
-
VCC
V
VCC
- 0.5
-
VCC
V
-
-
0.4
V
-
-
0.6
V
-
-
0.4
V
0
-
0.25
V
Remarks
Page 45 of 71
MB966C0 Series
Parameter
Input leak
current
Symbol
Conditions
Min
Value
Typ
Max
Unit
Pnn_m
VSS < VI < VCC
AVSS, AVRL < VI < AVCC, AVRH
-1
-
+1
µA
P08_m,
P09_m,
P10_m
VSS < VI < VCC
AVSS, AVRL < VI < AVCC, AVRH
-3
-
+3
µA
VCC = 5.0V
-
0.5
10
µA
VCC = 5.0V
6.25
12.5
25
kΩ
Pnn_m
VCC = 5.0V ±10%
25
50
100
kΩ
Other than C,
Vcc,
Vss,
AVcc,
AVss,
AVRH,
AVRL,
P08_m,
P09_m,
P10_m
-
-
5
15
pF
P08_m,
P09_m,
P10_m
-
-
15
30
pF
Remarks
IIL
Total LCD leak
current
Σ|IILCD|
Internal LCD
divide
resistance
RLCD
Pull-up
resistance
value
RPU
Input
capacitance
Pin name
CIN
All SEG/
COM pin
Between
V3 and V2,
V2 and V1,
V1 and V0
Maximum leakage
current of all LCD pins
*: In the case of high current outputs, set "1" to the bit in the Port High Drive Register.
Document Number: 002-04723 Rev.*A
Page 46 of 71
MB966C0 Series
14.4 AC Characteristics
14.4.1 Main Clock Input Characteristics
(VCC = AVCC = 2.7V to 5.5V, VD=1.8V±0.15V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Remarks
Parameter
Symbol
Pin name
Typ
Min
Max
Input frequency
Input frequency
fC
fFCI
X0,
X1
When using a crystal oscillator,
PLL off
When using an opposite phase
external
clock, PLL off
When using a crystal oscillator
or opposite
phase external clock, PLL on
4
-
8
MHz
-
-
8
MHz
4
-
8
MHz
-
-
8
MHz
When using a single phase
external
clock in “Fast Clock Input
mode”, PLL off
4
-
8
MHz
When using a single phase
external
clock in “Fast Clock Input
mode”, PLL on
X0
Input clock cycle
tCYLH
-
125
-
-
ns
Input clock pulse width
PWH,
PWL
-
55
-
-
ns
When using the crystal oscillator
tCYLH
X0,X1
Reference value:
1.8V±0.15V
The amplitude changes by resistance, capacity which added outside or the difference of the device.
Document Number: 002-04723 Rev.*A
Page 47 of 71
MB966C0 Series
When using the external clock
tCYLH
X0
VIHX0S
VIHX0S
VILX0S
PWH
Document Number: 002-04723 Rev.*A
VIHX0S
VILX0S
PWL
Page 48 of 71
MB966C0 Series
14.4.2 Sub Clock Input Characteristics
Parameter
Pin
name
Symbol
Input frequency
fCL
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Remarks
Conditions
Min
Typ
Max
-
-
32.768
-
kHz
-
-
-
100
kHz
X0A
-
-
-
50
kHz
X0A,
X1A
Input clock cycle
tCYLL
-
-
10
-
-
µs
Input clock pulse width
-
-
PWH/tCYLL,
PWL/tCYLL
30
-
70
%
When using an oscillation
circuit
When using an opposite
phase external clock
When using a single
phase external clock
When using the crystal oscillator
tCYLL
X0A,X1A
VCC
When using the external clock
tCYLL
X0A
VIHX0AS
VIHX0AS
VILX0AS
PWH
Document Number: 002-04723 Rev.*A
VIHX0AS
VILX0AS
PWL
Page 49 of 71
MB966C0 Series
14.4.3 Built-in RC Oscillation Characteristics
Parameter
Symbol
Clock frequency
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Remarks
Typ
Max
Min
50
100
200
kHz
1
2
4
MHz
80
160
320
µs
64
128
256
µs
When using slow frequency of RC
oscillator
When using fast frequency of RC
oscillator
When using slow frequency of RC
oscillator
(16 RC clock cycles)
When using fast frequency of RC
oscillator
(256 RC clock cycles)
fRC
RC clock stabilization time
tRCSTAB
14.4.4 Internal Clock Timing
Parameter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Symbol
Unit
Min
Max
Internal System clock frequency
(CLKS1 and CLKS2)
fCLKS1, fCLKS2
-
54
MHz
Internal CPU clock frequency (CLKB),
Internal peripheral clock frequency (CLKP1)
fCLKB, fCLKP1
-
32
MHz
Internal peripheral clock frequency (CLKP2)
fCLKP2
-
32
MHz
Document Number: 002-04723 Rev.*A
Page 50 of 71
MB966C0 Series
14.4.5 Operating Conditions of PLL
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Symbol
Unit
Remarks
Min
Typ
Max
Parameter
PLL oscillation stabilization wait time
tLOCK
1
-
4
ms
For CLKMC = 4MHz
PLL input clock frequency
fPLLI
4
-
8
MHz
PLL oscillation clock frequency
fCLKVCO
56
-
108
MHz
Permitted VCO output frequency
of PLL (CLKVCO)
PLL phase jitter
tPSKEW
-5
-
+5
ns
For CLKMC (PLL input clock) ≥
4MHz
Deviation time from the ideal clock is assured per cycle out of 20,000 cycles.
PLL output
t2
t1
t3
tn-1
tn
Ideal clock
Slow
Deviation
time
t3
t2
t1
tn-1
tn
Fast
14.4.6 Reset Input
Parameter
Symbol
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Pin name
Unit
Min
Max
Reset input time
tRSTL
10
-
µs
1
-
µs
RSTX
Rejection of reset input time
tRSTL
RSTX
0.2VCC
Document Number: 002-04723 Rev.*A
0.2VCC
Page 51 of 71
MB966C0 Series
14.4.7 Power-on Reset Timing
Parameter
Symbol
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Pin name
Unit
Min
Typ
Max
Power on rise time
tR
Vcc
0.05
-
30
ms
Power off time
tOFF
Vcc
1
-
-
ms
tOFF
tR
2.7V
VCC
0.2V
0.2V
0.2V
If the power supply is changed too rapidly, a power-on reset may occur.
We recommend a smooth startup by restraining voltages when changing
the power supply voltage during operation, as shown in the figure below.
5.0V
VCC
2.7V
0V
VSS
Document Number: 002-04723 Rev.*A
It is required that rises in voltage
have a slope of 50 mV/ms or less.
Page 52 of 71
MB966C0 Series
14.4.8 USART Timing
Parameter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C, CL=50pF)
4.5V ≤ VCC < 5.5V 2.7V ≤ VCC < 4.5V Uni
Symbo
Pin
l
name Conditions
t
Min
Max
Min
Max
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SOT → SCK ↑ delay time
tOVSHI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock "L" pulse width
tSLSH
Serial clock "H" pulse width
tSHSL
SCKn
SCKn,
SOTn
SCKn,
SOTn
SCKn,
SINn
SCKn,
SINn
Internal shift
clock mode
-
4tCLKP1
-
ns
- 20
+ 20
- 30
+ 30
ns
-
ns
-
ns
-
ns
-
ns
-
ns
2tCLKP1
+ 55
ns
-
ns
-
ns
N×tCLKP1
– 20*
tCLKP1
+ 45
0
tCLKP1
+ 10
tCLKP1
+ 10
SCKn
SCKn
SCKn,
SOTn
SCKn,
SINn
SCKn,
SINn
4tCLKP1
2tCLKP1
+ 45
N×tCLKP1
– 30*
tCLKP1
+ 55
0
tCLKP1
+ 10
tCLKP1
+ 10
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK fall time
tF
SCKn
-
20
-
20
ns
SCK rise time
tR
SCKn
-
20
-
20
ns
Notes:
External shift
clock mode
tCLKP1/2
+ 10
tCLKP1
+ 10
-
tCLKP1/2
+ 10
tCLKP1
+ 10
• AC characteristic in CLK synchronized mode.
• CL is the load capacity value of pins when testing.
• Depending on the used machine clock frequency, the maximum possible baud rate can be limited by
some
parameters. These parameters are shown in “MB96600 series HARDWARE MANUAL”.
• tCLKP1 indicates the peripheral clock 1 (CLKP1), Unit: ns
• These characteristics only guarantee the same relocate port number.
For example, the combination of SCKn and SOTn_R is not guaranteed.
*: Parameter N depends on tSCYC and can be calculated as follows:
• If tSCYC = 2 × k × tCLKP1, then N = k, where k is an integer > 2
• If tSCYC = (2 × k + 1) × tCLKP1, then N = k + 1, where k is an integer > 1
Examples:
tSCYC
N
4 × tCLKP1
2
5 × tCLKP1, 6 × tCLKP1
3
7 × tCLKP1, 8 × tCLKP1
4
...
...
Document Number: 002-04723 Rev.*A
Page 53 of 71
MB966C0 Series
tSCYC
VOH
SCK
VOL
VOL
tOVSHI
tSLOVI
VOH
SOT
VOL
tIVSHI
SIN
tSHIXI
VIH
VIH
VIL
VIL
Internal shift clock mode
SCK
tSHSL
tSLSH
VIH
VIH
VIL
VIL
tF
SOT
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
External shift clock mode
Document Number: 002-04723 Rev.*A
Page 54 of 71
MB966C0 Series
14.4.9 External Input Timing
Parameter
Symbol
Pin name
Pnn_m
General Purpose I/O
ADTG
A/D Converter trigger input
TINn, TINn_R
Reload Timer
TTGn
Input pulse width
tINH,
tINL
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Remarks
Min
Max
2tCLKP1 +200
(tCLKP1=
1/fCLKP1)*
FRCKn,
FRCKn_R
PPG trigger input
-
ns
Free-Running Timer input clock
INn, INn_R
Input Capture
AINn,
BINn,
ZINn
Quadrature
Position/Revolution
Counter
INTn, INTn_R
200
-
NMI
ns
External Interrupt
Non-Maskable Interrupt
*: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.
tINH
External input timing
VIH
tINL
VIH
VIL
Document Number: 002-04723 Rev.*A
VIL
Page 55 of 71
MB966C0 Series
2
14.4.10 I C Timing
Parameter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
4
Typical mode
High-speed mode*
Conditions
Unit
Min
Max
Min
Max
Symbol
SCL clock frequency
fSCL
0
100
0
400
kHz
(Repeated) START condition hold time
SDA ↓ → SCL ↓
tHDSTA
4.0
-
0.6
-
µs
SCL clock "L" width
tLOW
4.7
-
1.3
-
µs
SCL clock "H" width
tHIGH
4.0
-
0.6
-
µs
4.7
-
0.6
-
µs
0
3.45*2
0
0.9*3
µs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
µs
tBUS
4.7
-
1.3
-
µs
0
(1-1.5) ×
tCLKP1*5
0
(1-1.5) ×
tCLKP1*5
ns
(Repeated) START condition setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
"STOP condition" and
"START condition"
Pulse width of spikes which will be
suppressed by input noise filter
tSUSTA
tHDDAT
tSP
CL = 50pF,
R = (Vp/IOL)*1
-
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT only has to be met if the device does not extend the "L" width (tLOW) of the SCL signal.
2
2
*3: A high-speed mode I C bus device can be used on a standard mode I C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250ns".
*4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.
*5: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time.
SDA
tSUDAT
tSUSTA
tBUS
tLOW
SCL
tHDSTA
tHDDAT
Document Number: 002-04723 Rev.*A
tHIGH
tHDSTA
tSP
tSUSTO
Page 56 of 71
MB966C0 Series
14.5 A/D Converter
14.5.1 Electrical Characteristics for the A/D Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Parameter
Symbol Pin name
Unit
Remarks
Min
Typ
Max
Resolution
-
-
-
-
10
bit
Total error
-
-
- 3.0
-
+ 3.0
LSB
Nonlinearity error
-
-
- 2.5
-
+ 2.5
LSB
-
-
- 1.9
-
+ 1.9
LSB
Typ + 20
mV
Typ + 20
mV
Differential
Nonlinearity error
Zero transition
voltage
Full scale transition
voltage
Compare time*
Sampling time*
VOT
ANn
Typ - 20
VFST
ANn
Typ - 20
-
-
-
5.0
µs
4.5V ≤ ΑVCC ≤ 5.5V
2.2
-
8.0
µs
2.7V ≤ ΑVCC < 4.5V
0.5
-
-
µs
4.5V ≤ ΑVCC ≤ 5.5V
1.2
-
-
µs
2.7V ≤ ΑVCC < 4.5V
-
2.0
3.1
mA
A/D Converter active
-
-
3.3
µA
A/D Converter not
operated
-
520
810
µA
A/D Converter active
-
-
1.0
µA
A/D Converter not
operated
AN0 to 15
-
-
16.0
pF
Normal outputs
AN16 to 31
-
-
17.8
pF
High current outputs
-
-
2050
Ω
4.5V ≤ AVCC ≤ 5.5V
-
-
3600
Ω
2.7V ≤ AVCC < 4.5V
AN0 to 15
- 0.3
-
+ 0.3
µA
AN16 to 31
- 3.0
-
+ 3.0
µA
ANn
AVRL
-
AVRH
V
-
AVRH
AVCC
- 0.1
-
AVCC
V
-
AVRL
AVSS
-
AVSS
+ 0.1
V
-
ANn
-
-
4.0
LSB
IAH
IR
Analog input capacity
CVIN
AVRH
IRH
RVIN
Analog port input
current (during
conversion)
IAIN
Analog input voltage
VAIN
Variation between
channels
-
AVCC
Reference power
supply current
(between AVRH and
AVRL)
Reference voltage
range
1.0
-
IA
Power supply current
Analog impedance
AVRL
+ 0.5LSB
AVRH
- 1.5LSB
ANn
AVSS , AVRL < VAIN <
AVCC, AVRH
*: Time for each channel.
Document Number: 002-04723 Rev.*A
Page 57 of 71
MB966C0 Series
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time
If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold
capacitor is insufficient, adversely affecting the A/D conversion precision.
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends
on the external driving impedance Rext, the board capacitance of the A/D converter input pin Cext and the AVCC voltage level. The
following replacement model can be used for the calculation:
MCU
Rext
Analog
input
RVIN
Source
Comparator
Cext
CVIN
Sampling switch
(During sampling:ON)
Rext: External driving impedance
Cext: Capacitance of PCB at A/D converter input
CVIN: Analog input capacity (I/O, analog switch and ADC are contained)
RVIN: Analog input impedance (I/O, analog switch and ADC are contained)
The following approximation formula for the replacement model above can be used:
Tsamp = 7.62 × (Rext × Cext + (Rext + RVIN) × CVIN)
 Do not select a sampling time below the absolute minimum permitted value.
(0.5µs for 4.5V ≤ AVCC ≤ 5.5V, 1.2µs for 2.7V ≤ AVCC < 4.5V)
 If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
 A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL
(static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and
comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
 The accuracy gets worse as |AVRH - AVRL| becomes smaller.
Document Number: 002-04723 Rev.*A
Page 58 of 71
MB966C0 Series
14.5.3 Definition of A/D Converter Terms
Resolution
Nonlinearity error
: Analog variation that is recognized by an A/D converter.
: Deviation of the actual conversion characteristics from a straight line that connects the zero transition
point (0b0000000000 ←→ 0b0000000001) to the full-scale transition point (0b1111111110 ←→
0b1111111111).
Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by
1LSB.
Total error
: Difference between the actual value and the theoretical value. The total error includes zero transition
error, full-scale transition error and nonlinearity error.
Zero transition voltage: Input voltage which results in the minimum conversion value.
Full scale transition voltage: Input voltage which results in the maximum conversion value.
Nonlinearity error
Differential nonlinearity error
0x3FF
Actual conversion
characteristics
0x3FE
Actual conversion
characteristics
0x(N+1)
Digital output
VFST
(Actuallymeasured
value)
0x003
VNT
(Actually-measured
value)
0x002
Actual conversion
characteristics
0x004
Digital output
{1 LSB(N-1) + VOT}
0x3FD
Ideal characteristics
0xN
Ideal characteristics
0x(N-2)
0x001
VOT (Actually-measured value)
AVRL
AVRH
N
VOT
VFST
VNT
:
:
:
:
AVRH
Analog input
VNT - {1LSB × (N - 1) + VOT}
1LSB
Differential nonlinearity error of digital output N =
1LSB =
VNT
(Actually-measured
value)
Actual conversion characteristics
AVRL
Analog input
Nonlinearity error of digital output N =
V(N+1)T
(Actually-measured
value)
0x(N-1)
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VOT
1022
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0x3FE to 0x3FF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-04723 Rev.*A
Page 59 of 71
MB966C0 Series
Total error
0x3FF
1.5 LSB
0x3FE
Actual conversion
characteristics
Digital output
0x3FD
{1 LSB (N-1) + 0.5 LSB}
0x004
VNT
(Actually-measured value)
Actual conversion
characteristics
Ideal characteristics
0x003
0x002
0x001
0.5 LSB
AVRL
AVRH
Analog input
1LSB (Ideal value) =
AVRH - AVRL
1024
Total error of digital output N =
[V]
VNT - {1LSB × (N - 1) + 0.5LSB}
1LSB
N
: A/D converter digital output value.
: Voltage at which the digital output changes from 0x(N + 1) to 0xN.
VNT
VOT (Ideal value) = AVRL + 0.5LSB[V]
VFST (Ideal value) = AVRH - 1.5LSB[V]
Document Number: 002-04723 Rev.*A
Page 60 of 71
MB966C0 Series
14.6 High Current Output Slew Rate
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Parameter
Symbol
Output rise/fall time
tR20,
tF20
Pin
name
Conditions
P08_m,
P09_m,
P10_m
Outputs
driving
strength set to
"20mA"
Value
Typ
Min
15
-
Max
75
Voltage
Unit
ns
Remarks
CL=85pF
VH=VOL20+0.9 × (V OH20-VOL20)
VL=VOL20+0.1 × (V OH20-VOL20)
VH
VH
VL
VL
tR20
tF20
Time
Document Number: 002-04723 Rev.*A
Page 61 of 71
MB966C0 Series
14.7 Low Voltage Detection Function Characteristics
Parameter
Detected voltage*1
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Min
Typ
Max
Symbol
Conditions
VDL0
CILCR:LVL = 0000B
2.70
2.90
3.10
V
VDL1
CILCR:LVL = 0001B
2.79
3.00
3.21
V
VDL2
CILCR:LVL = 0010B
2.98
3.20
3.42
V
VDL3
CILCR:LVL = 0011B
3.26
3.50
3.74
V
VDL4
CILCR:LVL = 0100B
3.45
3.70
3.95
V
VDL5
CILCR:LVL = 0111B
3.73
4.00
4.27
V
VDL6
CILCR:LVL = 1001B
3.91
4.20
4.49
V
Power supply voltage change
rate*2
dV/dt
-
- 0.004
-
+ 0.004
V/µs
CILCR:LVHYS=0
-
-
50
mV
Hysteresis width
VHYS
CILCR:LVHYS=1
80
100
120
mV
Stabilization time
TLVDSTAB
-
-
-
75
µs
Detection delay time
td
-
-
-
30
µs
*1: If the power supply voltage fluctuates within the time less than the detection delay time (td), there is a possibility that the low
voltage detection will occur or stop after the power supply voltage passes the detection range.
*2: In order to perform the low voltage detection at the detection voltage (VDLX), be sure to suppress fluctuation of the power supply
voltage within the limits of the change ration of power supply voltage.
Document Number: 002-04723 Rev.*A
Page 62 of 71
MB966C0 Series
Voltage
Vcc
dV
Detected Voltage
dt
VDLX max
VDLX min
Time
Voltage
Internal Reset
Vcc
Release Voltage
dV
dt
VHYS
Time
td
Normal Operation
td
Low Voltage Reset Assertion
Power Reset Extension Time
RCR:LVDE
···Low voltage detection
function enable
Document Number: 002-04723 Rev.*A
Low voltage detection
function disable
Stabilization time
TLVDSTAB
Low voltage detection
function enable···
Page 63 of 71
MB966C0 Series
14.8 Flash Memory Write/Erase Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 125°C)
Value
Unit
Remarks
Min
Typ
Max
Parameter
Sector erase time
Word (16-bit) write
time
Conditions
Large Sector
TA ≤ + 105°C
-
1.6
7.5
s
Small Sector
-
-
0.4
2.1
s
Security Sector
-
-
0.31
1.65
s
Large Sector
TA ≤ + 105°C
-
25
400
µs
Small Sector
-
-
25
400
µs
TA ≤ + 105°C
-
8.31
40.05
s
Chip erase time
Includes write time prior to
internal erase.
Not including system-level
overhead
time.
Includes write time prior to
internal erase.
Note: While the Flash memory is written or erased, shutdown of the external power (VCC) is prohibited. In the application system
where the external power (VCC) might be shut down while writing or erasing, be sure to turn the power off by using a low
voltage detection function.
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/µs to
*1
+0.004V/µs) after the external power falls below the detection voltage (VDLX) .
Write/Erase cycles and data hold time
Write/Erase cycles
(cycle)
1,000
10,000
100,000
Data hold time
(year)
20 *2
10 *2
5 *2
*1: See "14.7. Low Voltage Detection Function Characteristics".
*2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into
normalized value at + 85°C).
Document Number: 002-04723 Rev.*A
Page 64 of 71
MB966C0 Series
15. Example Characteristics
This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.
MB96F6C6
Run Mode
(VCC = 5.5V)
100.00
PLL clock (32MHz)
10.00
ICC [mA]
Main osc. (4MHz)
1.00
RC clock (2MHz)
RC clock (100kHz)
0.10
Sub osc. (32kHz)
0.01
-50
0
50
100
150
TA [ºC]
Sleep Mode
(VCC = 5.5V)
100.000
PLL clock (32MHz)
10.000
ICC [mA]
Main osc. (4MHz)
1.000
RC clock (2MHz)
0.100
RC clock (100kHz)
0.010
Sub osc. (32kHz)
0.001
-50
0
50
100
150
TA [ºC]
Document Number: 002-04723 Rev.*A
Page 65 of 71
MB966C0 Series
MB96F6C6
Timer Mode
(VCC = 5.5V)
10.000
PLL clock (32MHz)
ICC [mA]
1.000
Main osc. (4MHz)
0.100
RC clock (2MHz)
RC clock (100kHz)
0.010
Sub osc. (32kHz)
0.001
-50
0
50
100
150
TA [ºC]
Stop Mode
(VCC = 5.5V)
1.000
ICC [mA]
0.100
0.010
0.001
-50
0
50
100
150
TA [ºC]
Document Number: 002-04723 Rev.*A
Page 66 of 71
MB966C0 Series
Used setting
Selected Source
Clock
Mode
Run mode
Sleep mode
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
Main osc.
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
RC clock fast
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
RC clock slow
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
Sub osc.
CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
PLL
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz
Regulator in High Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz
Regulator in Low Power Mode,
(CLKB is stopped in this mode)
CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz
Regulator in Low Power Mode,
(CLKB is stopped in this mode)
CLKMC = 4MHz, CLKPLL = 32MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 4MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 2MHz
(System clocks are stopped in this mode)
Regulator in High Power Mode,
FLASH in Power-down / reset mode
CLKMC = 100kHz
(System clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
CLKMC = 32 kHz
(System clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
(All clocks are stopped in this mode)
Regulator in Low Power Mode,
FLASH in Power-down / reset mode
Main osc.
RC clock fast
RC clock slow
Sub osc.
Timer mode
PLL
Main osc.
RC clock fast
RC clock slow
Sub osc.
Stop mode
Clock/Regulator and FLASH Settings
PLL
stopped
Document Number: 002-04723 Rev.*A
Page 67 of 71
MB966C0 Series
16. Ordering Information
MCU with CAN controller
Part number
MB96F6C5RBPMC-GSE1
MB96F6C5RBPMC-GSE2
MB96F6C6RBPMC-GSE1
MB96F6C6RBPMC-GSE2
Flash memory
Package*
Flash A
(160.5KB)
120-pin plastic LQFP
(FPT-120P-M21)
Flash A
(288.5KB)
120-pin plastic LQFP
(FPT-120P-M21)
*: For details about package, see "Package Dimension".
MCU without CAN controller
Part number
MB96F6C5ABPMC-GSE1
MB96F6C5ABPMC-GSE2
Flash memory
Flash A
(160.5KB)
Package*
120-pin plastic LQFP
(FPT-120P-M21)
*: For details about package, see "Package Dimension".
Document Number: 002-04723 Rev.*A
Page 68 of 71
MB966C0 Series
17. Package Dimension
120-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
16.0 × 16.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.88 g
Code
(Reference)
P-LFQFP120-16×16-0.50
(FPT-120P-M21)
120-pin plastic LQFP
(FPT-120P-M21)
Note 1) * : These dimensions do not include resin protrusion.
Resin protrusion is +0.25(.010) MAX(each side).
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
18.00±0.20(.709±.008)SQ
* 16.00
+0.40
–0.10
.630
+.016
–.004
SQ
90
61
60
91
0.08(.003)
Details of "A" part
1.50
.059
+0.20
–0.10
+.008
–.004
(Mounting height)
INDEX
0~8°
120
LEAD No.
31
1
30
0.50(.020)
C
"A"
0.22±0.05
(.009±.002)
0.08(.003) M
2002-2010 FUJITSU SEMICONDUCTOR LIMITED F120033S-c-4-7
Document Number: 002-04723 Rev.*A
0.145
.006
+0.05
–0.03
+.002
–.001
0.60±0.15
(.024±.006)
0.10±0.05
(.004±.002)
(Stand off)
0.25(.010)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 69 of 71
MB966C0 Series
18. Major Changes
Spansion Publication Number: MB966C0_DS704-00014-2v1-E
Page
Section
Revision 1.0
Revision 2.0
Electrical Characteristics
DC Characteristics
Current Rating
42
Change Results
Initial release
Changed the Value of “Power supply current in Timer modes”
ICCTPLL
Typ: 2485μA → 1800μA (TA = +25°C)
Max: 2715μA → 2250μA (TA = +25°C)
Max: 4095μA → 3220μA (TA = +105°C)
Max: 5055μA → 4200μA (TA = +125°C)
Revision 2.1
-
Company name and layout design change
NOTE: Please see “Document History” about later revised information.
Document History
Document Title: MB966C0 Series F2MC-16FX 16-bit Microcontroller
Document Number: 002-04723
Revision
ECN
Orig. of
Change
Submission
Date
**
−
KSUN
01/31/2014
*A
5168020
KSUN
Document Number: 002-04723 Rev.*A
03/29/2016
Description of Change
Migrated to Cypress and assigned document number 002-4723.
No change to document contents or format.
Updated to Cypress template
Page 70 of 71
MB966C0 Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
Products
PSoC® Solutions
ARM® Cortex® Microcontrollers
cypress.com/arm
Automotive
cypress.com/go/automotive
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Clocks & Buffers
Cypress Developer Community
psoc.cypress.com/solutions
cypress.com/go/clocks
Interface
Lighting & Power Control
cypress.com/go/interface
cypress.com/go/powerpsoc
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/memory
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation 2011-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to
end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable,
license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the
Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification,
translation, or compilation of the Software is prohibited.
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is
any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company
shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended
Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-04723 Rev.*A
March 29, 2016
Page 71 of 71
Similar pages