AOSMD AOB428L N-channel enhancement mode field effect transistor Datasheet

AOB428
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOB428 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in high voltage
synchronous rectification , load switching and general
purpose applications. Standard Product AOB428 is
Pb-free (meets ROHS & Sony 259 specifications).
AOB428L is a Green Product ordering option.
AOB428 and AOB428L are electrically identical.
VDS (V) = 105V
ID = 40 A
RDS(ON) < 28 mΩ (VGS =10V) @ 20A
RDS(ON) < 31 mΩ (VGS = 6V)
TO-263
D2-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current
Avalanche Current
C
C
Repetitive avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation B
Junction and Storage Temperature Range
Alpha Omega Semiconductor, Ltd.
V
A
28
100
IAR
40
A
EAR
80
mJ
100
2.5
W
1.6
TJ, TSTG
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
50
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A
Maximum Junction-to-Case B
±25
ID
IDM
PD
TC=100°C
TA=25°C
Power Dissipation A
Units
V
40
TC=100°C
Pulsed Drain Current
Maximum
105
RθJA
RθJC
Typ
9
40
1
°C
Max
11
50
1.5
Units
°C/W
°C/W
°C/W
AOB428
Electrical Characteristics (T J=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Conditions
Min
ID=10mA, VGS=0V
105
1
TJ=55°C
5
Gate-Body leakage current
VDS=0V, VGS=±25V
Gate Threshold Voltage
VDS=VGS, ID=250µA
2.5
ID(ON)
On state drain current
VGS=10V, VDS=5V
100
100
VGS=10V, ID=20A
53
VGS=6V, ID=20A
25
31
VDS=5V, ID=20A
50
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A, VGS=0V
Maximum Body-Diode Continuous Current
TJ=125°C
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
Units
µA
nA
V
A
44
gFS
Crss
4
28
Static Drain-Source On-Resistance
Output Capacitance
3.2
22.7
RDS(ON)
Coss
Max
V
VDS=84V, VGS=0V
VGS(th)
IS
Typ
0.73
2038
mΩ
mΩ
S
1
V
55
A
2445
pF
VGS=0V, VDS=25V, f=1MHz
204
VGS=0V, VDS=0V, f=1MHz
1.3
1.56
Ω
38.5
46
nC
pF
85
VGS=10V, VDS=50V, ID=30A
VGS=10V, VDS=50V, RL=2.7Ω,
RGEN=3Ω
pF
7.7
nC
13.4
nC
12.7
ns
8.2
ns
31.5
ns
11.2
ns
trr
Body Diode Reverse Recovery Time
IF=30A, dI/dt=100A/µs
61.6
Qrr
Body Diode Reverse Recovery Charge IF=30A, dI/dt=100A/µs
172.4
74
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating. Rev0: Sept2005
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOB428
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
25
10V
80
60
15
ID(A)
ID (A)
VDS=5V
20
6V
40
125°C
10
5V
20
25°C
5
VGS=4.5V
0
0
0
1
2
3
4
5
2
VDS (Volts)
Fig 1: On-Region Characteristics
3
3.5
4
4.5
5
VGS(Volts)
Figure 2: Transfer Characteristics
40
2.4
Normalized On-Resistance
RDS(ON) (mΩ)
2.5
VGS=6V
30
20
VGS=10V
10
0
10
20
30
2.2
VGS=10V, 20A
2
1.8
1.6
VGS=6V,20A
1.4
1.2
1
0.8
40
0
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
25
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.0E+02
60
1.0E+01
125°C
125°C
1.0E+00
IS (A)
RDS(ON) (mΩ)
50
ID=20A
40
1.0E-01
1.0E-02
25°C
30
1.0E-03
25°C
1.0E-04
20
4
8
12
16
20
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOB428
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
3
10
VDS=50V
ID=20A
Ciss
Capacitance (nF)
VGS (Volts)
8
6
4
2
1
Coss
2
0
Crss
0
0
10
20
30
40
0
20
40
60
80
VDS (Volts)
Figure 8: Capacitance Characteristics
Qg (nC)
Figure 7: Gate-Charge Characteristics
1000
100
300
TJ(Max)=175°C, TA=25°C
TJ(Max)=175°C
TA=25°C
10µs
10
DC
RDS(ON)
limited
100µs
Power (W)
ID (Amps)
100
1ms, DC
200
100
1
0
0.0001
0.1
0.1
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJC.RθJC
RθJC=1.5°C/W
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
0.1
AOB428
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
150
L ⋅ ID
tA =
BV − V DD
40
Power Dissipation (W)
ID(A), Peak Avalanche Current
60
TA=25°C
TA=150°C
20
0
0.000001
100
50
0
0.00001
0.0001
0.001
0
25
50
75
100
125
150
175
TCASE (°C)
Figure 13: Power De-rating (Note B)
50
100
40
80
Power (W)
Current rating ID(A)
Time in avalanche, tA (s)
Figure 12: Single Pulse Avalanche capability
30
20
60
40
20
10
0
0.01
0
0
25
50
75
100
125
150
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
175
TCASE (°C)
Figure 14: Current De-rating (Note B)
ZθJA Normalized Transient
Thermal Resistance
100
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=50°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD
0.01
0.001
0.00001
Single Pulse
0.0001
0.001
Ton
0.01
0.1
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000
Similar pages