ATMEL AT27LV010A-90TC 1 megabit 128k x 8 low voltage otp cmos eprom Datasheet

Features
• Fast Read Access Time - 70 ns
• Dual Voltage Range Operation
•
•
•
•
•
•
•
•
– Low Voltage Power Supply Range, 3.0V to 3.6V
– or Standard 5V ± 10% Supply Range
Compatible with JEDEC Standard AT27C010
Low Power CMOS Operation
– 20 µA max. (less than 1 µA typical) Standby for VCC = 3.6V
– 29 mW max. Active at 5 MHz for VCC = 3.6V
JEDEC Standard Packages
– 32-Lead PLCC
– 32-Lead TSOP (8 x 20 mm)
– 32-Lead VSOP (8 x 14 mm)
High Reliability CMOS Technology
– 2,000V ESD Protection
– 200 mA Latchup Immunity
Rapid™ Programming Algorithm - 100 µs/byte (typical)
CMOS and TTL Compatible Inputs and Outputs
– JEDEC Standard for LVTTL
Integrated Product Identification Code
Commercial and Industrial Temperature Ranges
1-Megabit
(128K x 8)
Low Voltage
OTP EPROM
AT27LV010A
Description
The AT27LV010A is a high performance, low power, low voltage 1,048,576-bit onetime programmable read only memory (OTP EPROM) organized as 128K by 8 bits. It
requires only one supply in the range of 3.0V to 3.6V in normal read mode operation,
making it ideal for fast, portable systems using battery power.
(continued)
Pin Configurations
Pin Name
Function
A0 - A16
Addresses
O0 - O7
Outputs
CE
Chip Enable
OE
Output Enable
PGM
Program Strobe
NC
No Connect
29
28
27
26
25
24
23
22
21
14
15
16
17
18
19
20
5
6
7
8
9
10
11
12
13
O1
O2
GND
O3
O4
O5
O6
A7
A6
A5
A4
A3
A2
A1
A0
O0
4
3
2
1
32
31
30
A12
A15
A16
VPP
VCC
PGM
NC
PLCC Top View
A14
A13
A8
A9
A11
OE
A10
CE
O7
TSOP/VSOP Top View
Type 1
A11
A9
A8
A13
A14
NC
PGM
VCC
VPP
A16
A15
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE
O7
O6
O5
O4
O3
GND
O2
O1
O0
A0
A1
A2
A3
Rev. 0548C–10/98
1
Atmel’s innovative design techniques provide fast speeds
that rival 5V parts while keeping the low power consumption of a 3.3V supply. At V CC = 3.0V, any byte can be
accessed in less than 70 ns. With a typical power dissipation of only 18 mW at 5 MHz and V C C = 3.3V, the
AT27LV010A consumes less than one fifth the power of a
standard 5V EPROM. Standby mode supply current is typically less than 1 µA at 3.3V.
The AT27LV010A is available in industry standard JEDECapproved one-time programmable (OTP) plastic PLCC and
TSOP packages. All devices feature two-line control (CE,
OE) to give designers the flexibility to prevent bus
contention.
The AT27LV010A operating with V CC at 3.0V produces TTL
level outputs that are compatible with standard TTL logic
devices operating at VCC = 5.0V. The device is also capable of standard 5-volt operation making it ideally suited for
dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.
Atmel’s AT27LV010A has additional features to ensure
high quality and efficient production use. The Rapid™ Programming Algorithm reduces the time required to program
the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated
Block Diagram
2
AT27LV010A
Product Identification Code electronically identifies the
device and manufacturer. This feature is used by industry
standard programming equipment to select the proper programming algorithms and voltages. The AT27LV010A programs exactly the same way as a standard 5V AT27C010
and uses the same programming equipment.
System Considerations
Switching between active and standby conditions via the
Chip Enable pin may produce transient voltage excursions.
Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device
non-conformance. At a minimum, a 0.1 µF high frequency,
low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected
between the V CC and Ground terminals of the device, as
close to the device as possible. Additionally, to stabilize the
supply voltage level on printed circuit boards with large
EPROM arrays, a 4.7 µF bulk electrolytic capacitor should
be utilized, again connected between the VCC and Ground
terminals. This capacitor should be positioned as close as
possible to the point where the power supply is connected
to the array.
AT27LV010A
Absolute Maximum Ratings*
*NOTICE:
Temperature Under Bias .................................. -40°C to +85°C
Storage Temperature ..................................... -65°C to +125°C
Voltage on Any Pin with
Respect to Ground .........................................-2.0V to +7.0V(1)
Voltage on A9 with
Respect to Ground ......................................-2.0V to +14.0V(1)
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability
VPP Supply Voltage with
Respect to Ground .......................................-2.0V to +14.0V(1)
Note:
1.
Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is
VCC + 0.75V dc which may be exceeded if certain precautions are observed (consult application notes) and which may
overshoot to +7.0V for pulses of less than 20 ns.
Operating Modes
Mode \ Pin
Read
CE
(2)
VIL
Output Disable
(2)
Standby(2)
Rapid Program
(3)
(3)
PGM Verify
OE
PGM
VIL
(1)
X
Ai
Ai
VPP
X
VCC
DOUT
(2)
High Z
High Z
VIH
X
X
X
VCC
VIH
X
X
X
X
VCC(2)
VIL
VIL
VIH
VIL
VIL
VIH
Ai
Ai
VPP
VPP
PGM Inhibit
VIH
X
X
X
VPP
Product Identification(3)(5)
VIL
VIL
X
A9 = VH(4)
A0 = VIH or VIL
A1 - A16 = VIL
X
Outputs
(2)
X
(3)
Notes:
VCC
VCC
(3)
DIN
VCC
(3)
DOUT
VCC
(3)
High Z
VCC(3)
Identification
Code
1. X can be VIL or VIH.
2. Read, output disable, and standby modes require, 3.0V ≤ VCC ≤ 3.6V, or 4.5V ≤ VCC ≤ 5.5V.
3. Refer to Programming Characteristics. Programming modes require VCC = 6.5V.
4. VH = 12.0 ± 0.5V.
5. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low
(VIL) to select the Manufacturer’s Identification byte and high (VIH) to select the Device Code byte.
3
DC and AC Operating Conditions for Read Operation
AT27LV010A
Operating Temperature
(Case)
-70
-90
-12
-15
0°C - 70°C
0°C - 70°C
0°C - 70°C
0°C - 70°C
-40°C - 85°C
-40°C - 85°C
-40°C - 85°C
-40°C - 85°C
3.0V to 3.6V
3.0V to 3.6V
3.0V to 3.6V
3.0V to 3.6V
5V ± 10%
5V ± 10%
5V ± 10%
5V ± 10%
Com.
Ind.
VCC Power Supply
DC and Operating Characteristics for Read Operation
Symbol
Parameter
Condition
Min
Max
Units
VCC = 3.0V to 3.6V
ILI
ILO
IPP1
(2)
Input Load Current
VIN = 0V to VCC
±1
µA
Output Leakage Current
VOUT = 0V to VCC
±5
µA
VPP = VCC
10
µA
ISB1 (CMOS), CE = VCC ± 0.3V
20
µA
ISB2 (TTL), CE = 2.0 to VCC + 0.5V
100
µA
8
mA
VPP
(1)
Read/Standby Current
ISB
VCC(1) Standby Current
ICC
VCC Active Current
VIL
Input Low Voltage
-0.6
0.8
V
VIH
Input High Voltage
2.0
VCC + 0.5
V
VOL
Output Low Voltage
IOL = 2.0 mA
0.4
V
VOH
Output High Voltage
IOH = -2.0 mA
f = 5 MHz, IOUT = 0 mA, CE = VIL
2.4
V
VCC = 4.5V to 5.5V
ILI
ILO
IPP1
(2)
Input Load Current
VIN = 0V to VCC
±1
µA
Output Leakage Current
VOUT = 0V to VCC
±5
µA
VPP = VCC
10
µA
ISB1 (CMOS), CE = VCC ± 0.3V
100
µA
ISB2 (TTL), CE = 2.0 to VCC + 0.5V
1
mA
f = 5 MHz, IOUT = 0 mA, CE = VIL
25
mA
VPP
(1)
Read/Standby Current
ISB
VCC(1) Standby Current
ICC
VCC Active Current
VIL
Input Low Voltage
-0.6
0.8
V
VIH
Input High Voltage
2.0
VCC + 0.5
V
VOL
Output Low Voltage
IOL = 2.1 mA
0.4
V
VOH
Output High Voltage
IOH = -400 µA
Notes:
2.4
V
1. VCC must be applied simultaneously with or before VPP, and removed simultaneously with or after VPP.
2. VPP may be connected directly to VCC, except during programming. The supply current would then be the sum of ICC and IPP.
4
AT27LV010A
AT27LV010A
AC Characteristics for Read Operation
VCC = 3.0V to 3.6V and 4.5V to 5.5V
AT27LV010A
-70
Parameter
Condition
tACC(3)
Address to Output Delay
CE = OE = VIL
70
90
tCE(2)
CE to Output Delay
OE = VIL
70
OE to Output Delay
CE = VIL
tOE
tDF(4)(5)
OE or CE High to Output
Float, whichever occurred
first
tOH
Output Hold from
Address, CE or OE,
whichever occurred first
Max
Max
Min
-15
Max
Units
120
150
ns
90
120
150
ns
40
50
50
60
ns
35
40
40
50
ns
0
Min
-12
Symbol
(2)(3)
Min
-90
0
0
Max
Min
0
ns
AC Waveforms for Read Operation(1)
Notes:
1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE.
3. OE may be delayed up to tACC - tOE after the address is valid without impact on tACC.
4. This parameter is only sampled and is not 100% tested.
5. Output float is defined as the point when data is no longer driven.
5
Input Test Waveforms and
Measurement Level
Output Test Load
tR, tF < 20 ns (10% to 90%)
Note: CL = 100 pF including
jig capacitance.
Pin Capacitance
f = 1 MHz, T = 25°C(1)
Symbol
Typ
Max
Units
Conditions
CIN
4
8
pF
VIN = 0V
COUT
8
12
pF
VOUT = 0V
Note:
6
1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.
AT27LV010A
AT27LV010A
Programming Waveforms(1)
Notes:
1.
The Input Timing Reference is 0.8V for VIL and 2.0V for VIH.
2.
tOE and tDFP are characteristics of the device but must be accommodated by the programmer.
3.
When programming the AT27LV010A a 0.1 µF capacitor is required across VPP and ground to suppress spurious voltage
transients.
DC Programming Characteristics
TA = 25 ± 5°C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.25V
Limits
Symbol
Parameter
Test Conditions
ILI
Input Load Current
VIN = VIL, VIH
VIL
Input Low Level
VIH
Input High Level
VOL
Output Low Voltage
IOL = 2.1 mA
VOH
Output High Voltage
IOH = -400 µA
ICC2
VCC Supply Current (Program and Verify)
IPP2
VPP Supply Current
VID
A9 Product Identification Voltage
Min
Max
Units
±10
µA
-0.6
0.8
V
2.0
VCC + 0.5
V
0.4
V
2.4
CE = PGM = VIL
11.5
V
40
mA
20
mA
12.5
V
7
AC Programming Characteristics
TA = 25 ± 5°C, VCC = 6.5 ± 0.25V, VPP = 13.0 ± 0.2V
Limits
Symbol
Parameter
tAS
Address Setup Time
2
µs
tCES
CE Setup Time
2
µs
tOES
OE Setup Time
2
µs
tDS
Data Setup Time
2
µs
tAH
Address Hold Time
0
µs
tDH
Data Hold Time
2
µs
tDFP
OE High to Output Float Delay(2)
tVPS
VPP Setup Time
tVCS
VCC Setup Time
tPW
PGM Program Pulse Width(3)
tOE
Data Valid from OE
tPRT
VPP Pulse Rise Time During
Programming
Notes:
Test Conditions
(1)
Min
Input Rise and Fall Times:
(10% to 90%) 20 ns
Input Pulse Levels:
0.45V to 2.4V
Max
0
Input Timing Reference Level:
0.8V to 2.0V
Output Timing Reference Level:
0.8V to 2.0V
Units
130
ns
2
µs
2
µs
95
105
µs
150
ns
50
ns
1. VCC must be applied simultaneously or before VPP
and removed simultaneously or after VPP.
2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—
see timing diagram.
3. Program Pulse width tolerance is 100 µsec ± 5%.
Atmel’s 27LV010A Integrated Product Identification Code(1)
Pins
A0
O7
O6
O5
O4
O3
O2
O1
O0
Hex
Data
Manufacturer
0
0
0
0
1
1
1
1
0
1E
Device Type
1
0
0
0
0
0
1
0
1
05
Codes
Note:
8
1. The AT27LV010A has the same Product Identification Code as the AT27C010. Both are programming compatible.
AT27LV010A
AT27LV010A
Rapid Programming Algorithm
A 100 µs PGM pulse width is used to program. The
address is set to the first location. VCC is raised to 6.5V and
VPP is raised to 13.0V. Each address is first programmed
with one 100 µs PGM pulse without verification. Then a
verification / reprogramming loop is executed for each
address. In the event a byte fails to pass verification, up to
10 successive 100 µs pulses are applied with a verification
after each pulse. If the byte fails to verify after 10 pulses
have been applied, the part is considered failed. After the
byte verifies properly, the next address is selected until all
have been checked. VPP is then lowered to 5.0V and VCC to
5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.
9
Ordering Information
ICC (mA)
VCC = 3.6V
tACC
(ns)
Active
Standby
70
8
90
120
150
Ordering Code
Package
0.02
AT27LV010A-70JC
AT27LV010A-70TC
AT27LV010A-70VC
32J
32T
32V
Commercial
(0°C to 70°C)
8
0.02
AT27LV010A-70JI
AT27LV010A-70TI
AT27LV010A-70VI
32J
32T
32V
Industrial
(-40°C to 85°C)
8
0.02
AT27LV010A-90JC
AT27LV010A-90TC
AT27LV010A-90VC
32J
32T
32V
Commercial
(0°C to 70°C)
8
0.02
AT27LV010A-90JI
AT27LV010A-90TI
AT27LV010A-90VI
32J
32T
32V
Industrial
(-40°C to 85°C)
8
0.02
AT27LV010A-12JC
AT27LV010A-12TC
AT27LV010A-12VC
32J
32T
32V
Commercial
(0°C to 70°C)
8
0.02
AT27LV010A-12JI
AT27LV010A-12TI
AT27LV010A-12VI
32J
32T
32V
Industrial
(-40°C to 85°C)
8
0.02
AT27LV010A-15JC
AT27LV010A-15TC
AT27LV010A-15VC
32J
32T
32V
Commercial
(0°C to 70°C)
8
0.02
AT27LV010A-15JI
AT27LV010A-15TI
AT27LV010A-15VI
32J
32T
32V
Industrial
(-40°C to 85°C)
Package Type
32J
32-Lead, Plastic J-Leaded Chip Carrier (PLCC)
32T
32-Lead, Plastic Thin Small Outline Package (TSOP) (8 x 20 mm)
32V
32-Lead, Plastic Thin Small Outline Package (VSOP) (8 x 14 mm)
10
AT27LV010A
Operation Range
AT27LV010A
Packaging Information
32J, 32-Lead, Plastic J-Leaded Chip Carrier (PLCC)
Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-016 AE
32T, 32-Lead, Plastic Thin Small Outline Package
(TSOP)
Dimensions in Millimeters and (Inches)*
JEDEC OUTLINE MO-142 BD
.045(1.14) X 45˚
PIN NO. 1
IDENTIFY
.025(.635) X 30˚ - 45˚
.012(.305)
.008(.203)
.553(14.0)
.547(13.9)
.595(15.1)
.585(14.9)
.032(.813)
.026(.660)
.050(1.27) TYP
.300(7.62) REF
.430(10.9)
.390(9.90)
AT CONTACT
POINTS
INDEX
MARK
.530(13.5)
.490(12.4)
18.5(.728)
18.3(.720)
20.2(.795)
19.8(.780)
.021(.533)
.013(.330)
.030(.762)
.015(.381)
.095(2.41)
.060(1.52)
.140(3.56)
.120(3.05)
0.50(.020)
BSC
7.50(.295)
REF
0.25(.010)
0.15(.006)
8.20(.323)
7.80(.307)
1.20(.047) MAX
0.15(.006)
0.05(.002)
.022(.559) X 45˚ MAX (3X)
0
5 REF
.453(11.5)
.447(11.4)
.495(12.6)
.485(12.3)
0.20(.008)
0.10(.004)
0.70(.028)
0.50(.020)
*Controlling dimension: millimeters
32V, 32-Lead, Plastic Thin Small Outline Package
(VSOP)
Dimensions in Inches and (Millimeters)
JEDEC OUTLINE MO-142 BA
INDEX
MARK
12.5(.492)
12.3(.484)
0.50(.020)
BSC
7.50(.295)
REF
14.2(.559)
13.8(.543)
0.25(.010)
0.15(.006)
8.10(.319)
7.90(.311)
1.20(.047) MAX
0.15(.006)
0.05(.002)
0
5 REF
0.20(.008)
0.10(.004)
0.70(.028)
0.50(.020)
11
Atmel Headquarters
Atmel Operations
Corporate Headquarters
Atmel Colorado Springs
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600
Europe
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369
Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
[email protected]
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309
© Atmel Corporation 1998.
Atmel Cor poration makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual proper ty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life suppor t devices or systems.
Marks bearing
®
and/or
™
are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.
0548C–10/98/xM
Similar pages