19-3577; Rev 1; 8/05 10/100/1000 Base-T Ethernet LAN Switch The MAX4890/MAX4891/MAX4892 high-speed analog switches meet the needs of 10/100/1000 Base-T applications. These devices switch the signals from two interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY, simplifying docking station design and reducing manufacturing costs. The MAX4890/MAX4891/MAX4892 can also route signals from a common interface transformer to two different boards in board-redundancy applications. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 are available in space-saving 32- and 36-lead TQFN packages, significantly reducing the required PC board area. These devices operate over the -40°C to +85°C temperature range. Features ♦ ♦ ♦ ♦ ♦ Single +3.0V to +3.6V Power-Supply Voltage Low On-Resistance (RON): 4Ω (typ), 6.5Ω (max) Ultra-Low On-Capacitance (CON): 6.5pF (typ) Low < 200ps Bit-to-Bit Skew -3dB Bandwidth: 1GHz ♦ Optimized Pin-Out for Easy Transformer and PHY Interface ♦ Built-In LED Switches for Switching Indicators to Docking Station ♦ Low 450µA (max) Quiescent Current ♦ Bidirectional 8 to 16 Multiplexer/Demultiplexer ♦ Space-Saving Packages 32-Pin, 5mm x 5mm, TQFN Package 36-Pin, 6mm x 6mm, TQFN Package Ordering Information Applications Notebooks and Docking Stations Servers and Routers with Ethernet Interfaces PINPACKAGE PART LED SWITCHES PKG CODE MAX4890ETJ 32 TQFN — T-3255-4 Board-Level Redundancy Protection MAX4891ETJ 32 TQFN 1 T-3255-4 SONET/SDH Signal Routing MAX4892ETX 36 TQFN 3 T-3666-3 T3/E3 Redundancy Protection All devices are available in the -40°C to +85°C operation temperature range. Video Switching 1B2 28 1B1 29 0B2 SEL 30 0B1 A0 31 27 26 25 A2 1 24 2B1 A3 2 23 3B1 N.C. 3 22 2B2 N.C. 4 21 3B2 20 4B1 19 5B1 N.C. 5 N.C. 6 MAX4890* 9 10 11 12 13 14 15 16 6B2 7B1 6B1 5B2 7B2 4B2 17 N.C. 18 8 A7 7 A5 GND A4 A6 Typical Operating Circuit appears at end of data sheet. 32 V+ TOP VIEW A1 Pin Configurations TQFN Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX4890/MAX4891/MAX4892 General Description MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch ABSOLUTE MAXIMUM RATINGS V+ ……………………………………………………… -0.3V to +4V SEL (Note 1) ………………………………….. -0.3V to (V+ +0.3V) A_, _B_, LED_, _LED_ .……………………… -0.3V to (V+ +0.3V) Continuous Current (A_ to _B_) ......................................±120mA Continuous Current (LED_ to _LED_) .…………………… ±30mA Peak Current (A_ to _B_) (pulsed at 1ms, 10% duty cycle) ……………………. ±240mA Continuous Power Dissipation (TA = +70°C) 32-Pin TQFN (derate 34.5mW/°C above +70°C) …….. 2.76W 36-Pin TQFN (derate 26.3mW/°C above +70°C) …….. 2.11W Operating Temperature Range …………………. -40°C to +85°C Junction Temperature.……………………………………. +150°C Storage Temperature Range .…………………. -65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Signals on SEL, exceeding V+ or GND, are clamped by internal diodes. Limit forward-diode current to maximum current rating. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX 4 5.5 UNITS ANALOG SWITCH On-Resistance On-Resistance LED Switches On-Resistance Match Between Channels On-Resistance Flatness Off-Leakage Current RON RONLED ∆RON RFLAT(ON) V+ = 3V, IA_ = -40mA, 1.5V ≤ VA_ ≤ V+ TA = +25°C Ω TMIN to TMAX 6.5 V+ = 3V, I_LED_ = -40mA, 1.5V ≤ VA_ ≤ V+, MAX4891/MAX4892 V+ = 3V, IA_= -40mA, 1.5V ≤ VA_ ≤ V+ (Note 3) 40 TA = +25°C 0.5 Ω 1.5 Ω TMIN to TMAX 2 V+ = 3V, IA_ = -40mA, VA_ = 1.5V, 2.7V ILA_(OFF) V+ = 3.6V, VA_ = 0.3V, 3.3V V_B1 or V_B2 = 3.3V, 0.3V ILA_(ON) V+ = 3.6V, VA_= 0.3V, 3.3V V_B1 or V_B2 = 0.3V, 3.3V or floating Ω 0.01 -1 +1 µA On-Leakage Current -1 +1 ESD PROTECTION ESD Protection Human Body Model ±2 kV Insertion loss with typical transformer, RL = 100Ω, 1MHz < f < 100MHz, Figure 1 (Note 3) 0.6 dB SWITCH AC PERFORMANCE Insertion Loss ILOS RLOS1 Return Loss RLOS2 2 Return loss with typical transformer, RL = 100Ω, return loss, f in MHz, Figure 2 (Note 3) 1MHz < f < 40MHz 40MHz < f < 100MHz -19 -13 +20log (f/80) _______________________________________________________________________________________ dB 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 ELECTRICAL CHARACTERISTICS (continued) (V+ = +3V to +3.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at V+ = 3.3V, TA = +25°C.) (Note 2) PARAMETER SYMBOL VCT1 Crosstalk VCT2 VCT3 VDCT1 Differential Crosstalk VDCT2 CONDITIONS Any switch to any switch RL = 100Ω, Figure 3 RL = 100Ω, Figure 4 VDCT3 MIN TYP 1MHz < f < 30MHz -45 30MHz < f < 60MHz -40 60MHz < f < 100MHz -35 1MHz < f < 30MHz -60 30MHz < f < 60MHz -55 60MHz < f < 100MHz -50 MAX UNITS dB dB SWITCH DYNAMICS On-Channel -3dB Bandwidth 1000 MHz Off-Capacitance COFF BW RL = 100Ω, Differential pair f = 1MHz, _B_ inputs 3.5 pF On-Capacitance CON f = 1MHz, _B_ inputs 6.5 pF pF Off-Capacitance, LED Switches COFFLED f = 1MHz, _LED inputs 20 On-Capacitance, LED Switches CONLED f = 1MHz, _LED inputs 22 tON VA_ = 1V, Figure 5 25 50 ns tOFF VA_ = 1V, Figure 5 20 40 ns Turn-On Time Turn-Off Time Propagation Delay tPLH, tPHL pF CL = 10pF, Figure 6 0.15 ns Output Skew Between Ports tSK(o) Skew between A4 and A5 and any other port, Figure 7 0.01 ns Output Skew Same Port tSK(p) Skew between opposite transitions in same port 0.07 ns SWITCH LOGIC Input-Voltage Low VIL Input-Voltage High VIH Input-Logic Hysteresis VHYST Input Leakage Current ISEL Operating Supply-Voltage Range V+ Quiescent Supply Current I+ 0.8 2.0 100 V+ = 3.6V, VSEL = 0 or V+ V+ = 3.6V, VSEL = 0 or V+ V mV -5 +5 uA 3 3.6 V 450 µA 280 Note 2: Specifications at -40°C are guaranteed by design. Note 3: Guaranteed by design. _______________________________________________________________________________________ 3 Typical Operating Characteristics (V+ = 3.3V, TA = +25°C, unless otherwise noted.) 20 MAX4890 toc02 MAX4890 toc01 3.8 LED_ ON-RESISTANCE vs. VA_ ON-RESISTANCE vs. VA_ 5 4 MAX4890 toc03 ON-RESISTANCE vs. VA_ 4.0 V+ = 3.0V 18 16 14 3 RONLED (Ω) 3.6 RON (Ω) RON (Ω) V+ = 3.0V, 3.3V, 3.6V TA = +85°C TA = +25°C 3.4 2 3.2 1 TA = -40°C 12 10 V+ = 3.3V V+ = 3.6V 8 6 4 2 0 1.8 2.7 3.6 0 0 1.1 2.2 VA_ (V) LED_ ON-RESISTANCE vs. TEMPERATURE 12 TA = +25°C TA = -40°C 6 1400 1200 1000 800 ILA_(ON) 600 400 2 200 2.2 1.1 ILA_(OFF) -15 10 35 60 TEMPERATURE (°C) QUIESCENT SUPPLY CURRENT vs. TEMPERATURE QUIESCENT SUPPLY CURRENT vs. LOGIC LEVEL 270 250 230 210 190 0 1000 2.2 3.3 LOGIC THRESHOLD vs. SUPPLY VOLTAGE 800 600 400 1.8 VTH+ 1.6 1.4 1.2 VTH- 1.0 0.8 0.6 0.4 200 0.2 170 0 150 -40 -15 10 35 TEMPERATURE (°C) 4 1.1 VA_ (V) LOGIC THRESHOLD (V) 290 100 85 MAX4890 toc08 310 1200 QUIESCENT SUPPLY CURRENT (µA) MAX4890 toc07 330 15 5 VA_ (V) 350 20 0 -40 3.3 3.6 25 0 0 2.7 30 MAX4890 toc05 1600 4 0 1.8 CHARGE INJECTION vs. VA_ LEAKAGE CURRENT vs. TEMPERATURE LEAKAGE CURRENT (pA) RONLED (Ω) 14 8 0.9 VA_ (V) 1800 MAX4890 toc04 TA = +85°C 16 10 0 VA_ (V) 20 18 3.3 MAX4890 toc06 0.9 CHARGE INJECTION (pC) 0 MAX4890 toc09 3.0 QUIESCENT SUPPLY CURRENT (µA) MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch 60 85 0 0 1.1 2.2 LOGIC LEVEL (V) 3.3 3.0 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) _______________________________________________________________________________________ 3.5 3.6 10/100/1000 Base-T Ethernet LAN Switch RISE-/FALL-TIME PROPAGATION DELAY vs. SUPPLY VOLTAGE TURN-ON/-OFF TIME vs. TEMPERATURE 25 tON/tOFF (ns) 15 tOFF 10 20 15 tOFF 10 5 5 0 150 100 3.4 3.6 -15 10 35 60 3.0 85 PULSE SKEW vs. SUPPLY VOLTAGE 100 MAX4890 toc13 tPLH tSK(p) 80 PULSE SKEW (ps) 200 150 100 PULSE SKEW vs. TEMPERATURE tSK(p) 80 60 40 20 tPHL 10 35 60 85 40 0 3.0 3.3 3.6 -40 -15 10 35 60 TEMPERATURE (°C) SUPPLY VOLTAGE (V) TEMPERATURE (°C) OUTPUT SKEW vs. SUPPLY VOLTAGE OUTPUT SKEW vs. TEMPERATURE DIFFERENTIAL INSERTION LOSS vs. FREQUENCY 10 tSK(o)_FALL 10 OUTPUT SKEW (ps) tSK(o)_FALL 0 tSK(o)_RISE -10 0 tSK(o)_RISE -10 3.3 SUPPLY VOLTAGE (V) 3.6 1 0 -1 -2 -3 -4 -5 -20 -20 85 MAX4890 toc18 MAX4890 toc17 20 MAX4890 toc16 20 3.0 60 20 0 50 3.6 100 PULSE SKEW (ps) 250 -15 3.3 SUPPLY VOLTAGE (V) TEMPERATURE (°C) RISE-/FALL-TIME PROPAGATION DELAY vs. TEMPERATURE -40 tPHL 50 -40 MAX4890 toc14 3.2 SUPPLY VOLTAGE (V) OUTPUT RISE-/FALL-TIME DELAY (ps) 200 0 3.0 OUTPUT SKEW (ps) tPLH DIFFERENTIAL INSERTION LOSS (dB) tON/tOFF (ns) tON 250 MAX4890 toc12 tON MAX4890 toc15 20 MAX4890 toc11 30 MAX4890 toc10 25 OUTPUT RISE/FALL-TIME DELAY (ps) TURN-ON/-OFF TIME vs. SUPPLY VOLTAGE -40 -15 10 35 TEMPERATURE (°C) 60 85 1 10 100 FREQUENCY (MHz) _______________________________________________________________________________________ 5 MAX4890/MAX4891/MAX4892 Typical Operating Characteristics (continued) (V+ = 3.3V, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (V+ = 3.3V, TA = +25°C, unless otherwise noted.) -20 -30 -40 1 MAX4890 toc20 -10 -20 -30 -40 -50 -60 -70 -80 -20 -30 -40 -50 -60 -70 -80 -90 -100 -100 1 1 100 10 FREQUENCY (MHz) 10 FREQUENCY (MHz) FREQUENCY (MHz) SINGLE-ENDED CROSSTALK vs. FREQUENCY SINGLE-ENDED INSERTION LOSS vs. FREQUENCY -30 -40 -50 -60 -70 -80 MAX4890 toc23 -20 0 SINGLE-ENDED INSERTION LOSS (dB) MAX4890 toc22 0 -10 SINGLE-ENDED CROSSTALK (dB) -10 -90 100 10 0 SINGLE-ENDED OFF-ISOLATION (dB) -10 0 DIFFERENTIAL CROSSTALK (dB) MAX4890 toc19 0 SINGLE-ENDED OFF-ISOLATION vs. FREQUENCY DIFFERENTIAL CROSSTALK vs. FREQUENCY MAX4890 toc21 DIFFERENTIAL RETURN LOSS vs. FREQUENCY DIFFERENTIAL RETURN LOSS (dB) MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch -1 -2 -3 -4 -90 -100 -5 1 10 FREQUENCY (MHz) 6 100 1 10 100 1000 FREQUENCY (MHz) _______________________________________________________________________________________ 100 10/100/1000 Base-T Ethernet LAN Switch PIN MAX4890 MAX4891 31, 32, 1, 2, 31, 32, 1, 2, 7–10 7–10 MAX4892 36, 1, 2, 3, 7–10 NAME A0–A7 FUNCTION Differential PHY Interface Pair. Connects to the Ethernet PHY. — 3 4 LED0 LED0 Input — 4 5 0LED1 0LED1 Output. Connects LED0 to 0LED1 when SEL = 0. 0LED2 Output. Connects LED0 to 0LED2 when SEL = 1. — 5 6 0LED2 3–6, 12 6, 12 — N.C. No Connection. Not internally connected. 11 11 11 GND Ground — — 12 LED1 LED1 Input — — 13 1LED1 1LED1 Output. Connects LED1 to 1LED1 when SEL = 0. — — 14 1LED2 1LED2 Output. Connects LED1 to 1LED2 when SEL = 1. 13, 14, 17, 18, 21, 22, 25, 26 13, 14, 17, 18, 21, 22, 25, 26 15, 16, 19, 20, 23, 24, 28, 29 7B2–0B2 B2 Differential Transformer Pair 15, 16, 19, 20, 23, 24, 27, 28 15, 16, 19, 20, 23, 24, 27, 28 17, 18, 21, 22, 25, 26, 30, 31 7B1–0B1 B1 Differential Transformer Pair 29 29 27 SEL — — 32 2LED2 2LED2 Output. Connects LED2 to 2LED2 when SEL = 1. — — 33 2LED1 2LED1 Output. Connects LED2 to 2LED1 when SEL = 0. Select Input. Selects switch connection. See the Truth Table (Table 1). — — 34 LED2 30 30 35 V+ Positive Supply-Voltage Input LED2 Input EP EP EP EP Exposed Paddle. Not internally connected. Leave unconnected or connect to ground. _______________________________________________________________________________________ 7 MAX4890/MAX4891/MAX4892 Pin Description MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch Test Circuits MAX4892 36 TQFN INSERTION LOSS 1 NETWORK ANALYZER MINI CKT BALUN 50Ω TRACE 6 50Ω 0B1 TRACE A0 36 31 5 50Ω TRACE 3 50Ω TRACE 4 50:100 50Ω 3B1 TRACE 30 A1 1 5 PULSE H5007 24-PIN PACKAGE 20 4 21 6 19 CB1 50Ω TRACE 3 5 50Ω TRACE 50Ω 1 TRACE 6 100:50 R1 75Ω C2 0.01µF 4 MINI CKT BALUN NETWORK ANALYZER CB3 C3 1000pF Figure 1. Differential Insertion Loss RETURN LOSS MAX4892 36 TQFN R16 49.9Ω R17 49.9Ω 50Ω TRACE A2 2 A3 3 5 3B1 25 50Ω TRACE PULSE H5007 24-PIN PACKAGE 20 4 21 6 19 C2 0.01µF 50Ω TRACE 4 MINI CKT BALUN 3 5 50Ω TRACE R1 75Ω 50Ω 1 TRACE 6 100:50 CB3 C3 1000pF Figure 2. Differential Return Loss 8 _______________________________________________________________________________________ NETWORK ANALYZER 10/100/1000 Base-T Ethernet LAN Switch MAX4892 SINGLE-ENDED BANDWIDTH NETWORK ANALYZER 50Ω TRACE SINGLE-ENDED CROSSTALK NETWORK ANALYZER 50Ω TRACE NETWORK ANALYZER 50Ω TRACE A2 2 50Ω TRACE NETWORK ANALYZER 2B1 26 R13 49.9Ω A3 3 3B1 25 R14 49.9Ω SINGLE-ENDED OFF-ISOLATION NETWORK ANALYZER 36 TQFN 0B1 31 A0 36 50Ω TRACE A4 7 4B1 22 50Ω TRACE NETWORK ANALYZER R15 49.9Ω Figure 3. Single-Ended Bandwidth, Crosstalk and Off-Isolation Detailed Description The MAX4890/MAX4891/MAX4892 are high-speed analog switches targeted for 10/100/1000 Base-T applications. In a typical application, the MAX4890/MAX4891/ MAX4892 switch the signals from two separate interface transformers and connect the signals to a single 10/100/1000 Base-T Ethernet PHY (see the Typical Operating Circuit). This configuration simplifies docking station design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4891 and MAX4892 also include LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the Functional Diagrams. The MAX4890/MAX4891/MAX4892 switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4891/MAX4892 feature one and three built-in LED switches, respectively. The MAX4890/MAX4891/MAX4892 incorporate a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal output of 7.5V provides the high voltage needed to drive the gates of the n-channel switches, while maintaining a consistently low R ON throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4890/ MAX4891/MAX4892 include internal flyback capacitors, reducing design time, board space, and cost. Digital Control Inputs The MAX4890/MAX4891/MAX4892 provide a single digital control SEL. SEL controls the switches as well as the LED switches as shown in Table 1. Table 1. Truth Table SEL CONNECTION 0 A_ to _B1, LED_ to _LED1 1 A_ to _B2, LED_ to _LED2 _______________________________________________________________________________________ 9 MAX4890/MAX4891/MAX4892 Test Circuits (continued) MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch DIFFERENTIAL CROSSTALK TRANSMIT CKT 1 MINI CKT BALUN MAX4892 36-TQFN AB1 22 A4 6 7 NETWORK ANALYZER 5B1 21 50Ω TRACE 3 R3 49.9Ω A5 4 8 50:100 R4 49.9Ω CB4 DIFFERENTIAL CROSSTALK RECEIVE CKT NETWORK ANALYZER 50Ω TRACE 1 MINI CKT BALUN 6 50Ω TRACE 9 5 50Ω TRACE A7 10 4 3 6B1 18 A6 50:100 7B1 17 R3 49.9Ω R4 49.9Ω CB5 Figure 4. Differential Crosstalk Analog Signal Levels Line-Card Redundancy (Ethernet T3/E3) The on-resistance of the MAX4890/MAX4891/MAX4892 is very low and stable as the analog input signals are swept from ground to V+ (see the Typical Operating Characteristics). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs. Figure 10 shows the MAX4890/MAX4891/MAX4892 in a line-card redundancy configuration. ESD Protection The MAX4890/MAX4891/MAX4892 are characterized using the Human Body Model for ±2kV of ESD protection. Figure 8 shows the Human Body Model, and Figure 9 shows the current waveform the Human Body Model generates when discharged into a low-impedance load. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5kΩ resistor. Applications Information Typical Operating Circuit The Typical Operating Circuit depicts the MAX4890/ MAX4891/MAX4892 in a 10/100/1000 Base-T docking station application. 10 Power-Supply Sequencing and Overvoltage Protection Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. Layout High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled-impedance printed circuit board traces as short as possible. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible. ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch 2.5V 1.25V MAX4890/MAX4891/MAX4892 SEL 3.0V 2.0V 1.25V 0V A_ 1.0V tON A_ tPHL tPLH 90% tOFF VOH 90% 0V 2.0V tON _B_ VOL A_ 90% PULSE SKEW = tSK(p) = |tPHL - tPLH| tOFF THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL. 10% 0V Figure 5. ENABLE and DISABLE Times Figure 6. Propagation Delay Times 3.0V 2.0V A_ 1.0V RC 1MΩ tPHLX tPLHX CHARGE-CURRENT LIMIT RESISTOR VOH 2.0V _B_ HIGHVOLTAGE DC SOURCE VOL Cs 100pF RD 1500Ω DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST tPHLY tPLHY VOH 2.0V _B_ VOL PULSE SKEW = tSK(p) = |tPHLY - tPLHX| OR |tPHLy - tPHLx| THE MAX4890/MAX4891/MAX4892 SWITCHES ARE FULLY BIDIRECTIONAL. Figure 7. Output Skew Figure 8. Human Body ESD Test Model ______________________________________________________________________________________ 11 MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch IP 100% 90% Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) ETHERNET PHYs OR T3/E3 LIUs PRIMARY CARD MAX4890 MAX4891 MAX4892 AMPERES PROTECTION SWITCH 36.8% 10% 0 0 tRL TIME tDL CURRENT WAVEFORM ETHERNET PHYs OR T3/E3 LIUs TRANSFORMER SWITCHING CARD PROTECTION CARD Figure 9. Human Body Model Current Waveform 12 Figure 10. Typical Application for Line-Card Redundancy ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch DOCKING STATION TRANSFORMER RJ-45 LED CONNECTOR NOTEBOOK 0B2 1B2 2B2 3B2 TRD1_P TRD1_N A2 A3 TRD2_P TRD2_N A4 A5 TRD3_P TRD3_N A6 A7 ETHERNET PHY/MAC LED_OUT 4B2 5B2 _LED2 0B1 1B1 2B1 3B1 4B1 5B1 RJ-45 6B1 7B1 LED_ SEL SEL_DOCK 6B2 7B2 TRANSFORMER A0 A1 MAX4890/MAX4891/MAX4892 TRD0_P TRD0_N _LED1 LED ______________________________________________________________________________________ 13 MAX4890/MAX4891/MAX4892 Typical Operating Circuit 10/100/1000 Base-T Ethernet LAN Switch MAX4890/MAX4891/MAX4892 Functional Diagrams A0 A1 0B1 1B1 A0 0B1 1B1 A1 0B2 0B2 1B2 1B2 A2 2B1 A2 2B1 A3 3B2 A3 3B2 2B1 2B1 3B2 3B2 A4 4B1 A4 4B1 A5 5B1 A5 5B1 4B2 4B2 5B2 5B2 A6 6B1 A6 6B1 A7 7B1 A7 7B1 6B2 6B2 7B2 7B2 LED0 0LED1 0LED2 SEL MAX4890 SEL MAX4891 14 ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch A0 0B1 1B1 A1 0B2 1B2 A2 2B1 A3 3B2 2B1 3B2 A4 4B1 A5 5B1 4B2 5B2 A6 6B1 A7 7B1 6B2 7B2 LED0 0LED1 0LED2 LED1 1LED1 1LED2 LED2 2LED1 2LED2 SEL MAX4892 ______________________________________________________________________________________ 15 MAX4890/MAX4891/MAX4892 Functional Diagrams (continued) 10/100/1000 Base-T Ethernet LAN Switch 0LED1 4 21 3B2 0LED2 MAX4891 5 20 4B1 N.C. 6 19 5B1 A4 7 18 4B2 17 13 14 15 16 7B1 6B1 GND 12 6B2 11 7B2 10 N.C. 9 A7 8 A6 A5 5B2 TQFN 2LED1 2LED2 0B1 1B1 0B2 1B2 33 32 31 30 29 28 V+ LED2 2B1 A3 3 25 3B1 LED0 4 24 2B2 0LED1 5 23 3B2 0LED2 6 22 4B1 A4 7 21 5B1 A5 8 20 4B2 A6 9 19 5B2 MAX4892 18 2B2 SEL 26 6B1 22 27 2 16 3 1 A2 17 LED0 A1 7B1 3B1 6B2 23 15 2 7B2 A3 14 2B1 13 24 1LED2 1 1LED1 A2 34 25 12 1B2 26 LED1 0B2 27 A0 1B1 28 35 0B1 29 36 SEL 30 11 V+ 31 10 A0 32 A7 A1 TOP VIEW GND MAX4890/MAX4891/MAX4892 Pin Configurations (continued) TQFN Chip Information TRANSISTOR COUNT: 948 PROCESS: BiCMOS 16 ______________________________________________________________________________________ 10/100/1000 Base-T Ethernet LAN Switch QFN THIN.EPS D2 D MARKING b C L 0.10 M C A B D2/2 D/2 k L XXXXX E/2 E2/2 C L (NE-1) X e E DETAIL A PIN # 1 I.D. E2 PIN # 1 I.D. 0.35x45° e/2 e (ND-1) X e DETAIL B e L1 L C L C L L L e e 0.10 C A C 0.08 C A1 A3 PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm 21-0140 -DRAWING NOT TO SCALE- COMMON DIMENSIONS A1 A3 b D E e k L L1 N ND NE JEDEC 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0 0.02 0.05 0 0.02 0.05 0.20 REF. 0.20 REF. 0.25 0.30 0.35 0.25 0.30 0.35 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 0.80 BSC. 0.65 BSC. 0.25 - 0.25 - 0 0.02 0.05 0 0.02 0.05 0 0.02 0.05 0.20 REF. 0.20 REF. 0.20 REF. 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 0.40 BSC. 0.50 BSC. 0.50 BSC. - 0.25 - 0.25 0.35 0.45 0.25 - 0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60 - 0.30 0.40 0.50 16 4 4 20 5 5 WHHB WHHC 1 2 EXPOSED PAD VARIATIONS PKG. 16L 5x5 20L 5x5 28L 5x5 32L 5x5 40L 5x5 SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. A H 28 7 7 WHHD-1 32 8 8 40 10 10 WHHD-2 ----- NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. D2 L E2 PKG. CODES MIN. NOM. MAX. T1655-1 T1655-2 T1655N-1 3.00 3.00 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.10 3.10 3.20 3.20 3.20 T2055-2 T2055-3 T2055-4 3.00 3.00 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.20 3.00 3.10 3.10 3.10 3.20 3.20 3.20 T2055-5 T2855-1 T2855-2 T2855-3 T2855-4 T2855-5 T2855-6 T2855-7 T2855-8 T2855N-1 T3255-2 T3255-3 T3255-4 T3255N-1 3.15 3.15 2.60 3.15 2.60 2.60 3.15 2.60 3.15 3.15 3.00 3.00 3.00 3.00 3.25 3.25 2.70 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.15 3.15 2.60 3.15 2.60 2.60 3.15 2.60 3.15 3.15 3.00 3.00 3.00 3.00 3.25 3.25 2.70 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.35 3.35 2.80 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20 T4055-1 3.20 3.30 3.40 3.20 3.30 3.40 3.35 3.35 2.80 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20 MIN. NOM. MAX. ±0.15 ** ** ** ** ** ** 0.40 DOWN BONDS ALLOWED NO YES NO NO YES NO YES ** NO NO YES YES NO ** ** 0.40 ** ** ** ** ** NO YES YES NO NO YES NO NO ** YES ** ** ** ** ** SEE COMMON DIMENSIONS TABLE 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3, AND T2855-6. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. 13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05. -DRAWING NOT TO SCALE- PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm 21-0140 H 2 2 ______________________________________________________________________________________ 17 MAX4890/MAX4891/MAX4892 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) QFN THIN 6x6x0.8.EPS MAX4890/MAX4891/MAX4892 10/100/1000 Base-T Ethernet LAN Switch D2 D CL D/2 b D2/2 k E/2 E2/2 (NE-1) X e E CL E2 k e L (ND-1) X e e L CL CL L1 L L e A1 A2 e A PACKAGE OUTLINE 36, 40, 48L THIN QFN, 6x6x0.8mm 21-0141 E 1 2 NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. PACKAGE OUTLINE 36, 40, 48L THIN QFN, 6x6x0.8mm 21-0141 E 2 2 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.