DOMINANT DKXX-MJS Multi domiled Datasheet

DOMINANT
Opto Technologies
Innovating Illumination
TM
DATA SHEET
Multi DomiLED
Bi-Color : DKxx-MJS
Multi DomiLED
Synonymous with function and performance, the Multi DomiLED series
is perfectly suited for a variety of cross-industrial applications due to its
small package outline, durability and superior brightness.
Features:
>
>
>
>
>
>
>
High brightness bi-color surface mount LED.
120° viewing angle.
Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm.
Qualified according to JEDEC moisture sensitivity Level 2.
Compatible to IR reflow soldering.
Environmental friendly; RoHS compliance.
Compliance to automotive standard; AEC-Q101.
Applications:
> Signage: full colour display video notice board, signage, special
effect lighting.
> Lighting: architecture lighting, general lighting, garden light,
channel light.
> Automotive: interior application, eg: switches, telematics, climate
control system, dashboard, etc.
© 2005 DomiLED is a trademark of DOMINANT Opto Technologies.
All rights reserved. Product specifications are subject to change without notice.
1
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=25˚C
Part Ordering
Number
Viewing
Angle˚
Color, λdom (nm)
Chip #1
DKST-MJS-UV+WX-1 Super Red,
632nm
Chip #2
True Green,
120
Luminous Intensity @ 20mA IV (mcd) Appx. 1.1
Chip #1
Chip #2
Min.
Typ.
Max.
Min.
Typ.
Max.
450.0
715.0
1125.0
1125.0
1800.0 2850.0
525nm
Electrical Characteristics at Tj=25˚C
Vf @ If = 20mA Appx. 3.1
Min. (V)
Typ. (V)
Max. (V)
Super Red
1.80
2.10
2.60
True Green
2.90
3.40
3.70
Absolute Maximum Ratings
Maximum Value
DC forward current
Super Red; AlInGaP=30;
Unit
mA
True Green; InGaN=20
Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.005)
Super Red ; AlInGaP=200;
Reverse voltage
True Green; InGaN=200
mA
Super Red; AlInGaP=12;
V
True Green; InGaN=5
ESD threshold (HBM)
2000
V
LED junction temperature
125
˚C
Operating temperature
-40 … +100
˚C
Storage temperature
-40 … +100
˚C
- Junction / ambient, RthJA (2 chips On)
575
K/W
- Junction / solder point, RthJS (2 chips On)
380
K/W
Thermal resistance
2
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Wavelength Grouping
Color
Group
Wavelength distribution (nm) Appx. 2.2
Super Red
Full
625 - 640
True Green
Full
520 - 536
W
520 - 524
X
524 - 528
Y
528 - 532
Z
532 - 536
Luminous Intensity Group at Tj=25˚C
Luminous Intensity @ IV (mcd) Appx. 1.1
Chip #1
Chip #2
Brightness Group
UW
450.0...715.0
1125.0...1800.0
UX
450.0...715.0
1800.0...2850.0
VW
715.0...1125.0
1125.0...1800.0
VX
715.0...1125.0
1800.0...2850.0
3
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
IV/IV(20mA)
F); Tj = 25°C (AlInGaP)
= f(IF);=Tf(I
1.6 1.6 IV/IV(20mA)
j = 25°C (AlInGaP)
Luminous
Intensity
Vs Forward
Current
1.6 1.6Relative
Relative Luminous Intensity
Vs Forward
Current
IV/IV(20mA)
= f(IF);=Tf(Ij =F);25°C
(AlInGaP)
I
/I
(20mA)
T
=
25°C
(AlInGaP)
V
V
j
1.4
1.4
1.6
1.41.6 1.4
1.2 1.2
1.4
1.21.4 1.2
15 10
15
10
10
10
10
5
5
Forward Current IF (mA)
Relative Luminous Intensity Irel
Luminous
Irel
Relative Relative
Luminous
IntensityIntensity
Irel
20 15
20
15
15
15
15 10
15
10
10
10
10
5
5
0.2
0.4 0.2
0.4
0.2 0.2
0
5
05
2.9 2.9
3.0 3.0
3.1 3.1
3.2 3.2
3.3 3.3
3.4 3.4
3.5 3.5
3.6 3.6
0 2.80 2.8
3.3
2.8 2.8
2.9 2.9
3.0 3.0
3.1 3.1
3.2 3.2
3.3Voltage
3.4 3.4
3.5 3.5
3.6 3.6
Forward
Forward
Voltage
VF (V) VF (V)
0
Forward
Voltage
V (V)
0
Forward
Voltage
Forward
Voltage
V (V) VFF (V)
2.8 2.8
2.9 2.9
3.0 3.0
3.1 3.1
3.2 3.2
3.3F 3.3
3.4 3.4
3.5 3.5
3.6 3.6
Relative
Spectral
Emission
Relative
Spectral
Emission
(V)
Forward
Voltage
V
Relative
Spectral
Emission
(V)
Forward
Voltage
V
F 20mA;
Irel =TRelative
f(λ); Tj = 25°C;
IF =Emission
AllnGaP
InGaN
F
Irel = f(λ);
ISpectral
20mA;
InGaN
20mA 20mA
j = 25°C;
F = AllnGaP
Irel =TRelative
f(λ); Tj = 25°C;
IF = AllnGaP
20mA;
Spectral
Emission
AllnGaP
20mA;
InGaNInGaN
20mA 20mA
1.0 1.0Irel = f(λ);
j = 25°C; IF =
1.0 I 1.0
Relative
Emission
Relative
Spectral
Emission
= f(λ); Tj = 25°C;
IF =Spectral
AlInGaP
20mA;
InGaN 20mA
0.9 rel 0.9 Irel = f(λ);
IF = AllnGaP
20mA;20mA;
InGaNInGaN
20mA20mA
Irel =Tf(λ);
Tj = 25°C;
IF = AllnGaP
j = 25°C;
0.9
0.91.0 1.0
0.8
0.8
0.80.9 0.8
0.9
AllnGaP
InGaN InGaN AllnGaP
0.7 0.7
AllnGaP
InGaN InGaN AllnGaP
0.70.8 0.7
0.8
0.6 0.6
InGaNInGaN AllnGaP
AllnGaP
0.60.7 0.6
0.7
0.5 0.5
0.50.6 0.5
0.6
0.4 0.4
0.4
0.40.5 0.5
0.3 0.3
0.30.4 0.3
0.4
0.2 0.2
0.20.3 0.2
0.3
0.1 0.1
0.1
0.10.2 0.2
0.0 0.0
0.0 400
400 500
450 550
500 600
550 650
600 700
650 750
700 800
750 850
800 850
0.00.1350
0.1350 450
350 450
400 500
450 550
500 600
550 650
600 700
650 750
700 800
750 850
800 850
350 400
Wavelength
Wavelength
λ (nm)λ (nm)
0.0 0.0
Wavelength
Wavelength
λ (nm)λ (nm)
350 350
400 400
450 450
500 500
550 550
600 600
650 650
700 700
750 750
800 800
850 850
Relative Luminous Intensity Irel
Luminous
Irel
RelativeRelative
Luminous
IntensityIntensity
Irel
0
5
10 30
20 40
30 50
40 60
50 70
60 80
70 90
80 100
90 110
100 110
0 0 100 20
10 30
20 40
30 50
40 60
50 70
60 70 90
80 100
90 110
100 110
0 100 20
Temperature
T(°C)
Temperature
T(°C) 80
Temperature
0
0
Temperature
T(°C) T(°C)
0 10
0 20
10 30
20 40
30 50
40 60
50 70
60 80
70 90
80 100
90 110
100 110
Temperature
T(°C)
Temperature
T(°C)
Temperature
T(°C)
05
5
10
5
Relative Luminous Intensity Irel
Intensity
Relative
Luminous
Intensity
Relative
RelativeLuminous
Luminous
Intensity
Irel Irel Irel
0
Forward Current IF
IF
ForwardForward
Current ICurrent
F
Forward Current IF
IF
ForwardForward
CurrentCurrent
IF
25 20
25
20
20
20
0.4
0.6 0.4
0.6
0.4 0.4
5
510
5
10
5
0
5
05
0 1.70 1.7 1.8 1.8 1.9 1.9 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3
1.9 2.0 2.02.1 2.12.2 2.2 2.3 2.3
1.7 1.71.8 1.81.9 Forward
Voltage
Forward
Voltage
(V)
Forward
Voltage
VF (V)VVFF (V)
0
0
Forward
Voltage
Forward
Voltage
VF (V) VF (V)
1.7 1.7 1.8 1.8 Forward
1.9 1.9 Current
2.0 2.0Vs
2.1Forward
2.2Voltage
2.1
2.2 2.3 2.3
ForwardCurrent
Current VsVs
Forward
Voltage
Forward
Forward
Voltage
Forward
Current
Vs
Forward
Voltage
=
f(V
);
T
=
25°C
(InGaN)
I
=
f(V
);
T
=
25°C
(InGaN)
I
FFForward
F Forward
j
ForwardF Forward
Current
Vs
Voltage
VF (V)
jVoltage
Voltage
VF (V)
IIFF == f(V
f(V
= 25°C
(InGaN)
f(VTF);
25°C
(InGaN)
IF );=F);
j Tj =(InGaN)
30
F Tj = 25°C
30
30
Forward
Current
Vs Forward
Voltage
Forward
Current
Vs Forward
Voltage
30
); f(V
Tj =F);25°C
(InGaN)
IF = f(V
Tj = 25°C
(InGaN)
IFF=
30 25
30
25
25
25
0.6
0.8 0.6
0.8
0.6 0.6
5
10
5
Forward Current IF F
IF
ForwardForward
Current ICurrent
F
Forward Current IF
IF
ForwardForward
CurrentCurrent
IF
20 15
20
15
15
15
0.8
1.0 0.8
1.0
0.8 0.8
10
15 10
1015
10
F); Tj = 25°C (AlInGaP)
IF = f(VIFF);= Tf(V
j = 25°C (AlInGaP)
Forward
Current
Vs Forward
Voltage
Forward
Current
Vs Forward
Voltage
); f(V
Tj =F);25°C
(AlInGaP)
IF = f(V
Tj = 25°C
(AlInGaP)
IFF=
25 20
25
20
20
20
1.0
1.2 1.0
1.2
1.0 1.0
0.0
0.2 0.0
0.2
5 10
10 15
15 20
20 25
25 30
30
0.0 00.0 0 5
0 5
5 10
10 15
15 20
20 25
25 30
30
0
Forward
Current
IF (mA)
Forward
Current
(mA)
0.0 0.0
Forward
Current
IIFF (mA)
Forward
Current
I (mA)
Forward
Current
0
15 I15
20 F 20 25 25 30 30
F (mA)
0 5
5 10 10
Maximum
Current
Vs Temperature
Maximum
Current
Vs Temperature
Maximum
Temperature
Forward
IF (mA)
ICurrent
= Vs
f (T)
Current
IF (mA)
IFCurrent
=Forward
f (T)
FTemperature
Maximum
Current
Vs
IF = f (T)
35Maximum Current
IF = f (T)
35
Vs Temperature
35
Maximum
Current
Vs Temperature
35
Maximum
Current
Vs Temperature
AllnGaP
AllnGaP
=f(T)
IFI=
f
(T)
F IF = f (T) AllnGaP
AllnGaP
30
30
35 35
30
30
AllnGaP
AllnGaP
25
30 25
30
25
InGaN InGaN
25
InGaN InGaN
20
25 20
2025
20
InGaNInGaN
15
15
20 20
15
15
Forward Current Vs Forward Voltage
Forward
Current
Vs Forward
Voltage
Forward
Current
Vs Forward
Voltage
IFIForward
= f(V
f(V
);Tf(V
T=Fj);25°C
=Forward
(AlInGaP)
Vs
Forward
Voltage
Tj25°C
= (AlInGaP)
25°C
(AlInGaP)
IFF);
F=Current
Forward
Voltage
F =Current
j Vs
Forward Current I (mA)
Relative Luminous Intensity Irel
Luminous
Irel
Relative Relative
Luminous
IntensityIntensity
Irel
30 25
30
25
25
25
0.2 0.2
0.4
0.20.4 0.2
0.0
0.0
0.2 0 5
5 10
10 15
15 20
20 25
25 30
30
0.00.2 00.0
0 5
5 10
10 15
15 20
20 25
25 30
30
0
Forward
Current
I
(mA)
Forward
Current
IF (mA)
Forward
Current
IF F(mA)
0.0 0.0
Forward
Current
I (mA)
Forward
Current
0
5
10 10
15 I15
20 F 20 25 25 30 30
F (mA)
0 Relative
5 Luminous
Intensity
Vs
Forward
Current
Relative
LuminousIntensity
Intensity
VsVs
Forward
Current
Relative
Luminous
Forward
Current
Relative
Forward
Current
ILuminous
/IV(20mA)
=Tf(I
T
=Vs
25°C
(InGaN)
ILuminous
=Forward
f(IFCurrent
);Intensity
25°C
(InGaN)
V
F);
Relative
Intensity
Vs
Forward
Current
V/IV(20mA)
j=
Forward
IFj (mA)
Current
I
(mA)
F
I
/I
(20mA)
=
f(I
);
Tj
=
IV/IV(20mA)
=Tf(I
);
Tj25°C
=(InGaN)
25°C(InGaN)
(InGaN)
F
1.4
I
/I
(20mA)
=
f(I
);
=
25°C
V
V
F
1.4
V V
F
j
Luminous
Intensity
Vs Forward
Current
1.4 1.4Relative
Relative
Luminous
Intensity
Vs Forward
Current
IV/IV(20mA)
= f(IF);=Tf(Ij =F);25°C
(InGaN)
IV/IV(20mA)
Tj = 25°C
(InGaN)
1.2
1.2
1.4 1.4
1.2 1.2
Forward Current IF (mA)
ForwardForward
Current ICurrent
F (mA) IF (mA)
Relative Luminous Intensity I
(mA)
Current
Forward
Forward
Current IIF (mA)
ForwardForward
CurrentCurrent
IF (mA) IF (mA)
30
30
30
30
1.0 1.0
1.2
1.01.2 1.0
0.8 0.8
1.0
0.81.0 0.8
0.6
0.6
0.8
0.60.8 0.6
0.4 0.4
0.6
0.40.6 0.4
Relative Luminous Intensity Irel rel
Luminous
Irel
RelativeRelative
Luminous
IntensityIntensity
Irel
Intensity
Luminous
Relative
Relative Luminous
Intensity
Irel Irel
Luminous
Irel
RelativeRelative
Luminous
IntensityIntensity
Irel
Relative Luminous Intensity Vs Forward Current
Relative
Luminous
Intensity
Vs Forward
Current
Relative
Luminous
Intensity
Vs Forward
Current
IV/IRelative
(20mA)
==Intensity
f(I
Tj
=TForward
25°C
(AlInGaP)
Intensity
Vs
Forward
Current
IVLuminous
/IV(20mA)
f(I
);
25°C
(AlInGaP)
/IV(20mA)
f(IFF););=T
25°C
VIVLuminous
j = (AlInGaP)
Relative
Current
j =FVs
Wavelength
λ (nm)
Wavelength
λλ (nm)
Wavelength
(nm)
4
19/04/2017 V1.0
0.4
R
-0.6
-0.8
DOMINANT
0.2
TM
Opto
-1.0 Technologies
Innovating
Illumination
-50 -30
-10
10
30
50
70
90
110
0.0
130
DKxx-MJS
-50
-30
-10
j
p
70
90
110
130
Radiation Pattern
F
30°
20°
10°
0°
1.0
8.0
40°
0.8
6.0
4.0
2.0
100
0.0
0.6
Items to check:
1. Rated Current in each graph title
2. Relative value=1 @ rated current
0.4
3. Typ Vf @ rated current
4. Relative value=1 @ 25C degree
50°
InGaN
AllnGaP
-2.0
60°
-4.0
-6.0
70°
AlInGaP
-8.0
InGaN
-10.0
10
-12.0
0.1
-50 -30
20
dom j dom
50
10.0
Allowable Forward Current IF( mA )
Relative Wavelength
dom(nm)I ( mA )
Current
Forward ∆λ
Allowable
F
Allowable Forward Current Vs Duty Ratio
Relative
Wavelength
Vs
Junction
Temperature
Allowable
Current
Duty
Ratio
( Forward
T = 25°C;
t ≤f(TVs
10μs)
∆λ
= λ ( T-j λ= 25°C;
(25°C)
);) I = 20mA
t ≤p=10μs
dom
30
Junction Temperature T j(°C)
Junction Temperature T j(°C)
1000
12.0
10
1
10
-10
30
50
10
70
Duty
Ratio,%%
Duty Ratio,
90
0.2
80°
110
0
90°
100
130
Junction Temperature T j(°C)
Relative Forward Voltage Vs Junction Temperature
Relative Wavelength Shift Vs Forward Current
Relative Wavelength Shift Vs Forward
λdom = f(I
); Tj = 25°C
F
Current
6.00
4.00
InGaN
2.00
0.00
-2.00
AlInGaP
-4.00
-0.005
-8.00
-0.010
0
3
6
9
12
15
18
21
24
27
-0.030
30
-1.0
IV /IV (25°C) = f(Tj); IV = 20mA
dom ∆λ
Relative Wavelength
dom(nm)
Relative
Relative Wavelength
Wavelength ∆λ ∆λdom(nm)
(nm)
1.6
AllnGaP
1.2
1.0
InGaN
0.8
0.6
0.4
0.2
-50
-30
-10
10
30
50
70
90
110
10.0
12.0
8.0
10.0
6.0
8.0
4.0
6.0
2.0
4.0
0.0
2.0
-2.0
0.0
-4.0
-2.0
-6.0
-4.0
-8.0
-6.0
-10.0
-8.0
-12.0
-10.0 -50
-12.0
130
-50
130
Junction
Temperature
Junction
Temperature
T j(°C) T j(°C)
Junction
Temperature
Tj(°C)
-30 -10
10
30
50
70
90 110 130
Relative Wavelength Vs Junction Temperature
(°C)
Tjj);
∆λdomJunction
= λdom - λTemperature
IF = 20mA
dom (25°C) = f(T
dom
dom
dom
j
F
InGaN
InGaN
AlInGaP
AlInGaP
-30
-30
-10
-10
10
30
50
70
90
Junction Temperature T j(°C)
10
30
50
70
90
110
110
130
130
Junction
Temperature
(°C)
(°C)
Junction
Temperature
T jT
j
Relative
Wavelength
Shift Vs
Forward
Junction
Temperature TT
j(°C)
Junction
Temperature
(°C)
j
10.00
5
8.00
10.00
λrel
Relative
Luminous Intensity
IrelI
Intensity
Luminous
Relative
rel
1.8
1.4
-50
110
70 130
90 150
110
Relative Wavelength Vs Junction Temperature
Relative Wavelength Vs Junction Temperature
12.0
∆λdom
=∆λλdom
- λdom
(25°C) = f(T ); IF =20mA
=λ
-λ
(25°C) = f(T ); I =j 20mA
2.0
0.0
InGaN
-1.0
-0.8-30 -10 10 30 50 70 90
-50
-50 -30 -10
10
30
50
Relative Luminous Intensity Vs Junction Temperature
RelativeI Luminous
Temperature
/I (25°C)Intensity
= f(Tj);VsIFJunction
= 20mA
V V
130
-0.2
0.0
-0.8
-0.025 -0.6
Forward Current
Current IFI(mA)
Forward
(mA)
F
e
AllnGaP
InGaN
-0.4
-0.015 -0.2
-0.6
-0.020 -0.4
-6.00
-10.00
0.0 ∆Cx
0.2
0.000
2
Relative
Luminous
Intensity
Irel
Relative
Luminous
Intensity
Irel
8.00
∆Cx, ∆Cy
Relative
Wavelength
λrelλrel(nm)
Wavelength
Relative
10.00
Relative
Forward
Voltage
∆VF (V)∆V∆V
(V)
Voltage
Forward
Relative
Relative
Forward
Voltage
F
F (V)
Relative
Forward
Voltage
Vs Junction
Temperature
Chromaticity
Coordinate
Shift
Vs Junction
Temperature
∆V
=F V
VVFF);(25°C)
= jf(T
IF =20mA
= FV=F- -f(T
(25°C) = f(T
); IFj);
= 20mA
F∆V∆Cy
∆Cx,
j IF = 20mA
1.0 Relative Forward Voltage Vs Junction Temperature
0.030
∆VF = VF - VF(25°C) = f(Tj); IF = 20mA
0.025
0.8
1.0
0.020
0.6
0.8
0.015
0.4 ∆Cy
0.010 0.6
AllnGaP
0.2
0.005 0.4
6.00
8.00
Current
19/04/2017 V1.0
Relative Wavelength Shift Vs Forward
Current
1
1
1
1
1
0
0
0
0
0
DOMINANT
TM
Bi-Color DKxx-NJS
Opto Technologies
DOMINANT
Innovating Illumination
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Multi DomiLED • Bi-Color DKxx-NJS Package Outlines
TM
Multi DomiLED • Bi-Color : DKxx-MJS Package Outlines
(1) Chip#1 Cathode
(2) Chip#1 Anode
(3) Chip#2 Cathode
(4) Chip#2 Anode
Note : Primary thermal path is through Cathode lead of LED package for 1st Chip, Anode lead
for 2nd Chip.
Material
Material
Material
Material
Lead-frame
Lead-frame
Cu
CuAlloy
AlloyWith
WithAg
AgPlating
Plating
Package
Package
High Temperature
Plastic,
PPA
High
TemperatureResistant
Resistant
Plastic,
PPA
Encapsulant
Epoxy
Encapsulant
Epoxy
Soldering Leads
Sn Plating
Soldering Leads
Sn Plating
5
6
23/11/2011 V1.0
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Recommended Solder Pad
7
19/04/2017 V1.0
• Reels come in quantity of 2000 units.
• Reel diameter is 180 mm.
TM
TM
TM
TM
TM
TM
PrimaxPlus
350m
PrimaxPlus • 350 InGaN
Yellow: MAZY-YZ
PrimaxPlus
100mA Warm
White: MA
C
A
PrimaxPlus • 180 In
Innovating Illumination
PrimaxPlus
100mA
Warm
White:
MA
OptoYellow:
Technologies
PrimaxPlus
100mA
Warm
White:
MAF-PSC
• 350
InGaN
MAZY-YZ
PrimaxPlus •PrimaxPlus
350 InGaN
Yellow:
MAZY-YZHG
Package
PrimaxPlus
350m
PrimaxPlus
350mA White:
DOMINANT
TM
Prim
Pr
TM
TM
change
without
notice. Outlines
change
without
notice. Outlines
PrimaxPlus
100 InGaN
White:
PQW-SSG
Package
PrimaxPlus 100
InGaN White:
PQW-SSG
Package
Primax
•
175
InGaN
White:
MBWW-FSC
Package
Outli
Primax
•
175
InGaN
White:
MBWW-FSC
Package
Outlines
Note
:
Primary
thermal
path
is
through
Cathode
lead
of
LED
package
Innovating
Illumination
change
Engineering
reference
data
are
not
verified.
The
specifications
a
Innovating
Illumination
change
without
notice.
Engineering reference data are not verified. The specifications
are
subject
to w
Opto
Technologies
Opto Technologies
Engineering
reference
data are
not
Engineering
reference
data
not verified.
The
spe
Note
: Primary
thermal
path
is are
through
Cathode
lead
ov
Opto
Technologies
DOMINANTDOMINANT
Opto Technologies
DOMINANT
DOMINANT
Note : Primary
thermal path is through Cathode l
Innovating Illumination
Innovating Illumination
UND
UNDER DEVELOPMEN
Opto TechnologiesDOMINANT
Opto Technologies
DOMINANT
Opto
Technologi
InGaN
Wh
Opto
Technologies
PrimaxPlus
100
InGaN
TM
Innovating
Illumination
Innovating
Illumination
TM
TM
Technologies
Innovating
Illumination
Opto Opto
Technologies
Innovating
Illumination
DOMINANT
DOMINANT
DOMINANT
DOMINANT
Technologies
Opto Opto
Technologies
TM
TM
lairetlaiMretaM
emarf-edmaaerLf-daeL
PrimaxPlus
100mA
Warm
White:
MAF-PSC
PrimaxPlus
100mA
Warm
White:
MAF-PSC
Taping and orientation
TM
Note : Primary
is through
l
thermal
path is thermal
through path
Cathode
lead ofCathode
LED pack
DOMINANT
DOMINANT
Opto
Technologies
Note
:
Primary
thermal
path
is
through
Cathode
lead
o
Note : Primary thermal
path
is
through
Cathode
lead
of
LED
package.
Engineering reference data are not v
Opto Technologies
Engineering
reference
data of
are
not package
verified.
The
specifications
change
Illumination
Note :Primax
Primary
path
is through
Cathode
lead of
LED
package
Note : Primary thermal
path
is thermal
through
Cathode
lead
LED
• 175Innovating
InGaN
White:
MBWW-FSC
Package
Outliwa
PrimaxPlus 100 InGaN White: PQW-SSG
Package
change without
notice. Outlines
Note : Primary
Innovating Illumination
Innovating Illumination
TM
PrimaxPlus
350mA
Whi
PrimaxPlus
350mA
White:
PrimaxPlus
InGaN
Yellow:
MAZY-YZHG
Pac
PrimaxPlus
• 350• 350
InGaN
Yellow:
MAZY-YZHG
Package
Opto Technologies
Engineering
reference
datanot
areverified.
not verified.
Th
Engineering
reference
data are
The spe
Technologies
Opto Opto
Technologies
reference
data
not verified.
ThePackage
specifications
arenotice.
subject
Engineering
reference
dataIllumination
are
notareMBWW-FSC
verified.
ThePackage
specifications
are subject
tonoti
change
without
Innovating
change
without
Illumination
Primax
175
InGaN
White:
Outlines
Primax
•Engineering
175•Innovating
InGaN
White:
MBWW-FSC
Outlines
PrimaxPlus
InGaN
White:
PQW-SSG
Package
Outlines
PrimaxPlus
100 100
InGaN
White:
PQW-SSG
Package
Outlines
change
without
notice.
change
without
notice.
TM
SPNova
• InGaN
: NPW-RSZ
Pa
DOMINANT SPNova
• InGaN
WhiteWhite
: NPW-RSZ
Packag
DOMINANT
DomiLED
• InGaN
White:
DDF-LJG
Package
OutI
DomiLED
• InGaN
WarmWarm
White:
DDF-LJG
Package
175
175Outline
InGa
Technologies
Opto Opto
Technologies
DOMINANT
DOMINANT
Innovating
Illumination
Innovating
Illumination
PRELIMINA
PRELIMINARY
DOMINANT
Technologies
DOMINANT
OptoOpto
Technologies
InGaN
InGaN
Wh
Technologies
Opto Opto
Technologies
UNDER
DEVELO
UNDER
DEVELOPMEN
DOMINANT
Innovating
Illumination DOMINANT
Innovating
Illumination
DOMINANT
Opto
Technologies
DOMINANT
Opto
Technologies
DOMINANT
Material
TM
SPNova
•SPNova
InGaN
White
: for
NPW
DOMINANT
Material
Material
brightness
Super
brightness
surface
mo
• LED
InGaN
W

Super
high
surface
mount
au
SPNova
•high
InGaN
White
: NPW-R
DomiLED
•
InGaN
Warm
White:
DDF-LJG
Pac
Opto Technologies
TM
DOMINANT
Innovating Illumination
DKxx-MJS
DOMINANT
Opto
Technologi
Opto Technologies
TM
UND
TM
TM
PRELIMINARY
Innovating Illumination
Innovating
Illumination
DOMINANT
DOMINANT
Primax
• 175Inn
In
Engineering
r
Opto
Technologies
Opto Technologies
DomiLED
• InGaN
Warm
White:
DDF-LJG
Pac
175
InGa
DomiLED • InGaN
Warm
White:
DDF-LJG
Package
Outline
SPNova
•
InGaN
W

Super
high
brightness
surface
mo
Op
Material
DOMINANT
SPNova
• InGaN
WhitePackag
: NPW
DOMINANT
SPNova • InGaN
White
: NPW-RSZ
TM
TM
TM
Prim
DOMINANTD
OP
Material
Illumination
Material
TM Super high brightness
surface
LED.
Material
Innovating
120 mount
viewing
angle.
TM
TM
TM
Innovating Illumination
Material
Innovating
Illumination
Innovating Illumination
Opto
Technologies
Innovating
Illumination
Technologies
Innovating
Illumination
Material
Opto Technologies
 120Opto
viewing
angle.
Opto Technologies

Compact
package
outline
(LxW)
Opto Technologies
Opto Technologies
Innovating
Illumination
DOMINANT
DOMINANT
DOMINANT
TM
TMMaterial
Lead-frame
DOMINANT
M
DOMINANT
 Compact
package
outline
(LxW) of 3.7 x 3.5 mm. TM
TM

DOMINANT
DOMINANT
Cu Allo
 Ultra
lowOpto
height Technologies
profile
– 0.8 mm.
TM
TM Lead-frame
DomiL
Lead-frame
Lead-frame
Lead-frame
Ultra low height profile – 0.8
mm.
Low
thermal resistance;
Lead-frame
Package
PrimaxPlus 100 InG
Primax
• 175I
Engineering
DOM
O
Package
Low thermal resistance. Package
Package
 Superior corrosion
robustness.
Package
Hig
Lead-frame
Innovatin
Package
High
Temper
 CompatibleEncapsulant
to IR reflow soldering.
Opto
Te
 Compatible
to IREncapsulant
reflow soldering
Encapsulant

Encapsulant
Package
Soldering Leads
Encapsulant
Encapsulant
Soldering Leads Encapsulant
Soldering Leads
Note: This product is Pb free
Note: This product is Pb free
Soldering Leads
Soldering Leads Soldering Leads
Si
DOMINANTD
Innovating Illumination
Opto Technologies
Soldering Leads
Note: This product is Pb free
Innovating Illuminat
DOMINANT
Opto Technologi
Dom
DOMINAN
10
TM
24/09/13
8
7
PrimaxPlus 100 InGaN Warm White MAF-PSC -pv3.doc
09/05/14
PrimaxPlus
19/04/2017 V1.0 350 InGaN
8
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Packaging Specification
9
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Packaging Specification
Moisture sensitivity level
Barcode label
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
Reel
Label
Moisture absorbent material +
Moisture indicator
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc DomiLED/Multi DomiLED
1 completed bag (2000pcs)
0.034
0.034
240 ± 10
190
10
Cardboard
Box
DOMINANT TM
For Multi DomiLED
Cardboard Box
Size
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
9 reels MAX
Small
325 x 225 x 280
0.54
15 reels MAX
Medium
570 x 440 x 230
1.46
60 reels MAX
Large
570 x 440 x 460
1.92
120 reels MAX
10
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020C)
300
255-260˚C
10-30s
275
250
225
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-180s
50
25
480s max
0
50
100
150
200
Time (sec)
11
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Appendix
1)
Brightness:
1.1
Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of
± 11 % (according to GUM with a coverage factor of k=3).
1.2
Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 %
(according to GUM with a coverage factor of k=3).
2)
Color:
2.1
Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded
uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3).
2.2
DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty
of ± 1nm (accordingly to GUM with a coverage factor of k=3).
3)
Voltage:
3.1
Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of
± 0.1V (accordingly to GUM with a coverage factor of k=3).
12
19/04/2017 V1.0
DOMINANT
TM
DKxx-MJS
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
-
Initail Release
19 Apr 2017
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems
without the express written approval from the Managing Director of DOMINANT Opto Technologies.
13
19/04/2017 V1.0
DOMINANT
TM
Opto Technologies
Innovating Illumination
DKxx-MJS
About Us
DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found
under http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd.
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia
Tel: (606) 283 3566 Fax: (606) 283 0566
E-mail: [email protected]
Similar pages