Freescale ATC100B101JT500XT Rf power field effect transistor n--channel enhancement--mode lateral mosfet Datasheet

Freescale Semiconductor
Technical Data
Document Number: MRF6VP2600H
Rev. 5.1, 7/2010
RF Power Field Effect Transistor
N--Channel Enhancement--Mode Lateral MOSFET
Designed primarily for wideband applications with frequencies up to 500 MHz.
Device is unmatched and is suitable for use in broadcast applications.
• Typical DVB--T OFDM Performance: VDD = 50 Volts, IDQ = 2600 mA,
Pout = 125 Watts Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz,
Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF.
Power Gain — 25 dB
Drain Efficiency — 28.5%
ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth
• Typical Pulsed Performance: VDD = 50 Volts, IDQ = 2600 mA,
Pout = 600 Watts Peak, f = 225 MHz, Pulse Width = 100 μsec, Duty
Cycle = 20%
Power Gain — 25.3 dB
Drain Efficiency — 59%
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 225 MHz, 600 Watts Peak
Power, Pulse Width = 100 μsec, Duty Cycle = 20%
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
• CW Operation Capability with Adequate Cooling
• Qualified Up to a Maximum of 50 VDD Operation
• Integrated ESD Protection
• Designed for Push--Pull Operation
• Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.
MRF6VP2600HR6
2--500 MHz, 600 W, 50 V
LATERAL N--CHANNEL
BROADBAND
RF POWER MOSFET
CASE 375D--05, STYLE 1
NI--1230
PART IS PUSH--PULL
RFinA/VGSA 3
1 RFoutA/VDSA
RFinB/VGSB 4
2 RFoutB/VDSB
(Top View)
Figure 1. Pin Connections
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
--0.5, +110
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 99°C, 125 W CW, 225 MHz, 50 Vdc, IDQ = 2600 mA
Case Temperature 64°C, 610 W CW, 352.2 MHz, 50 Vdc, IDQ = 150 mA
Case Temperature 81°C, 610 W CW, 88--108 MHz, 50 Vdc, IDQ = 150 mA
RθJC
0.20
0.14
0.16
Unit
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2008--2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6VP2600HR6
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2 (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
IV (Minimum)
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
V(BR)DSS
110
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 800 μAdc)
VGS(th)
1
1.65
3
Vdc
Gate Quiescent Voltage (2)
(VDD = 50 Vdc, ID = 2600 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.7
3.5
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.25
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.7
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
101
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
287
—
pF
Characteristic
Off Characteristics
(1)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(ID = 150 mA, VGS = 0 Vdc)
On Characteristics
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, DVB--T
OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset.
Power Gain
Gps
24
25
27
dB
Drain Efficiency
ηD
27
28.5
—
%
ACPR
—
--61
--59
dBc
IRL
—
--18
--9
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW
Power Gain
Gps
—
22
—
dB
Drain Efficiency
ηD
—
68
—
%
Input Return Loss
IRL
—
--15
—
dB
Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W
CW
Power Gain
Gps
—
24.5
—
dB
Drain Efficiency
ηD
—
74
—
%
Input Return Loss
IRL
—
--5
—
dB
1. Each side of device measured separately.
2. Measurement made with device in push--pull configuration.
MRF6VP2600HR6
2
RF Device Data
Freescale Semiconductor
VBIAS
B1
+
+
+
C16
C15
C14
L3
R1
L2
L4
C13
C12
C11
C9
C8
C7
C10
C6
C19
Z9
Z5
RF
INPUT
Z1
VSUPPLY
Z2
L1
Z3
Z11 Z13
C2
Z15
C20
C3
C4
C23
C24 C25
Z16
Z20
RF
OUTPUT
J2
Z8
Z10 Z12 Z14
1.049″ x 0.080″ Microstrip
0.143″ x 0.080″ Microstrip
0.188″ x 0.080″ Microstrip
0.192″ x 0.133″ Microstrip
0.418″ x 0.193″ Microstrip
0.217″ x 0.518″ Microstrip
0.200″ x 0.518″ Microstrip
0.375″ x 0.214″ Microstrip
C22
+
Z17
C5
Z18
T1
Z1
Z2*
Z3*
Z4
Z5, Z6
Z7, Z8
Z9, Z10
Z11, Z12
C21
Z19
DUT
Z6
C18
+
Z7
Z4
J1
C1
C17
+
T2
Z13, Z14
Z15*, Z16*
Z17, Z18
Z19
Z20
PCB
0.224″ x 0.253″ Microstrip
0.095″ x 0.253″ Microstrip
0.052″ x 0.253″ Microstrip
0.053″ x 0.080″ Microstrip
1.062″ x 0.080″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
* Line length includes microstrip bends
Figure 2. MRF6VP2600HR6 Test Circuit Schematic
Table 5. MRF6VP2600HR6 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
95 Ω, 100 MHz Long Ferrite Bead
2743021447
Fair--Rite
C1
47 pF Chip Capacitor
ATC100B470JT500XT
ATC
C2, C4
43 pF Chip Capacitors
ATC100B430JT500XT
ATC
C3
100 pF Chip Capacitor
ATC100B101JT500XT
ATC
C5
10 pF Chip Capacitor
ATC100B7R5CT500XT
ATC
C6, C9
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C7, C13, C20
10K pF Chip Capacitors
ATC200B103KT50XT
ATC
C8
220 nF, 50 V Chip Capacitor
C1812C224J5RAC
Kemet
C10, C17, C18
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C11, C22
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYS
Kemet
C12, C21
20K pF Chip Capacitors
ATC200B203KT50XT
ATC
C14
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C15
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C16
47 μF, 50 V Electrolytic Capacitor
476KXM050M
Illinois Cap
C19
2.2 μF, Chip Capacitor
2225X7R225KT3AB
ATC
C23, C24, C25
470 μF 63V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
J1, J2
Jumpers from PCB to T1 & T2
Copper Foil
L1
17.5 nH, 6 Turn Inductor
B06T
L2
8 Turn, #20 AWG ID = 0.125″ Inductor, Hand Wound
Copper Wire
L3
82 nH, Inductor
1812SMS--82NJ
L4*
9 Turn, #18 AWG Inductor, Hand Wound
Copper Wire
R1
20 Ω, 3 W Axial Leaded Resistor
5093NW20R00J
Vishay
T1
Balun
TUI--9
Comm Concepts
T2
Balun
TUO--4
Comm Concepts
CoilCraft
CoilCraft
*L4 is wrapped around R1.
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
3
--
B1
C23
C13
C12
C11
C16
+
C15
C14
C22
C21
C20
L3
--
C25
--
C18
C9
C8
C7
L2
C10
T2
T1
J1
C2
C4
CUT OUT AREA
L1
C19
C17
C6
C1
C24
L4, R1*
J2
C5
C3 (on side)
MRF6VP2600H
225 MHz
Rev. 3
* L4 is wrapped around R1.
Figure 3. MRF6VP2600HR6 Test Circuit Component Layout
MRF6VP2600HR6
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
100
1000
ID, DRAIN CURRENT (AMPS)
Coss
100
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Crss
10
0
10
20
40
30
10
TC = 25_C
1
50
10
100
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
Note: Each side of device measured separately.
Figure 4. Capacitance versus Drain--Source Voltage
Figure 5. DC Safe Operating Area
26.5
64
80
Gps
VDD = 50 Vdc, IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
25
24.5
50
40
ηD
24
30
23.5
20
23
10
22.5
10
62
Pout, OUTPUT POWER (dBm)
60
25.5
P2dB = 59.1 dBm (827 W)
60
P1dB = 53.3 dBm (670 W)
Actual
58
56
54
VDD = 50 Vdc, IDQ = 2600 mA, f = 225 MHz
Pulse Width = 12 μsec, Duty Cycle = 1%
52
27
0
1000
100
Ideal
P3dB = 59.7 dBm (938 W)
70
ηD, DRAIN EFFICIENCY (%)
26
Gps, POWER GAIN (dB)
TJ = 175_C
TJ = 150_C
1
1
28
29
30
31
32
33
34
35
36
Pin, INPUT POWER (dBm)
Figure 6. Pulsed Power Gain and Drain Efficiency
versus Output Power
Figure 7. Pulsed CW Output Power versus
Input Power
28
80
27
Gps, POWER GAIN (dB)
25
50 V
24
45 V
40 V
23
VDD = 50 Vdc
IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
22
21
0
100
200
35 V
300
400
500
600
700
Gps
TC = --30_C
26
70
60
25_C
25
50
85_C
24
40
VDD = 50 Vdc, IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
23
22
VDD = 30 V
38
37
Pout, OUTPUT POWER (WATTS) PULSED
26
Gps, POWER GAIN (dB)
TJ = 200_C
21
10
ηD
30
20
ηD, DRAIN EFFICIENCY (%)
C, CAPACITANCE (pF)
Ciss
10
1000
100
Pout, OUTPUT POWER (WATTS) PULSED
Pout, OUTPUT POWER (WATTS) PULSED
Figure 8. Pulsed Power Gain versus
Output Power
Figure 9. Pulsed Power Gain and Drain Efficiency
versus Output Power
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS — TWO--TONE
--10
VDD = 50 Vdc, IDQ = 2600 mA, f1 = 222 MHz
f2 = 228 MHz, Two--Tone Measurements
--30
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
--20
--40
3rd Order
--50
5th Order
--60
7th Order
--70
10
5
100
700
--30
3rd Order
--40
5th Order
--50
7th Order
--60
Figure 10. Intermodulation Distortion
Products versus Output Power
Figure 11. Intermodulation Distortion
Products versus Tone Spacing
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
2300 mA
2000 mA
1800 mA
24
10
TWO--TONE SPACING (MHz)
IDQ = 2600 mA
25
1
0.1
--20
25.5
Gps, POWER GAIN (dB)
--20
Pout, OUTPUT POWER (WATTS) PEP
26
24.5
VDD = 50 Vdc, Pout = 500 W (PEP), IDQ = 2600 mA
Two--Tone Measurements
VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz
Two--Tone Measurements, 6 MHz Tone Spacing
1300 mA
23.5
100
20
Pout, OUTPUT POWER (WATTS) PEP
Figure 12. Two--Tone Power Gain versus
Output Power
VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz
Two--Tone Measurements, 6 MHz Tone Spacing
--25
--30
IDQ = 1300 mA
--35
--40
2600 mA
1800 mA
--45
2000 mA
--50
700
40
20
2300 mA
700
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 13. Third Order Intermodulation
Distortion versus Output Power
MRF6VP2600HR6
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — OFDM
100
--20
7.61 MHz
--30
10
--50
8K Mode DVB--T OFDM
64 QAM Data Carrier Modulation
5 Symbols
0.01
--90
--110
2
0
4
6
8
10
12
--3
--2
--1
0
1
2
3
4
Figure 14. Single--Carrier DVB--T OFDM
Figure 15. 8K Mode DVB--T OFDM Spectrum
2300 mA
25.2
2000 mA
1800 mA
24.8
1300 mA
VDD = 50 Vdc, f = 225 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
24.4
24.2
100
30
200
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
--56
VDD = 50 Vdc, f = 225 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
--58
--60
--62
IDQ = 1300 mA
--64
1800 mA
--66
2000 mA
2300 mA
--68
2600 mA
100
20
Pout, OUTPUT POWER (WATTS) AVG.
Figure 16. Single--Carrier DVB--T OFDM Power
Gain versus Output Power
Figure 17. Single--Carrier DVB--T OFDM ACPR
versus Output Power
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) AVG.
45
25_C
40
--30_C
ACPR
--60
ηD
30
25_C
25
85_C
20
15
30
--56
--58
85_C
35
5
--62
TC = --30_C
Gps
--64
VDD = 50 Vdc, IDQ = 2600 MHz
f = 225 MHz, 8K Mode OFDM
--66
64 QAM Data Carrier Modulation
5 Symbols
--68
100
400
200
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
Gps, POWER GAIN (dB)
--4
f, FREQUENCY (MHz)
25.4
24.6
--5
PEAK--TO--AVERAGE (dB)
IDQ = 2600 mA
25
8K Mode DVB--T OFDM
64 QAM Data Carrier Modulation, 5 Symbols
--100
25.8
25.6
4 kHz BW
ACPR Measured at 4 MHz Offset
from Center Frequency
--70
--80
0.001
0.0001
4 kHz BW
--60
0.1
(dB)
PROBABILITY (%)
--40
1
Pout, OUTPUT POWER (WATTS) AVG.
Figure 18. Single--Carrier DVB--T OFDM ACPR Power
Gain and Drain Efficiency versus Output Power
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 125 W Avg., and ηD = 28.5%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 19. MTTF versus Junction Temperature -- CW
MRF6VP2600HR6
8
RF Device Data
Freescale Semiconductor
Zsource
f = 225 MHz
Zo = 10 Ω
Zload
f = 225 MHz
VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg.
f
MHz
Zsource
Ω
Zload
Ω
225
1.42 + j8.09
4.45 + j1.16
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 20. Series Equivalent Source and Load Impedance
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
9
COAX1
C18
+
C14
C16
C17
+
+
C15
C1
J1
C3
B1
C5
L1
L3
T1
L4
C2
CUT OUT AREA
C4
R1
C9
C7
C8
C10
L2
C6
C11
C12
COAX3
C13
MRF6VP2600KH Rev. 2
88--108 MHz
COAX2
Figure 21. MRF6VP2600HR6 Test Circuit Component Layout — 88--108 MHz
Table 6. MRF6VP2600HR6 Test Circuit Component Designations and Values — 88--108 MHz
Part
Description
Part Number
Manufacturer
B1
95 Ω, 100 MHz Long Ferrite Bead
2743021447
Fair--Rite
C1
6.8 μF, 50 V Chip Capacitor
C4532X7R1H685K
TDK
C2
30 pF Chip Capacitor
ATC100B300JT500XT
ATC
C3, C13, C14
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C4, C5, C6
1 μF, 100 V Chip Capacitors
GRM31CR72A105KA01L
Murata
C7, C8, C9, C10,
C11, C12
3900 pF Chip Capacitors
ATC700B392JT50X
ATC
C15
4.7 μF, 100 V Chip Capacitor
GRM55ER72A475KA01B
Murata
C16, C17
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
C18
220 μF, 100 V Electrolytic Capacitor
MCGPR100V227M16X26--RH
Multicomp
J1
Jumper with Copper Tape
L1
82 nH Inductor
1812SMS--82NJ
CoilCraft
L2
8 Turn, #14 AWG ID=0.250″ Inductor, Hand Wound
Copper Wire
Freescale
L3, L4
8 nH Inductors
A03TKLC
CoilCraft
R1
15 Ω, 1/4 W Chip Resistor
CRCW120615R0FKEA
Vishay
T1
Balun Transformer
TUI--LF--9
Comm Concepts
Coax1, Coax2
25 Ω, Semi Rigid RF Cable, 3 mm Line, 16 cm Length
UT--141C--25
Micro--Coax
Coax3
25 Ω, Semi Rigid RF Cable, 3 mm Line, 15 cm Length
UT--141C--25
Micro--Coax
PCB
0.030″, εr = 2.55
GX0300--55--22
Arlon
MRF6VP2600HR6
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 88--108 MHz
29
Gps, POWER GAIN (dB)
28
26
88 MHz
Gps
98 MHz
25
80
98 MHz
108 MHz
27
85
108 MHz
VDD = 50 Vdc, IDQ = 150 mA
70
65
60
88 MHz
24
75
55
23
50
ηD
22
45
ηD, DRAIN EFFICIENCY (%)
30
40
21
20
100
200
300
400
35
500 600 700 800
Pout, OUTPUT POWER (WATTS)
Figure 22. Broadband CW Power Gain and Drain
Efficiency versus Output Power — 88--108 MHz
26
Gps, POWER GAIN (dB)
82
VDD = 50 Vdc, IDQ = 150 mA
Pout = 600 W, CW
25.5
81
80
79
Gps
25
78
24.5
77
24
76
23.5
75
ηD
23
74
73
22.5
22
ηD, DRAIN EFFICIENCY (%)
27
26.5
86
90
94
98
102
106
72
110
f, FREQUENCY (MHz)
Figure 23. CW Power Gain and Drain Efficiency
versus Frequency — 88--108 MHz
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
11
f = 88 MHz
f = 108 MHz
Zsource
Zo = 25 Ω
Zload
f = 108 MHz
f = 88 MHz
VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W Avg.
f
MHz
Zsource
Ω
Zload
Ω
88
3.20 + j14.50
10.35 + j2.80
98
4.20 + j15.00
9.50 + j3.00
108
4.00 + j15.00
8.90 + j3.50
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz
MRF6VP2600HR6
12
RF Device Data
Freescale Semiconductor
--
B1
C7
MRF6VP2600H
352.2 MHz
Rev. 1
C5
--
C9
C11
C20
L3
C18
L1
COAX1
COAX3
C1 C3*
COAX2
C4*
L2
C16
COAX4
C19
C6
--
C8
C12
C15
C17
L4
B2 C10
C14
C13
CUT OUT AREA
C2
C24*
C22
--
C21
C23
*Mounted on side
Figure 25. MRF6VP2600HR6 Test Circuit Component Layout — 352.2 MHz
Table 7. MRF6VP2600HR6 Test Circuit Component Designations and Values — 352.2 MHz
Part
Description
Part Number
Manufacturer
B1, B2
47 Ω, 100 MHz Short Ferrite Beads
2743019447
Fair--Rite
C1, C2
100 pF Chip Capacitors
ATC100B101JT500XT
ATC
C3*, C24*
22 pF Chip Capacitors
ATC100B221JT300XT
ATC
C4*
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
C5, C6
2.2 μF Chip Capacitors
C1825C225J5RAC--TU
Kemet
C7, C8
220 nF Chip Capacitors
C1812C224K5RAC--TU
Kemet
C9, C10
0.1 μF Chip Capacitors
CDR33BX104AKWS
AVX
C11, C12
47 μF, 50 V Electrolytic Capacitors
476KXM050M
Illinois Cap
C13
39 pF, 500 V Chip Capacitor
MCM01--009DD390J--F
CDE
C14, C15, C16,
C17
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C18, C19
2.2 μF Chip Capacitors
G2225X7R225KT3AB
ATC
C20, C21, C22,
C23
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
Coax1, 2, 3, 4
25 Ω, Semi Rigid Coax, 2.2″
UT141--25
Precision Tube Company
L1, L2
2.5 nH, 1 Turn Inductors
A01TKLC
Coilcraft
L3, L4
10 Turn, #16 AWG ID=0.160″ Inductors, Hand Wound
Copper Wire
Freescale
*Mounted on side
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
13
TYPICAL CHARACTERISTICS — 352.2 MHz
VDD = 50 Vdc
IDQ = 150 mA
f = 352.2 MHz
Gps, POWER GAIN (dB)
22
21
80
Gps
70
60
20
50
ηD
19
40
18
30
17
20
16
10
15
10
100
ηD, DRAIN EFFICIENCY (%)
23
0
1000
Pout, OUTPUT POWER (WATTS) CW
Figure 26. CW Power Gain and Drain Efficiency
versus Output Power
MRF6VP2600HR6
14
RF Device Data
Freescale Semiconductor
Zo = 10 Ω
f = 352.2 MHz
Zsource
f = 352.2 MHz
Zload
VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW
f
MHz
Zsource
Ω
Zload
Ω
352.2
1.10 + j3.80
2.26 + j3.57
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
15
PACKAGE DIMENSIONS
MRF6VP2600HR6
16
RF Device Data
Freescale Semiconductor
MRF6VP2600HR6
RF Device Data
Freescale Semiconductor
17
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Mar. 2008
• Initial Release of Data Sheet
1
July 2008
• Removed Capable of Handling 5:1 VSWR bullet, p. 1
• Corrected Zsource and Zload values from 1.58 + j6.47 to 1.42 + j8.09 and 4.60 + j1.85 to 4.45 + j1.16 and replotted data in Fig. 21, Series Equivalent Source and Load Impedance, p. 9
2
Sept. 2008
• Added Note to Fig. 4, Capacitance versus Drain--Source Voltage and Fig. 5, DC Safe Operating Area to denote that each side of device is measured separately, p. 5
• Updated Fig. 5, DC Safe Operating Area, to show one side of the device, p. 5
• Figs. 21 and 27, Series Equivalent Source and Load Impedance, corrected Zsource copy to read “Test circuit
impedance as measured from gate to gate, balanced configuration” and Zload copy to read “Test circuit
impedance as measured from gate to gate, balanced configuration”, p. 9, 14
2.1
Nov. 2008
• Corrected Figs. 21 and 27 Revision History Zload copy to read ”Test circuit impedance as measured from
drain to drain, balanced configuration”, p. 9, 14
4
May 2009
• Updated bullets in Features section to reflect consistent listing across products, p. 1
• Added thermal data for 352.2 MHz application to Table 2, Thermal Characteristics, p. 1
• Added Typical Performances table for 352.2 MHz application, p. 2
• Added Fig. 28, Test Circuit Component Layout -- 352.2 MHz and Table 7, Test Circuit Component Designations
and Values -- 352.2 MHz, p. 15
• Added Fig. 29, CW Power Gain and Drain Efficiency versus Output Power -- 352.2 MHz p. 16
• Added Fig. 30, Series Equivalent Source and Load Impedance -- 352.2 MHz, p. 17
4.1
June 2009
• Changed “EKME630ELL471MK25S” part number to “MCGPR63V477M13X26--RH”, Table 5, Test Circuit
Component Designations and Values and Table 6, Test Circuit Component Designations and Values —
88--108 MHz, p. 3, 11
• Added Electromigration MTTF Calculator and RF High Power Model availability to Product Documentation,
Tools and Software, p. 20
5
May 2010
• Changed 10--500 MHz to 2--500 MHz in Device Description box, p. 1
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1
• Added thermal data for 88--108 MHz application to Thermal Characteristics table, p. 1
• Added Typical Performance table for 88--108 MHz application, p. 2
• Removed Fig. 20, MTTF versus Junction Temperature -- Pulsed and renumbered accordingly, p. 8
• Replaced Fig. 22 Test Circuit Component Layout, Table 6. Test Circuit Component Designations and Values,
the Typical Characteristic curves and Fig. 27 Series Impedance for 88--108 MHz with improved circuit
performance figures. The 88--108 MHz application circuit is also now a more compact size., p. 10--12
5.1
July 2010
• Fig. 24, Series Impedance for 88--108 MHz, table and plot updated to reflect correct location of Zsource and
Zload, p. 12
MRF6VP2600HR6
18
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008--2010. All rights reserved.
MRF6VP2600HR6
Document
Number:
RF
Device
Data MRF6VP2600H
Rev. 5.1, 7/2010
Freescale
Semiconductor
19
Similar pages