STMicroelectronics M34E04B-FMC9TGH 4-kbit serial presence detect eeprom compatible Datasheet

M34E04B
4-Kbit Serial Presence Detect (SPD) EEPROM compatible
with JEDEC EE1004
Datasheet - production data
Features
• 512-byte Serial Presence Detect EEPROM
compatible with JEDEC EE1004 specification
• Compatible with SMBus serial interface:
– up to 1 MHz transfer rate
UFDFPN8 (MC)
2 x 3 mm
• EEPROM memory array:
– 4 Kbits organized as two pages of
256 bytes each
– Each page is composed of two 128-byte
blocks
• No hardware write protection
• Software data protection for each 128-byte
block
• Write:
– Byte Write within 5 ms
– 16 bytes Page Write within 5 ms
• Noise filtering:
– Schmitt trigger on bus inputs
– Noise filter on bus inputs
• Single supply voltage:
– 1.7 V to 3.6 V
• Operating temperature range:
– from 0 °C up to +95 °C
• Enhanced ESD/latch-up protection
• More than 4million Write cycles
• More than 200-year data retention
• RoHS-compliant and halogen-free 8-lead ultra
thin fine pitch dual flat no lead package
(ECOPACK2®)
October 2015
This is information on a product in full production.
DocID028428 Rev 1
1/35
www.st.com
Contents
M34E04B
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Slave address (SA2, SA1, SA0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1
3
2.4.3
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5
Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.6
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7
3.8
2/35
2.4.2
Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.2
Page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.3
Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . 14
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.1
Random address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.2
Current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.3
Sequential read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.4
Acknowledge in read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Setting the write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8.1
Set and clear the write protection (SWPn and CWP) . . . . . . . . . . . . . . 17
3.8.2
Read the protection status (RPSn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8.3
Set the page address (SPAn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8.4
Read the page address (RPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
DocID028428 Rev 1
M34E04B
Contents
4
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5
Use within a DDR4 DRAM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1
Programming the M34E04B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.1
Isolated DRAM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2
DRAM module inserted in the application motherboard . . . . . . . . . . . . 20
6
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1
UFDFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID028428 Rev 1
3/35
3
List of tables
M34E04B
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
4/35
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Device Type Identifier Code (DTIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DRAM DIMM connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Acknowledge when writing data or defining the write-protection status (instructions
with R/W bit = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Acknowledge when reading the protection status (instructions with
R/W bit = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Operating conditions (for temperature range 9 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Cycling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID028428 Rev 1
M34E04B
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write mode sequences in a non write-protected area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Setting the write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Serial presence detect block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus
at maximum frequency fC = 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus
at maximum frequency fc = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID028428 Rev 1
5/35
5
Description
1
M34E04B
Description
The M34E04B is a 512-byte EEPROM device designed to operate the SMBus bus in the
1.7 V - 3.6 V voltage range, with a maximum of 1 MHz transfer rate in the 2.2 V - 3.6 V
voltage range, over the JEDEC defined ambient temperature of 0°C / 95°C.
The M34E04B includes a 4-Kbit serial EEPROM organized as two pages of 256 bytes each,
or 512 bytes of total memory. Each page is composed of two 128-byte blocks. The device is
able to selectively lock the data in any or all of the four 128-byte blocks. Designed
specifically for use in DRAM DIMMs (Dual Inline Memory Modules) with Serial Presence
Detect, all the information concerning the DRAM module configuration (such as its access
speed, its size, its organization) can be kept write-protected in one or more memory blocks.
The M34E04B device is protocol-compatible with the previous generation of 2-Kbit devices,
M34E02. The page selection method allows commands used with legacy devices such as
M34E02 to be applied to the lower or upper pages of the EEPROM.
Individually locking a 128-byte block may be accomplished using a software write protection
mechanism in conjunction with a high input voltage VHV on input SA0. By sending the
device a specific SMBus sequence, each block may be protected from writes until the write
protection is electrically reversed using a separate SMBus sequence which also requires
VHV on input SA0. The write protection for all four blocks is cleared simultaneously.
Figure 1. Logic diagram
9&&
6$6$6$
6&/
6'$
0(%
1&
966
06Y9
Figure 2. 8-pin package connections (top view)
0(%
6$ 9&&
6$ 1&
6$ 6&/
966 6'$
06Y9
1. See the Package information section for package dimensions, and how to identify pin 1.
2. NC: Not connected
6/35
DocID028428 Rev 1
M34E04B
Description
Table 1. Signal names
Signal names
Description
SA2, SA1, SA0
Slave address
SDA
Serial data
SCL
Serial clock
VCC
Supply voltage
VSS
Ground
DocID028428 Rev 1
7/35
34
Signal description
M34E04B
2
Signal description
2.1
Serial clock (SCL)
The signal applied on this input is used to strobe the data available on SDA(in) and to output
the data on SDA(out).
If SCL is driven low for tTIMEOUT (see Table 13) or longer, the M34E04B is set back in
Standby mode, ready to receive a new START condition.
2.2
Serial data (SDA)
SDA is an input/output used to transfer data in or out of the device. SDA(out) is an open
drain output that may be wire-OR’ed with other open drain or open collector signals on the
bus. A pull-up resistor must be connected from Serial Data (SDA) to VCC. (Figure 12
indicates how the value of the pull-up resistor can be calculated).
2.3
Slave address (SA2, SA1, SA0)
(SA2,SA1,SA0) input signals are used to set the value that is to be looked for on the three
least significant bits (b3, b2, b1) of the 7-bit Device Type Identifier Code (DTIC, see
Table 2). These inputs must be tied to VCC or VSS, as shown in Figure 3. When not
connected (left floating), these inputs are read as low (0).
The SA0 input is used to detect the VHV voltage, when decoding an SWP or CWP
instruction.
Figure 3. Device select code
9&&
9&&
0(%
0(%
6$ L
6$ L
966
2.4
Supply voltage (VCC)
2.4.1
Operating supply voltage VCC
966
D^ǀϯϴϰϱϭsϭ
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Table 8). In order to
secure a stable DC supply voltage, it is recommended to decouple the VCC line with a
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package
pins.
8/35
DocID028428 Rev 1
M34E04B
Signal description
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a Write instruction, until the completion of the internal write cycle (tW).
2.4.2
Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
defined in Table 8.
2.4.3
Device reset
In order to prevent inadvertent write operations during power-up, a power-on reset (POR)
circuit is included. At power-up, the device does not respond to any instruction until VCC
reaches the internal reset threshold voltage (this threshold is lower than the minimum VCC
operating voltage defined in Table 8).
When VCC passes over the POR threshold, the device is reset and enters the Standby
Power mode. However, the device must not be accessed until VCC reaches a valid and
stable VCC voltage within the specified [VCC(min), VCC(max)] range.
In a similar way, during power-down (continuous decrease in VCC), as soon as VCC drops
below the power-on reset threshold voltage, the device stops responding to any instruction
sent to it.
2.4.4
Power-down conditions
During power-down (continuous decrease in VCC), the device must be in Standby Power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
write cycle in progress).
DocID028428 Rev 1
9/35
34
Signal description
M34E04B
Figure 4. Bus protocol
3#,
3$!
3$!
)NPUT
3TART
CONDITION
3#,
3$!
-3"
3$!
#HANGE
3TOP
CONDITION
!#+
3TART
CONDITION
3#,
3$!
-3"
!#+
3TOP
CONDITION
!)C
10/35
DocID028428 Rev 1
M34E04B
3
Device operation
Device operation
The device supports the I2C protocol. This is summarized in Figure 4. Any device that sends
data onto the bus is defined to be a transmitter, and any device that reads the data is
defined to be a receiver. The device that controls the data transfer is known as the bus
master, and the other device is known as the slave device. A data transfer can only be
initiated by the bus master, which will also provide the serial clock for synchronization. The
memory device is always a slave in all communication.
3.1
Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in
the high state. A Start condition must precede any data transfer command. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition.
3.2
Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and
driven high. A Stop condition terminates communication between the device and the bus
master. A Read command that is followed by NoAck can be followed by a Stop condition to
force the device into the Standby mode. A Stop condition at the end of a Write command
triggers the internal EEPROM Write cycle.
3.3
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether a bus master or a slave device, releases Serial Data (SDA) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to
acknowledge the receipt of the eight data bits.
3.4
Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock
(SCL) is driven low.
3.5
Memory addressing
To start a communication between the bus master and the slave device, the bus master
must initiate a Start condition. Following this, the bus master sends the device select code,
shown in Table 2 (on Serial Data (SDA), most significant bit first).
The Device Type Identifier Code (DTIC) consists of a 4-bit device type identifier, and a 3-bit
slave address (SA2, SA1, SA0). To address the memory array, the 4-bit device type
identifier is 1010b; to access the write-protection settings, it is 0110b.
DocID028428 Rev 1
11/35
34
Device operation
M34E04B
Table 2. Device Type Identifier Code (DTIC)
Device type identifier
(1)
Abbr
Select address
(2) (3)
R_W_n
SA0 pin
(4)
b7
b6
b5
b4
1
0
1
0
b3
b2
b1
b0
Read
RSPD
Write
WSPD
Set Write Protection, block 0
SWP0
0
0
1
0
VHV
Set Write Protection, block 1
SWP1
1
0
0
0
VHV
Set Write Protection, block 2
SWP2
1
0
1
0
VHV
Set Write Protection, block 3
SWP3
0
0
0
0
VHV
Clear All Write Protection
CWP
0
1
1
0
VHV
Read Protection Status, block 0 (5)
RPS0
0
0
1
1
0, 1 or VHV
Read Protection Status, block 1
(5)
RPS1
1
0
0
1
0, 1 or VHV
Read Protection Status, block 2
(5)
RPS2
1
0
1
1
0, 1 or VHV
Read Protection Status, block 3
(5)
RPS3
0
0
0
1
0, 1 or VHV
Set Page Address to 0 (6)
SPA0
1
1
0
0
0, 1 or VHV
(6)
SPA1
1
1
1
0
0, 1 or VHV
RPA
1
1
0
1
0, 1 or VHV
Set Page Address to 1
Read Page Address
(7)
Reserved
0
1
1
0
LSA2 LSA1 LSA0
-
1
0
0 or 1
All other encodings
1. The most significant bit, b7, is sent first.
2. Logical Serial Addresses (LSA) are generated by the combination of inputs on the SA pins.
3. For backward compatibility with M34E02 devices, the order of block select bits (b3 and b1) is not a simple binary encoding
of the block number.
4. SA0 pin is driven to Vss, Vcc or VHV.
5. Reading the block protection status results in Ack.
6. Setting the EE page address to 0 selects the lower 256 bytes of EEPROM; setting it to 1 selects the upper 256 bytes of
EEPROM. Subsequent Read EE or Write EE commands operate on the selected EE page.
7. Reading the EE page address results in Ack when the current page is 0, and NoAck when the current page is 1.
Up to eight memory devices can be connected on a single serial bus. Each one is given a
unique 3-bit code on the slave address (SA2, SA1, SA0) inputs. When the device select
code is received, the device only responds if the slave address is the same as the value on
the slave address (SA2, SA1, SA0) inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.
If a match occurs on the device select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the device select code, it deselects itself from the bus, and goes into Standby mode.
3.6
Write operations
Following a Start condition, the bus master sends a device select code with the RW bit reset
to 0. The device acknowledges this, as shown in Figure 5, and waits for an address byte.
12/35
DocID028428 Rev 1
M34E04B
Device operation
The device responds to the address byte with an acknowledge bit, and then waits for the
data byte.
When the bus master generates a Stop condition immediately after a data byte Ack bit (in
the “10th bit” time slot), either at the end of a Byte write or a Page write, the internal memory
Write cycle is triggered. A Stop condition at any other time slot does not trigger the internal
Write cycle.
During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and
the device does not respond to any requests.
3.6.1
Byte write
After the device select code and the address byte, the bus master sends one data byte. The
device replies with Ack. The bus master terminates the transfer by generating a Stop
condition, as shown in Figure 5.
Figure 5. Write mode sequences in a non write-protected area
!#+
"YTE ADDRESS
$ATA IN
27
!#+
$EVICE SELECT
3TART
0AGE 7RITE
!#+
3TOP
$EVICE SELECT
3TART
"YTE 7RITE
!#+
!#+
"YTE ADDRESS
!#+
$ATA IN $ATA IN 27
!#+
!#+
3TOP
$ATA IN .
3.6.2
!)B
Page write
The Page write mode allows up to 16 bytes to be written in a single Write cycle, provided
that they are all located in the same page in the memory: that is, the most significant
memory address bits are the same. If more bytes are sent than will fit up to the end of the
page, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to
become overwritten in an implementation dependent way.
The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the
device. After each byte is transferred, the internal byte address counter (the 4 least
significant address bits only) is incremented. The transfer is terminated by the bus master
generating a Stop condition.
DocID028428 Rev 1
13/35
34
Device operation
3.6.3
M34E04B
Minimizing system delays by polling on ACK
The sequence, as shown in Figure 6, is:
•
Initial condition: a Write cycle is in progress.
•
Step 1: the bus master issues a Start condition followed by a device select code (the
first byte of the new instruction).
•
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes back to Step 1. If the device has terminated the internal Write
cycle, it responds with an Ack, indicating that the device is ready to receive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
Figure 6. Write cycle polling flowchart using ACK
:ULWHF\FOH
LQSURJUHVV
6WDUWFRQGLWLRQ
'HYLFHVHOHFW
ZLWK5: 12
$&.
UHWXUQHG
<(6
)LUVWE\WHRILQVWUXFWLRQ
ZLWK5: DOUHDG\
GHFRGHGE\WKHGHYLFH
12
1H[W
2SHUDWLRQLV
DGGUHVVLQJWKH
PHPRU\
<(6
6HQG$GGUHVV
DQG5HFHLYH$&.
5H6WDUW
6WRS
12
'DWDIRUWKH
:ULWHRSHUDWLRQ
&RQWLQXHWKH
:ULWHRSHUDWLRQ
6WDUW&RQGLWLRQ
<(6
'HYLFHVHOHFW
ZLWK5: &RQWLQXHWKH
5DQGRP5HDGRSHUDWLRQ
$,G
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy
of the data from its internal latches to the memory cells. The maximum Write time (tw) is
shown in Table 13, but the typical time is shorter. To make use of this, a polling sequence
14/35
DocID028428 Rev 1
M34E04B
Device operation
can be used by the bus master.
3.7
Read operations
Read operations are performed independently of software protection has been set.
The device has an internal address counter which is incremented each time a byte is read.
3.7.1
Random address read
A dummy Write is first performed to load the address into this address counter (as shown in
Figure 7) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the device select code, with the RW bit set to 1. The device
acknowledges this, and outputs the contents of the addressed byte. The bus master must
not acknowledge the byte, and terminates the transfer with a Stop condition.
3.7.2
Current address read
For the Current address read operation, following a Start condition, the bus master only
sends a device select code with the RW bit set to 1. The device acknowledges this, and
outputs the byte addressed by the internal address counter. The counter is then
incremented. The bus master terminates the transfer with a Stop condition, as shown in
Figure 7, without acknowledging the byte.
DocID028428 Rev 1
15/35
34
Device operation
M34E04B
Figure 7. Read mode sequences
!#+
$ATA OUT
3TOP
3TART
$EV SELECT
./ !#+
27
!#+
3TART
$EV SELECT
!#+
"YTE ADDRESS
27
!#+
3EQUENTIAL
#URRENT
2EAD
$EV SELECT
./ !#+
$ATA OUT
27
!#+
!#+
$ATA OUT ./ !#+
$ATA OUT .
3TOP
3TART
$EV SELECT
27
!#+
3TART
$EV SELECT
!#+
"YTE ADDRESS
27
!#+
!#+
$EV SELECT
3TART
3EQUENTIAL
2ANDOM
2EAD
!#+
3TART
2ANDOM
!DDRESS
2EAD
3TOP
#URRENT
!DDRESS
2EAD
!#+
$ATA OUT 27
./ !#+
3TOP
$ATA OUT .
3.7.3
!)B
Sequential read
This operation can be used after a Current address read or a Random address read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To terminate the stream of
bytes, the bus master must not acknowledge the last byte, and must generate a Stop
condition, as shown in Figure 7.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter ‘rolls-over’, and the device continues to output data from memory address
00h.
3.7.4
Acknowledge in read mode
For all Read commands, after each byte read, the device waits for an acknowledgment
during the 9th bit time. If the bus master does not drive Serial Data (SDA) low during this
time, the device terminates the data transfer and switches to its Standby mode.
16/35
DocID028428 Rev 1
M34E04B
Device operation
Note:
The seven most significant bits of the device select code of a Random Read (in the 1st and
3rd bytes) must be identical.
3.8
Setting the write protection
There are four independent memory blocks, and each block may be independently
protected. The memory blocks are:
•
Block 0 = memory addresses 0x00 to 0x7F (decimal 0 to 127), page address = 0
•
Block 1 = memory addresses 0x80 to 0xFF (decimal 128 to 255), page address = 0
•
Block 2 = memory addresses 0x00 to 0x7F (decimal 0 to 127), page address = 1
•
Block 3 = memory addresses 0x80 to 0xFF (decimal 128 to 255), page address = 1
The device has three software commands for setting, clearing, or interrogating the writeprotection status.
•
SWPn: Set Write Protection for block n
•
CWP: Clear Write Protection for all blocks
•
RPSn: Read Protection status for block n
The level of write protection (set or cleared), that has been defined using these instructions,
remains defined even after a power cycle.
The DTICs of the SWP, CWP and RPS instructions are defined in Table 2.
Set and clear the write protection (SWPn and CWP)
If the software write protection has been set with the SWPn instruction, it may be cleared
again with a CWP instruction. SWPn acts on a single block as specified in the SWPn
command, but CWP clears the write protection for all blocks.
When decoded, SWPn and CWPn trigger a write cycle lasting tW (see Table 13).
The DTICs of the SWP and CWP instructions are defined in Table 2.
"53 !#4)6)49
-!34%2
#/.42/,
"94%
7/2$
!$$2%33
34/0
Figure 8. Setting the write protection
34!24
3.8.1
$!4!
3$! ,).%
"53 !#4)6)49
!#+
!#+
6!,5%
$/.g4 #!2%
!#+
6!,5%
$/.g4 #!2%
!)"
DocID028428 Rev 1
17/35
34
Device operation
3.8.2
M34E04B
Read the protection status (RPSn)
The serial bus master issues an RPSn command specifying which block to report upon. If
the software write protection has not been set, the device replies to the data byte with an
Ack. If it has been set, the device replies to the data byte with a NoAck.
The DTIC of the RPSn instruction is defined in Table 2.
3.8.3
Set the page address (SPAn)
The SPAn command selects the lower 256 bytes (SPA0) or upper 256 bytes (SPA1). After a
cold or warm power-on reset, the page address is always 0, selecting the lower 256 bytes.
The DTIC of the SPAn instruction is defined in Table 2.
3.8.4
Read the page address (RPA)
The RPA command determines if the currently selected page is 0 (device returns Ack) or 1
(device returns NoAck).
The DTIC of the RPA instruction is defined in Table 2.
18/35
DocID028428 Rev 1
M34E04B
4
Initial delivery state
Initial delivery state
The device is delivered with all bits in the memory array set to ‘1’ (each byte contains FFh).
DocID028428 Rev 1
19/35
34
Use within a DDR4 DRAM module
5
M34E04B
Use within a DDR4 DRAM module
In the application, the M34E04B is soldered directly in the printed circuit module. The three
slave address inputs (SA2, SA1, SA0) must be connected to VSS or VCC directly (that is
without using a serial resistor) through the DRAM module connector (see Table 3 and
Figure 3). The pull-up resistor on SDA is connected on the SMBus of the motherboard (as
shown in Figure 9).
Table 3. DRAM DIMM connections
5.1
DIMM position
SA2
SA1
SA0
0
VSS
VSS
VSS
1
VSS
VSS
VCC
2
VSS
VCC
VSS
3
VSS
VCC
VCC
4
VCC
VSS
VSS
5
VCC
VSS
VCC
6
VCC
VCC
VSS
7
VCC
VCC
VCC
Programming the M34E04B
The situations in which the M34E04B is programmed can be considered under two
headings:
5.1.1
•
when the DDR4 DRAM is isolated (not inserted on the PCB motherboard)
•
when the DDR4 DRAM is inserted on the PCB motherboard
Isolated DRAM module
With a specific programming equipment, it is possible to define the M34E04B content, using
Byte and Page write instructions, and the write-protection SWP(n) and CWP instructions. To
issue the SWP(n) and CWP instructions, the signal applied on SA0 must be driven to VHV
during the whole instruction.
5.1.2
DRAM module inserted in the application motherboard
Table 4 and Table 5 show how the Ack bits can be used to identify the write-protection
status.
20/35
DocID028428 Rev 1
M34E04B
Use within a DDR4 DRAM module
Table 4. Acknowledge when writing data or defining the write-protection status (instructions
with R/W bit = 0)
Status
Instruction
Ack
Address
Ack
Data byte
Ack
Write cycle
(tW)
Protected
SWPn
NoAck
Not significant
NoAck
Not significant
NoAck
No
CWP
Ack
Not significant
Ack
Not significant
Ack
Yes
Page or byte write
in protected block
Ack
Address
Ack
Data
NoAck
No
SWPn or CWP
Ack
Not significant
Ack
Not significant
Ack
Yes
Page or byte write
Ack
Address
Ack
Data
Ack
Yes
Not Protected
Table 5. Acknowledge when reading the protection status (instructions with
R/W bit = 1)
SWPn Status
Instruction
Ack
Address
Ack
Data byte
Ack
Set
RPSn
NoAck
Not significant
NoAck
Not significant
NoAck
Not set
RPSn
Ack
Not significant
NoAck
Not significant
NoAck
DocID028428 Rev 1
21/35
34
Use within a DDR4 DRAM module
M34E04B
Figure 9. Serial presence detect block diagram
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϳ
^Ϯ
ZƉƵůůͲƵƉ
^ϭ
^Ϭ
^>
^
^Ϭ
^>
^
^>
^
^>
^
^>
^
^>
^
^>
^
^>
^
s
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϲ
^Ϯ
^ϭ
s
s^^
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϱ
^Ϯ
^ϭ
^Ϭ
s
s^^
s
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϰ
^Ϯ
^ϭ
^Ϭ
s
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϯ
^Ϯ
s^^
^ϭ
s^^
^Ϭ
s
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϮ
^Ϯ
^ϭ
^Ϭ
s^^
s
s^^
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϭ
^Ϯ
^ϭ
^Ϭ
s^^
ZDŵŽĚƵůĞƐůŽƚŶƵŵďĞƌϬ
^Ϯ
s
^ϭ
^Ϭ
s^^
^>ůŝŶĞ
^ůŝŶĞ
&ƌŽŵƚŚĞŵŽƚŚĞƌďŽĂƌĚ/Ϯŵ
/ϬϭϵϯϳĚ
1. SA0, SA1 and SA2 are wired at each DRAM module slot in a binary sequence for a maximum of 8 devices.
2. Common clock and common data are shared across all the devices.
22/35
DocID028428 Rev 1
M34E04B
6
Maximum rating
Maximum rating
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and the device
operation at these conditions or at any other conditions above those indicated in the
operating sections of this specification is not implied. An exposure to absolute maximum
rating conditions for extended periods may affect the device reliability.
Table 6. Absolute maximum ratings
Symbol
Min.
Max.
Unit
Ambient temperature with power applied
-55
130
°C
TSTG
Storage temperature
-65
150
°C
VIO
Input or output range
-0.50
-0.50
11.0
6.5
V
IOL
DC output current (SDA = 0)
-
20
mA
VCC
Supply voltage
-0.5
6.5
VESD
Parameter
SA0
Others
Electrostatic discharge voltage (human body model)
(1)
-
3500
V
(2)
V
1. ANSI/ESDA/JEDEC JS-001-2012 (C1 = 100 pF, R1 = 1500 Ω, and R2 = 500 Ω).
2. Positive and negative pulses applied on different combinations of pin connections, according to
AECQ100-002 (compliant with ANSI/ESDA/JEDEC JS-001-2012, C1 = 100 pF, R1 = 1500 Ω).
DocID028428 Rev 1
23/35
34
DC and AC parameters
7
M34E04B
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device.
Table 7. Operating conditions (for temperature range 9 devices)
Symbol
VCC
TA
Parameter
Supply voltage
Ambient operating temperature
Min.
Max.
Unit
1.7
3.6
V
0
+95
°C
Max.
Unit
Table 8. AC measurement conditions
Symbol
CL
Parameter
Min.
Load capacitance
100
SCL input rise and fall time,
SDA input fall time
-
pF
50
ns
Input levels
0.2VCC to 0.8VCC
V
Input and output timing reference levels
0.3VCC to 0.7VCC
V
Figure 10. AC measurement I/O waveform
)NPUT VOLTAGE LEVELS
)NPUT AND OUTPUT
4IMING REFERENCE LEVELS
6##
6##
6##
6##
-36
24/35
DocID028428 Rev 1
M34E04B
DC and AC parameters
Table 9. Input parameters
Parameter (1)
Symbol
Test
condition
Min.
Max.
Unit
CIN
Input capacitance (SDA)
-
-
8
pF
CIN
Input capacitance (other pins)
-
-
6
pF
ZEiL
SA0, SA1, SA2 input impedance
VIN < 0.3VCC
30
-
kΩ
ZEiH
SA0, SA1, SA2 input impedance
VIN > 0.7VCC
800
-
kΩ
tNS
Pulse width ignored (input filter on SCL and SDA)
-
-
100
ns
1. Characterized, not tested in production.
Table 10. Cycling performance
Symbol
Parameter
Ncycle
Write cycle
endurance
Test condition
Max.
TA ≤ 25 °C, VCC(min) < VCC < VCC(max)
4,000,000
TA = 85 °C, VCC(min) < VCC < VCC(max)
1,200,000
Unit
Write cycle
Table 11. Memory cell data retention
Parameter
Data retention(1)
Test condition
TA = 55 °C
Min.
Unit
200
Year
1. The data retention behavior is checked in production, while the 200-year limit is defined from
characterization and qualification results.
DocID028428 Rev 1
25/35
34
DC and AC parameters
M34E04B
Table 12. DC characteristics
Symbol
Parameter
Test condition (in addition to
those in Table 7)
Min
Max
Unit
ILI
Input leakage current (SCL,
SDA, SA0, SA1, SA2)
VIN = VSS or VCC
-
±2
µA
ILO
Output leakage current
SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
-
±2
µA
ICC
Supply current (read)
fc = 400 kHz or 1 MHz
-
1
mA
-
(1)
mA
ICC0
Supply current (write)
During tW, VIN = VSS or VCC
(2)
ICC1
Standby supply current
1
Device not selected ,
VIN = VSS or VCC, VCC ≥ 2.2 V
-
2
µA
Device not selected (2),
VIN = VSS or VCC, VCC < 2.2 V
-
1
µA
VIL
Input low voltage
(SCL, SDA)
-
-0.45
0.3 VCC
V
VIH
Input high voltage
(SCL, SDA)
-
0.7VCC
VCC+1
V
VCC < 2.2 V
7
10
V
VCC ≥ 2.2 V
VCC
+4.8 V
10
V
IOL = 20 mA, VCC ≥ 2.2 V
-
0.4
V
IOL = 6 mA, VCC ≤ 2 V
-
0.6
V
IOL = 3 mA, VCC ≤2 V
-
0.4
V
VHV
VOL
VPOR
VPDR
SA0 high voltage detect
Output low voltage
Power on reset threshold
Power down reset threshold
-
0.7
1.4
(1)
(1)
-
1. Measured during characterization, not tested in production.
2. The device is not selected after a power-up, after a read command (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a write command).
26/35
DocID028428 Rev 1
V
V
M34E04B
DC and AC parameters
Table 13. AC characteristics
VCC ≥ 2.2 V
VCC < 2.2 V
Symbol
100 kHz
Parameter
400 kHz
1000 kHz
Unit
Min.
Max.
Min.
Max.
Min.
Max.
10
100
10
400
10
1000
kHz
fSCL
fC
tHIGH
tCHCL
Clock pulse width high time
4000
-
600
-
260
-
ns
tCLCH
Clock pulse width low time
4700
-
1300
-
500
-
ns
(2)
Detect clock low timeout
25
35
25
35
25
35
ms
tLOW
(1)
tTIMEOUT
Clock frequency
(3)
tXH1XH2
SDA rise time
-
1000
20
300
-
120
ns
tF (3)
tQL1QL2
SDA(out) fall time
-
300
20
300
-
120
ns
tSU:DAT
tDXCH
Data in setup time
250
-
100
-
50
-
ns
tHD:DI
tCLDX
Data in hold time
0
-
0
-
0
-
ns
tHD:DAT
tCLQX
Data out hold time
200
3450
200
900
0
350
ns
tSU:STA (4)
tCHDL
Start condition setup time
4700
-
600
-
260
-
ns
tHD:STA
tDLCL
Stop condition hold time
4000
-
600
-
260
-
ns
tSU:STO
tCHDH
Stop condition setup time
4000
-
600
-
260
-
ns
tBUF
tDHDL
Time between Stop Condition and
next Start Condition
4700
-
1300
-
500
-
ns
-
5
-
5
-
5
ms
100
-
100
-
100
-
µs
0
-
0
-
0
-
µs
tR
tW
tPOFF (3)
tINIT (3)
Write time
Time ensuring a Reset when VCC
drops below VPDR(min)
Time from VCC(min) to the first
command
1. Initiate clock stretching, which is an optional SMBus bus feature.
2. A timeout condition can only be ensured if SCL is driven low for tTIMEOUT(Max) or longer; then the M34E04B is set in
Standby mode and is ready to receive a new START condition. If SCL is driven low for less than tTIMEOUT(Min), the
M34E04B internal state remains unchanged.
3. Measured during characterization, not tested in production.
4. To avoid spurious START and STOP conditions, a minimum delay is placed between the falling edge of SCL and the falling
or rising edge of SDA.
DocID028428 Rev 1
27/35
34
DC and AC parameters
M34E04B
Figure 11. AC waveforms
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
ƚy>ϭy>Ϯ
ƚy,ϭy,Ϯ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
ƚ>,
^>
ƚ>>
ƚy>ϭy>Ϯ
^/Ŷ
ƚ,>
ƚy,ϭy,Ϯ
^
/ŶƉƵƚ
ƚy,
^
ŚĂŶŐĞ
ƚ>y
ƚ,,
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
^>
^/Ŷ
ƚt
ƚ,,
ƚ,>
tƌŝƚĞĐLJĐůĞ
ƚ,>
^>
ƚ>Ys
^KƵƚ
ƚ>Yy
ĂƚĂǀĂůŝĚ
ƚY>ϭY>Ϯ
ĂƚĂǀĂůŝĚ
/ϬϬϳϵϱũ
28/35
DocID028428 Rev 1
M34E04B
DC and AC parameters
Figure 12. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus
at maximum frequency fC = 1 MHz
%XVOLQHSXOOXSUHVLVWRU Nȍ
7KH5EXV[&EXVWLPHFRQVWDQW
0XVWEHEHORZWKHQV
7LPHFRQVWDQWOLQDUHSUHVHQWHG
RQWKHOHIW
9&&
5E
XV [
&E
XV 5 EXV
QV
,ð&EXV
PDVWHU
+HUH
5EXV[&EXV QV
6&/
0(%
6'$
& EXV
%XVOLQHFDSDFLWRU S)
06Y9
%XVOLQHSXOOXSUHVLVWRU Nȍ
Figure 13. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus
at maximum frequency fc = 400 kHz
5E
7KH5EXV[&EXVWLPHFRQVWDQW
PXVWEHEHORZWKHQV
7LPHFRQVWDQWOLQH
UHSUHVHQWHGRQWKHOHIW
9FF
XV [&
E
XV Q
5EXV
,&EXV
PDVWHU
V
0(%
6'$
+HUH
5EXV[&EXV QV
6&/
&EXV
%XVOLQHFDSDFLWRU S)
DocID028428 Rev 1
DLI
29/35
34
Package information
8
M34E04B
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
8.1
UFDFN8 package information
Figure 14. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package outline
'
1
$ %
$
FFF 3LQ
,'PDUNLQJ
(
$
&
HHH &
6HDWLQJSODQH
$
6LGHYLHZ
[
DDD &
DDD &
[
7RSYLHZ
'
H
'DWXP$
E
/
/
/ /
3LQ
,'PDUNLQJ
(
.
/
H
/
H
7HUPLQDOWLS
'HWDLO³$´
(YHQWHUPLQDO
1'[ H
%RWWRPYLHZ
6HH'HWDLO³$´
=:EB0(B9
1. Max. package warpage is 0.05 mm.
2. Exposed copper is not systematic and can appear partially or totally according to the cross section.
3. Drawing is not to scale.
4. The central pad (the area E2 by D2 in the above illustration) must be either connected to Vss or left floating
(not connected) in the end application
30/35
DocID028428 Rev 1
M34E04B
Package information
Table 14. UFDFN8 - 8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.450
0.550
0.600
0.0177
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
b(2)
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
D2
1.200
-
1.600
0.0472
-
0.0630
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
E2
1.200
-
1.600
0.0472
-
0.0630
e
-
0.500
-
K
0.300
-
-
0.0118
-
-
L
0.300
-
0.500
0.0118
-
0.0197
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
aaa
-
-
0.150
-
-
0.0059
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
-
-
0.050
-
-
0.0020
-
-
0.080
-
-
0.0031
ddd
eee
(3)
0.0197
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from
measuring.
DocID028428 Rev 1
31/35
34
Part numbering
9
M34E04B
Part numbering
Table 15. Ordering information scheme
Example:
M34E04B
-
F MC
9
T
G
H
Device type
M34 = Application specific I2C serial access EEPROM
Device function
E04B = 4 Kbit (512 × 8) SPD (serial presence detect)
Operating voltage
F = VCC = 1.7 to 3.6 V over 0 °C to 95 °C
Package(1)
MC= UFDFPN8 (MLP8)
Temperature range
9 = 0 °C to 95 °C
Option
T = Tape and reel packing
blank = Tube packing
Plating technology
G = ECOPACK2®
Wire Bonding
H = Gold
1. All package are ECOPACK2® (RoHS-compliant and free of brominated, chlorinated and antimony-oxide
flame retardants)
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
32/35
DocID028428 Rev 1
M34E04B
Part numbering
Engineering Sample
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are
not yet qualified and therefore not yet ready to be used in production and any consequences
deriving from such usage will not be at ST charge. In no event, ST will be liable for any
customer usage of these engineering samples in production. ST Quality has to be contacted
prior to any decision to use these Engineering samples to run qualification activity.
DocID028428 Rev 1
33/35
34
Revision history
10
M34E04B
Revision history
Table 16. Document revision history
34/35
Date
Revision
21-Oct-2015
1
Changes
Initial release
DocID028428 Rev 1
M34E04B
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID028428 Rev 1
35/35
35
Similar pages