Microsemi APT36GA60SD15 High speed pt igbt Datasheet

APT36GA60BD15
APT36GA60SD15
600V
High Speed PT IGBT
TO
APT36GA60SD15
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is
-2
47
achieved through leading technology silicon design and lifetime control processes. A
D3PAK
reduced Eoff - VCE(ON) tradeoff results in superior efficiency compared to other IGBT
technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate
resistance and capacitance of the poly-silicone gate structure help control di/dt during APT36GA60BD15
switching, resulting in low EMI, even when switching at high frequency.
Combi (IGBT and Diode)
®
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
600
V
IC1
Continuous Collector Current @ TC = 25°C
65
IC2
Continuous Collector Current @ TC = 100°C
36
ICM
Pulsed Collector Current 1
109
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
290
W
Vces
Parameter
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
109A @ 600V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
600
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 20A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
TJ = 25°C
275
VGE = 0V
TJ = 125°C
3000
Microsemi Website - http://www.microsemi.com
V
6
VCE = 600V,
VGS = ±30V
Unit
±100
μA
nA
052-6336 Rev C 6- 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
3
226
f = 1MHz
328
Gate Charge
102
VGE = 15V
18
16
VCC = 400V
14
VGE = 15V
122
td(on)
Turn-On Delay Time
6
IC = 20A
77
RG = 10Ω4
307
TJ = +25°C
254
Inductive Switching (125°C)
14
Current Rise Time
VCC = 400V
15
Turn-Off Delay Time
VGE = 15V
149
Current Fall Time
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy
6
nC
A
Turn-Off Delay Time
Turn-Off Switching Energy
Unit
pF
109
L= 100uH, VCE = 600V
Inductive Switching (25°C)
Current Fall Time
Max
36
Current Rise Time
Eoff
tf
VGE = 0V, VCE = 25V
TJ = 150°C, RG = 10Ω4, VGE = 15V,
Turn-On Delay Time
Typ
2880
IC = 20A
Switching Safe Operating Area
Turn-On Switching Energy
tr
Min
Capacitance
VCE= 300V
Gate- Collector Charge
Eon2
td(off)
APT36GA60B_SD15
TJ = 25°C unless otherwise specified
IC = 20A
113
RG = 10Ω4
508
TJ = +125°C
439
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol
Characteristic
RθJC
Junction to Case Thermal Resistance (IGBT)
RθJC
Junction to Case Thermal Resistance (Diode)
WT
Torque
Package Weight
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Min
Typ
Max
-
-
.43
1.35
-
5.9
Unit
°C/W
-
g
10
in·lbf
052-6336 Rev C 6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
TJ= 125°C
TJ= 55°C
40
TJ= 150°C
TJ= 25°C
30
20
10
0
200
150
100
TJ= 25°C
50
TJ= -55°C
TJ= 125°C
11V
120
0
2
4
6
8
10
12
4
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 40A
IC = 20A
2
IC = 10A
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
VCE = 120V
VCE = 300V
VCE = 480V
6
4
2
0 10
20 30 40 50 60 70 80
GATE CHARGE (nC)
FIGURE 4, Gate charge
90 100
5
4
3
IC = 40A
IC = 20A
2
IC = 10A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.90
J
8
1.10
0.95
I = 20A
C
T = 25°C
10
80
1.00
0
4
8
12 16 20
24 28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
12
1.15
1.05
8V
6V
14
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
9V
40
16
14
10V
80
0
IC, DC COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
12V
160
VGE, GATE-TO-EMITTER VOLTAGE (V)
250
13V
200
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
15V
240
0
300
IC, COLLECTOR CURRENT (A)
280
= 15V
0
25
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6336 Rev C 6- 2009
50
GE
IC, COLLECTOR CURRENT (A)
V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
60
APT36GA60BD_S15
Typical Performance Curves
APT36GA60BD_S15
200
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
18
16
VGE = 15V
14
VCE = 400V
TJ = 25°C, or 125°C
RG = 10Ω
L = 100μH
12
10
160
VGE =15V,TJ=125°C
120
40
0
5
10
15 20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
150
RG = 10Ω, L = 100μH, VCE = 400V
35
VCE = 400V
RG = 10Ω
L = 100μH
0
0
5
10 15 20
25 30 35
40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
40
VGE =15V,TJ=25°C
80
RG = 10Ω, L = 100μH, VCE = 400V
125
25
tr, FALL TIME (ns)
tr, RISE TIME (ns)
30
20
15
10
TJ = 25 or 125°C,VGE = 15V
0
TJ = 25°C, VGE = 15V
50
0
5
10
15
20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1200
V
= 400V
CE
V
= +15V
GE
R =10Ω
G
1250
1000
TJ = 125°C
750
500
TJ = 25°C
250
EOFF, TURN OFF ENERGY LOSS (μJ)
FIGURE 11, Current Rise Time vs Collector Current
1500
Eon2, TURN ON ENERGY LOSS (μJ)
75
0
0ICE, COLLECTOR-TO-EMITTER
5 10 15 20 25 30
35 40
CURRENT
(A)
0
5
10 15 20 25
30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
J
1600
Eon2,40A
1400
Eoff,40A
1200
1000
800
Eon2,20A
600
Eoff,20A
400
0
Eon2,10A
Eoff,10A
200
0
800
TJ = 125°C
600
400
200
TJ = 25°C
1600
V
= 400V
CE
V
= +15V
GE
T = 125°C
1800
G
1000
0
5
10 15
20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
2000
V
= 400V
CE
V
= +15V
GE
R = 10Ω
0
0
SWITCHING ENERGY LOSSES (μJ)
TJ = 125°C, VGE = 15V
25
5
052-6336 Rev C 6 - 2009
100
V
= 400V
CE
V
= +15V
GE
R = 10Ω
1400
G
Eon2,40A
1200
1000
Eoff,40A
800
600
Eon2,20A
400
Eoff,20A
Eon2,10A
200
0
Eoff,10A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT36GA60B_SD15
200
10000
100
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
10
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.45
D = 0.9
0.40
0.35
0.7
0.30
0.25
0.5
Note:
0.20
PDM
0.3
0.15
t2
0.10
t
0.1
0.05
0
t1
0.05
10
SINGLE PULSE
10 -3
10 -2
10 -1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-5
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
-4
1.0
052-6336 Rev C 6- 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
APT36GA60BD_S15
10%
Gate Voltage
TJ = 125°C
td(on)
90%
APT15DQ60
tr
IC
V CC
V CE
5%
10%
Collector Current
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6336 Rev C 6 - 2009
Figure 22, Turn-off Switching Waveforms and Definitions
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT36GA60B_SD15
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
110
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
IF = 15A
2.0
IF = 30A
2.5
IF = 15A, TJ = 125°C
1.56
Forward Voltage
VF
Type
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Test Conditions
Min
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
15
-
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
IF = 15A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Unit
ns
-
19
-
-
21
-
nC
-
2
-
Amps
-
105
-
ns
-
250
-
nC
-
5
-
Amps
-
55
-
ns
-
420
-
nC
-
15
-
Amps
D = 0.9
1.20
1.00
0.7
0.80
0.5
Note:
0.60
PDM
0.3
0.40
t1
t2
t
0.20
0.1
SINGLE PULSE
0.05
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
052-6336 Rev C 6- 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
Dynamic Characteristics
TJ = 25°C unless otherwise specified
60
APT36GA60B_SD15
140
trr, REVERSE RECOVERY TIME
(ns)
T =125°C
J
V =400V
IF, FORWARD CURRENT
(A)
50
TJ = 175°C
40
TJ = 125°C
30
20
10
0
0
7.5A
60
40
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
R
600
30A
500
400
15A
300
7.5A
200
100
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
1.2
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
15A
80
25
T =125°C
J
V =400V
0
R
20
30A
15
10
15A
7.5A
5
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
35
Qrr
Duty cycle = 0.5
T =175°C
J
trr
1.0
T =125°C
J
V =400V
0
30
25
0.8
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
100
0
700
IRRM
0.6
trr
20
15
0.4
10
Qrr
0.2
0.0
5
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
0
90
CJ, JUNCTION CAPACITANCE
(pF)
30A
20
TJ = 25°C
TJ = -55°C
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
052-6336 Rev C 6 - 2009
R
120
80
70
60
50
40
30
20
10
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
Dynamic Characteristics
TJ = 25°C unless otherwise specified
APT36GA60B_SD15
Vr
diF /dt Adjust
+18V
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 9. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
(Heat Sink)
e3 100% Sn Plated
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector (Cathode)
1.27 (.050)
1.40 (.055)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
5.45 (.215) BSC
{2 Plcs.}
and Leads
are Plated
Emitter (Anode)
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter (Anode)
Collector (Cathode)
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6336 Rev C 6- 2009
4.50 (.177) Max.
Similar pages