IRF IRGS6B60KDPBF Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 95229C
IRGB6B60KDPbF
IRGS6B60KDPbF
IRGSL6B60KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10μs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
VCES = 600V
IC = 10A, TC=100°C
G
tsc > 10μs, TJ=150°C
E
n-channel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB6B60KDPbF
D 2Pak
IRGS6B60KDPbF
TO-262
IRGSL6B60KDPbF
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current„
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
600
18
10
26
26
18
10
26
± 20
90
36
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)‚
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
–––
0.50
–––
–––
1.44
1.4
4.4
–––
62
40
–––
Units
°C/W
g
1
01/07/13
IRGB/S/SL6B60KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
ΔV(BR)CES/ΔTJ
VCE(on)
VGE(th)
ΔVGE(th)/ΔTJ
gfe
ICES
VFM
IGES
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
Min.
600
–––
1.5
–––
Gate Threshold Voltage
3.5
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
–––
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.3
1.80
2.20
4.5
-10
3.0
1.0
200
1.25
1.20
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500μA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
2.20
V
IC = 5.0A, VGE = 15V
2.50
IC = 5.0A,VGE = 15V,
TJ = 150°C
5.5
V
VCE = VGE, IC = 250μA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C)
–––
S
VCE = 50V, IC = 5.0A, PW=80μs
150
μA
VGE = 0V, VCE = 600V
500
VGE = 0V, VCE = 600V, TJ = 150°C
1.45
IC = 5.0A
1.40
V
IC = 5.0A
TJ = 150°C
±100 nA
VGE = ±20V
Ref.Fig.
5, 6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Erec
trr
Irr
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
Ref.Fig.
Max. Units
Conditions
–––
IC = 5.0A
–––
nC VCC = 400V
CT1
–––
VGE = 15V
CT4
210
μJ
IC = 5.0A, VCC = 400V
245
VGE = 15V,R G = 100Ω, L =1.4mH
455
Ls = 150nH
TJ = 25°C ƒ
CT4
34
IC = 5.0A, VCC = 400V
26
VGE = 15V, RG = 100Ω L =1.4mH
230
ns
Ls = 150nH, TJ = 25°C
22
CT4
260
IC = 5.0A, VCC = 400V
13,15
300
μJ
VGE = 15V,R G = 100Ω, L =1.4mH
WF1WF2
560
Ls = 150nH
TJ = 150°C ƒ
14, 16
37
IC = 5.0A, VCC = 400V
CT4
26
VGE = 15V, RG = 100Ω L =1.4mH
255
ns
Ls = 150nH, TJ = 150°C
WF1
27
WF2
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
4
TJ = 150°C, IC = 26A, Vp =600V
FULL SQUARE
VCC = 500V, VGE = +15V to 0V,RG = 100Ω CT2
CT3
μs
TJ = 150°C, Vp =600V, RG = 100Ω
10 ––– –––
WF4
VCC = 360V, VGE = +15V to 0V
17,18,19
––– 90 175
μJ
TJ = 150°C
20, 21
––– 70
80
ns
VCC = 400V, IF = 5.0A, L = 1.4mH
CT4,WF3
––– 10
14
A
VGE = 15V,RG = 100Ω, Ls = 150nH
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
18.2
1.9
9.2
110
135
245
25
17
215
13.2
150
190
340
28
17
240
18
290
34
10
Note:  to „ are on page 15
2
www.irf.com
IRGB/S/SL6B60KDPbF
100
20
90
80
70
Ptot (W)
IC (A)
15
10
60
50
40
30
5
20
10
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
IC A)
IC (A)
10 μs
1
1
100 μs
DC
1ms
0.1
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB/S/SL6B60KDPbF
20
20
18
VGE
VGE
VGE
VGE
VGE
16
12
18
VGE
VGE
VGE
VGE
VGE
16
14
ICE (A)
ICE (A)
14
= 18V
= 15V
= 12V
= 10V
= 8.0V
10
8
12
10
8
6
6
4
4
2
2
0
= 18V
= 15V
= 12V
= 10V
= 8.0V
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
5
6
30
18
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
14
12
-40°C
25°C
150°C
25
20
IF (A)
ICE (A)
4
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
20
10
8
15
10
6
4
5
2
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80μs
4
3
VCE (V)
0
0.0
0.5
1.0
1.5
2.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 3.0A
10
ICE = 5.0A
8
ICE = 10A
VCE (V)
VCE (V)
IRGB/S/SL6B60KDPbF
12
ICE = 3.0A
10
ICE = 5.0A
8
ICE = 10A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
20
40
18
35
16
T J = 25°C
T J = 150°C
30
14
10
ICE = 3.0A
ICE = 5.0A
8
ICE = 10A
25
ICE (A)
VCE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
12
15
VGE (V)
20
15
6
10
4
T J = 150°C
5
2
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
T J = 25°C
0
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
5
IRGB/S/SL6B60KDPbF
700
1000
600
tdOFF
EON
Swiching Time (ns)
Energy (μJ)
500
400
EOFF
300
200
100
tF
tdON
tR
10
100
0
0
5
10
15
1
20
0
IC (A)
10
15
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
250
1000
tdOFF
Swiching Time (ns)
EOFF
200
Energy (μJ)
5
150
EON
100
100
tdON
tR
tF
10
50
1
0
0
50
100
150
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
6
200
0
50
100
150
200
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
www.irf.com
IRGB/S/SL6B60KDPbF
20
25
RG = 22 Ω
20
16
IRR (A)
IRR (A)
RG = 47 Ω
15
RG = 100 Ω
10
12
8
RG = 150 Ω
4
5
0
0
0
5
10
15
0
20
50
100
200
RG (Ω)
IF (A)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 5.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1200
20
22Ω
1000
16
QRR (nC)
12
8
10A
47Ω
800
IRR (A)
150
100 Ω
600
5.0A
150Ω
3.0A
400
200
4
0
0
0
200
400
600
800
diF /dt (A/μs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 5.0A; TJ = 150°C
www.irf.com
1000
0
200
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGB/S/SL6B60KDPbF
300
22Ω
Energy (μJ)
250
200
47Ω
150
100 Ω
100
150 Ω
50
0
5
10
15
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
14
Cies
300V
12
Capacitance (pF)
100
400V
10
VGE (V)
Coes
Cres
10
8
6
4
2
0
1
1
10
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
5
10
15
20
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 5.0A; L = 600μH
www.irf.com
IRGB/S/SL6B60KDPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
R1
R1
τJ
τ1
0.01
0.02
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
0.447
0.219
τ3
Ci= τi/Ri
Ci i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τi (sec)
0.708
0.00022
0.00089
0.01037
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
0.20
1
0.10
0.05
τJ
0.01
0.02
0.1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
τC
τ
τ3
Ri (°C/W) τi (sec)
1.194
0.000172
2.424
0.001517
0.753
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
0.080325
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB/S/SL6B60KDPbF
L
L
VCC
DUT
0
+
-
80 V
DUT
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
1K
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB/S/SL6B60KDPbF
9
400
8
350
7
90% ICE
6
400
20
300
15
TEST CURRENT
VCE (V)
200
150
4
3
5% V CE
100
50
1
0
0
Eof f Loss
-50
-0.20
0.30
200
90% test current
100
2
5% ICE
VCE (V)
5
tf
I CE (A)
250
25
10% test current
tr
0
0
Eon Loss
-1
-100
16.00
0.80
16.10
50
500
50
400
40
-150
0
-200
-2
Peak
IRR
10%
Peak
IRR
-300
IC E
300
-4
30
200
20
100
10
-6
-350
-8
-400
-10
-450
-0.06
-12
0.14
VC E
VCE (V)
2
IF (A)
V F (V)
4
t RR
0.24
time (μS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
-5
16.40
6
QR R
0.04
16.30
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
8
-100
-250
16.20
time (μs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
-50
5
5% V CE
time(μs)
0
10
ICE (A)
300
500
ICE (A)
450
0
-5.00
0.00
5.00
10.00
0
15.00
time (μS)
Fig. WF4- Typ. S.C Waveform
@ TJ = 150°C using Fig. CT.3
11
IRGB/S/SL6B60KDPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
12
www.irf.com
IRGB/S/SL6B60KDPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLE D ON WW 02, 2000
IN T HE AS S EMBL Y LINE "L"
INT ERNAT IONAL
R ECT IFIER
LOGO
Note: "P" in as sembly line
pos ition indicates "L ead-F ree"
PART NUMBER
F530S
AS S EMBLY
L OT CODE
DAT E CODE
YEAR 0 = 2000
WE EK 02
LINE L
OR
INT E RNAT IONAL
RE CT IF IER
LOGO
AS S EMBLY
LOT CODE
PART NUMBE R
F 530S
DAT E CODE
P = DE SIGNAT ES LE AD-F RE E
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WE EK 02
A = AS SE MBLY SIT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
13
IRGB/S/SL6B60KDPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN THE AS S EMBLY LINE "C"
Note: "P" in ass embly line
pos ition indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEE K 19
LINE C
OR
INTERNAT IONAL
RECT IF IER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-F REE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEE K 19
A = AS S EMBLY S ITE CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
14
www.irf.com
IRGB/S/SL6B60KDPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 This is only applied to TO-220AB package
‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
ƒ Energy losses include "tail" and diode reverse recovery.
„ VCC = 80% (VCES), VGE = 20V, L = 100 μH, RG = 100Ω.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101N. Sepulveda, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/2013
www.irf.com
15
Similar pages