ETC HCPL-2731

LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
DUAL-CHANNEL
HCPL-2730
HCPL-2731
DESCRIPTION
The 6N138/9 and HCPL-2730/HCPL-2731 optocouplers consist of an AlGaAs LED
optically coupled to a high gain split darlington photodetector.
8
The split darlington configuration separating the input photodiode and the first
stage gain from the output transistor permits lower output saturation voltage and
higher speed operation than possible with conventional darlington phototransistor
optocoupler. In the dual channel devices, HCPL-2730/HCPL2731, an integrated
emitter - base resistor provides superior stability over temperature.
1
The combination of a very low input current of 0.5 mA and a high current transfer
ratio of 2000% makes this family particularly useful for input interface to MOS,
CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as
well as high fan-out TTL requirements.
8
8
1
1
An internal noise shield provides exceptional common mode rejection of 10 kV/µs.
An improved package allows superior insulation permitting a 480 V working voltage
compared to industry standard 220 V.
FEATURES
•
•
•
•
•
•
•
Low current - 0.5 mA
Superior CTR-2000%
Superior CMR-10 kV/µs
Double working voltage-480V RMS
CTR guaranteed 0-70°C
U.L. recognized (File # E90700)
Dual Channel - HCPL-2730
HCPL-2731
APPLICATIONS
•
•
•
•
•
•
Digital logic ground isolation
Telephone ring detector
EIA-RS-232C line receiver
High common mode noise line receiver
µP bus isolation
Current loop receiver
ABSOLUTE MAXIMUM RATINGS
_
_
6 VO
3
6 V02
3
VF2
5 GND
N/C 4
5 GND
+ 4
HCPL-2730 / HCPL-2731
Symbol
TSTG
TOPR
TSOL
Value
-55 to +125
-40 to +85
260 for 10 sec
Units
°C
°C
°C
Each Channel
IF (avg)
20
mA
Each Channel
IF (pk)
40
mA
IF (trans)
1.0
A
VR
PD
5
35
V
mW
IO (avg)
VEB
60
0.5
-0.5 to 7
-0.5 to 18
100
mA
V
Peak Transient Input Current - (!"1 µs P.W., 300 pps)
Output power dissipation
7 V01
VF
(No derating required up to 85°C)
Peak Forward Input Current (50% duty cycle, 1 ms P.W.)
Supply Voltage, Output Voltage
F1
_ 2
7 VB
+ 2
8 VCC
+ 1
V
6N138 / 6N139
Parameter
Storage Temperature
Operating Temperature
Lead Solder Temperature
EMITTER
DC/Average Forward Input Current
Reverse Input Voltage
Input Power Dissipation
DETECTOR
Average Output Current
Emitter-Base Reverse Voltage
8 VCC
N/C 1
Each Channel
Each Channel
Each Channel
(6N138 and 6N139)
(6N138, HCPL-2730)
(6N139, HCPL-2731)
Each Channel
VCC, VO
PD
12/27/99
V
mW
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
ELECTRICAL CHARACTERISTICS
DUAL-CHANNEL
HCPL-2730
HCPL-2731
(TA = 0 to 70°C unless otherwise specified.)
INDIVIDUAL COMPONENT CHARACTERISTICS
Parameter
Test Conditions
EMITTER
TA =25°C)
Input Forward Voltage
Each Channel (IF = 1.6 mA)
Input Reverse Breakdown Voltage
(TA = 25°C, IR = 10 µA)
Each Channel
Temperature coefficient of forward voltage
DETECTOR
Logic high output current
(IF = 1.6 mA)
Symbol
Device
VF
All
BVR
All
(#VF/#TA)
All
(IF = 0 mA, VO = VCC = 18 V)
Each Channel
6N139
IOH
(IF = 0 mA, VO = VCC = 7 V)
Logic low supply
HCPL-2730
(IF = 1.6 mA, VO = Open)
6N138
(VCC = 18 V)
6N139
(IF1 = IF2 = 1.6 mA, VCC = 18 V)
ICCL
(VO1 = VO2 = Open, VCC = 7 V)
Logic high supply
HCPL-2731
HCPL-2730
(IF = 0 mA, VO = Open)
6N138
(VCC = 18 V)
6N139
(IF1 = IF2 = 0 mA, VCC = 18 V)
(VO1 = VO2 = Open, VCC = 7 V)
ICCH
Typ**
1.30
Max
1.7
1.75
5.0
Unit
V
20
V
-1.8
mV/°C
0.01
100
0.01
250
0.4
1.5
µA
HCPL-2731
6N138
Each Channel
Min
HCPL-2731
HCPL-2730
mA
1.3
3
0.05
10
µA
0.1
20
** All typicals at TA = 25°C
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
TRANSFER CHARACTERISTICS
(TA = 0 to 70°C Unless otherwise specified)
Parameter
Test Conditions
COUPLED
Symbol
(IF = 0.5 mA, VO = 0.4 V, VCC = 4.5 V)
6N139
Each Channel
Current transfer ratio
(IF = 1.6 mA, VO = 0.4 V, VCC = 4.5 V)
(Notes 1,2)
Each Channel
HCPL-2731
CTR
(IF = 1.6 mA, VO = 0.4 V, VCC = 4.5 V)
HCPL-2730
(IF = 0.5 mA, IO = 2 mA, VCC = 4.5 V)
6N139
(IF = 1.6 mA, IO = 8 mA, VCC = 4.5 V)
6N139
Each Channel
HCPL-2731
Logic low output voltage (IF = 5 mA, IO = 15 mA, VCC = 4.5 V)
Each Channel
(Note 2)
6N139
HCPL-2731
6N138
Each Channel
output voltage
Device
(IF = 12 mA, IO = 24 mA, VCC = 4.5 V)
Each Channel
(IF = 1.6 mA, IO = 4.8 mA, VCC = 4.5 V)
Each Channel
6N139
VOL
HCPL-2731
6N139
HCPL-2731
6N138
HCPL-2730
DUAL-CHANNEL
HCPL-2730
HCPL-2731
Min
400
500
300
Typ**
Max
1100
Unit
%
3500
1300
%
2500
1300
%
2500
0.08
0.4
0.01
0.4
0.13
0.4
V
0.20
0.4
0.10
0.4
** All typicals at TA = 25°C
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
SWITCHING CHARACTERISTICS
Parameter
DUAL-CHANNEL
HCPL-2730
HCPL-2731
(TA = 0 to 70°C unless otherwise specified., VCC = 5 V)
Test Conditions
Symbol
(RL = 4.7 k$, IF = 0.5 mA)
Device
Min
TA = 25°C
4
(RL = 270 $, IF = 12 mA)
Propagation delay
(RL = 270 $, IF = 12 mA)
(Note 2) (Fig. 22)
Each Channel
TPHL
TA = 25°C
(RL = 2.2 k$, IF = 1.6 mA)
Each Channel
(RL = 270 $, IF = 12 mA)
time to logic high
(Note 2) (Fig. 22)
(RL = 270 $, IF = 12 mA) Each Channel
(IF = 0 mA, %VCM% = 10 VP-P)
TA = 25°C, (RL = 2.2 k$) (Note 3) (Fig. 23)
Common mode
|CMH|
transient
logic low
TA = 25°C (Note 3) (Fig. 23)
Each Channel
22
60
10
1.3
7
15
5
µs
10
50
6N138
7
HCPL-2730/1
16
35
6N139
HCPL-2730
1,000
10,000
V/µs
1,000
10,000
V/µs
HCPL-2731
(IF = 1.6 mA, %VCM% = 10 VP-P, RL = 2.2 k$)
immunity at
HCPL-2731
6N138
Each Channel
logic high
12
HCPL-2730/1
Each Channel
immunity at
6N139
6N138
(RL = 2.2 k$, IF = 1.6 mA) TA = 25°C
20
90
HCPL-2731
Each Channel
transient
1
HCPL-2730
(RL = 2.2 k$, IF = 1.6 mA)
10
25
TPLH
TA = 25°C
Common mode
1.5
6N139
TA = 25°C
2
15
HCPL-2731
(RL = 4.7 k$, IF = 0.5 mA) TA = 25°C
1
0.3
6N139
Each Channel
µs
3
HCPL-2730
(RL = 4.7 k$, IF = 0.5 mA)
Propagation delay
0.2
HCPL-2731
TA = 25°C
100
HCPL-2730
6N138
TA = 25°C
25
2
HCPL-2731
(RL = 2.2 k$, IF = 1.6 mA)
Each Channel
3
6N139
TA = 25°C
time to logic low
Unit
120
HCPL-2731
TA = 25°C
Max
30
6N139
(RL = 4.7 k$, IF = 0.5 mA)
Each Channel
Typ**
6N138
|CML|
6N139
HCPL-2730
HCPL-2731
** All typicals at TA = 25°C
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
ISOLATION CHARACTERISTICS
(TA = 0 to 70°C Unless otherwise specified)
Characteristics
Test Conditions
Symbol
Min
DUAL-CHANNEL
HCPL-2730
HCPL-2731
Typ**
Max
Unit
1.0
µA
(Relative humidity = 45%)
(TA = 25°C, t = 5 s)
Input-output
insulation leakage current
(VI-O = 3000 VDC)
II-O
(Note 8)
Withstand insulation test voltage
Resistance (input to output)
Capacitance (input to output)
Input-Input
Input-Input Capacitance
(Note 4) ( t = 1 min.)
VISO
2500
VRMS
(Note 4) (VI-O = 500 VDC)
RI-O
1012
$
(Note 4,5) (f = 1 MHz)
CI-O
0.6
pF
II-I
0.005
µA
RI-I
1011
$
CI-I
0.03
pF
(RH ! 45%, VI-I = 500 VDC) (Note 6)
Insulation leakage current
Input-Input Resistance
(RH ! 50%, TA = 25°C)
t = 5 s, (HCPL-2730/2731 only)
(VI-I = 500 VDC) (Note 6)
(HCPL-2730/2731 only)
(f = 1 MHz) (Note 6)
(HCPL-2730/2731 only)
** All typicals at TA = 25°C
NOTES
1. Current Transfer Ratio is defined as a ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
2. Pin 7 open. (6N138 and 6N139 only)
3. Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the
common mode pulse signal, VCM, to assure that the output will remain in a logic high state (i.e., VO&2.0 V). Common mode
transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse
signal, VCM, to assure that the output will remain in a logic low state (i.e., VO'0.8 V).
4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
5. For dual channel devices, CI-O is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
ELECTRICAL CHARACTERISTICS
DUAL-CHANNEL
HCPL-2730
HCPL-2731
(TA = 25°C unless otherwise specified)
Current Limiting Resistor Calculations
R1 (Non-Invert) = VDD1 - VDF - VOL1
IF
R1 (Invert) = VDD1 - VOH1 - VDF
IF
R2 = VDD2 - = VOLX (@ IL - I2)
IL
Where:
VDD1 - Input Supply Voltage
VDD2 - Output Supply Voltage
VDF - Diode Forward Voltage
VOL1 - Logic “0” Voltage of Driver
VOH1 - Logic “1” Voltage of Driver
IF - Diode Forward Current
VOLX - Saturation Voltage of
Output Transistor
IL - Load Current Through
Resistor R2
I2 - Input Current of Output Gate
INPUT
CMOS
@5V
CMOS
@ 10 V
NON-INV.
INV.
NON-INV.
INV.
NON-INV.
74XX
INV.
NON-INV.
74LXX
INV.
NON-INV.
74SXX
INV.
NON-INV.
74LSXX
INV.
NON-INV.
74HXX
INV.
OUTPUT
CMOS CMOS
74XX 74LXX 74SXX 74LSXX 74HXX
@ 5 V @ 10 V
R2 ($) R2 ($) R2 ($) R2 ($) R2 ($) R2 ($) R2 ($)
R1 ($)
2000
510
5100
4700
2200
180
1800
100
2000
360
2000
180
2000
180
1000
2200
750
1000
1000
1000
560
Fig. 1 Resistor Values for Logic Interface
VDD2
VDD1
IN
1
8
2
7
3
6
VDD2
R2
R1
IN
OUT
4
5
Fig. 2 Non-Inverting Logic Interface
1
8
2
7
3
6
4
5
R2
OUT
R1
Fig. 3 Inverting Logic Interface
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
Fig. 4 LED Forward Current vs. Forward Voltage
DUAL-CHANNEL
HCPL-2730
HCPL-2731
Fig. 5 LED Forward Voltage vs. Temperature
1.5
100
IF = 1.6 mA
FORWARD VOLTAGE - VF (V)
FORWARD CURRENT - IF (mA)
10
TA = 85˚C
1
TA = 70˚C
0.1
1.4
1.3
1.2
0.01
TA = 25˚C
TA = -40˚C
TA = 0˚C
1.1
0.001
1.0
1.1
1.2
1.3
1.4
1.5
-40
1.6
-20
0
20
40
60
80
100
TEMPERATURE - TA (˚C)
FORWARD VOLTAGE - VF (V)
Fig. 6 Non-saturated Rise and Fall Times vs.
Load Resistance (6N138 / 6N139 Only)
Fig. 7 Non-saturated Rise and Fall Times vs.
Load Resistance (HCPL-2730 / HCPL-2731 Only)
100
TA = 25˚C
TA = 25˚C
tf
10
TIME - µs
TIME, T (µs)
tf
10
tr
tr
1
0.1
1
10
IF ADJUSTED FOR VOL = 2 V
1
0.1
1
10
RL - LOAD RESISTANCE (k$)
RL - LOAD RESISTANCE (k$)
Fig. 8 Current Transfer Ratio vs. Forward Current
(6N138 / 6N139 Only)
Fig. 9 Current Transfer Ratio vs. Forward Current
(HCPL-2730 / HCPL-2731 Only)
VCC = 5 V
VO= 0.4 V
VCC = 5 V
VO = 0.4 V
TA = 85˚C
800
TA = 70˚C
TA = 25˚C
400
TA = 0˚C
TA = -40˚C
0
0.01
0.1
1
IF - FORWARD CURRENT (mA)
)
TA = 70˚C
(
TA = 85˚C
TA = 25˚C
3000
TA = 0˚C
2000
C
1200
4000
TA = -40˚C
O
1600
CTR - CURRENT TRANSFER RATIO - %
CURRENT TRANSFER RATIO - CTR (%)
5000
1000
10
0
0.1
1
10
100
IF - FORWARD CURRENT - mA
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
Fig. 10 Output Current vs Output Voltage
(6N138 / 6N139 Only)
Fig. 11 Output Current vs Output Voltage
(HCPL-2730 / HCPL-2731 Only)
120
60
5 mA
VCC = 5V
TA = 25˚C
4.5 mA
4 mA
IF = 5.0 mA
TA = 25˚C
VCC = 5.0 V
3.5 mA
IF = 4.5 mA
100
50
IF = 4.0 mA
IO-OUTPUT CURRENT - mA
3 mA
IO - OUTPUT CURRENT (mA)
DUAL-CHANNEL
HCPL-2730
HCPL-2731
2.5 mA
40
2 mA
30
1.5 mA
20
IF = 3.5 mA
80
IF = 3.0 mA
IF = 2.5 mA
IF = 2.0 mA
60
IF = 1.5 mA
IF = 1.0 mA
40
1 mA
20
10
IF = 0.5 mA
0
0
1
0.0
2
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VO-OUTPUT VOLTAGE - V
VO - OUTPUT VOLTAGE (V)
Fig. 13 Output Current vs
Input Diode Forward Current
Fig. 12 Output Current vs. Input Diode Forward Current
(6N138 / 6N139 Only)
(HCPL-2730 / HCPL-2731 Only)
100
100
VCC = 5.0 V
VO = 0.4 V
IO - OUTPUT CURRENT - mA
IO - OUTPUT CURRENT (mA)
TA = 85˚C
VCC = 5 V
10 VO = 0.4 V
1
TA = 85˚C
10
TA = 25˚C
1
TA = -40˚C
TA = 70˚C
0
TA = 25˚C
TA = 0˚C
TA = -40˚C
0
0.01
0.1
0.1
1
0.1
10
10
100
IF - INPUT DIODE FORWARD CURRENT - mA
IF - INPUT DIODE FORWARD CURRENT (mA)
Fig. 14 Logic Low Supply Current vs.
Input Diode Forward Current
(6N138 / 6N139 Only)
Fig. 15 Logic Low Supply Current vs.
Input Diode Forward Current
(HCPL-2730 / HCPL-2731 Only)
100
ICCL - LOGIC LOW SUPPLY CURRENT - mA
4.0
ICCL - LOGIC LOW SUPPLY CURRENT (mA)
1
3.5
3.0
2.5
VCC = 5 V
2.0
VCC = 18 V
1.5
1.0
0.5
0.0
0
2
4
6
8
10
12
IF - FORWARD CURRENT (mA)
14
16
TA = 25˚C
HCPL-2731
VCC = 18 V
10
HCPL-2730
HCPL-2731
VCC = 7 V
1
0.1
0.1
1
10
100
IF - INPUT DIODE FORWARD CURRENT - mA
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
Fig. 16 Propagation Delay vs. Input Diode Forward Current
(6N138 / 6N139 Only)
Fig. 17 Propagation Delay vs. Input Diode Forward Current
(HCPL-2730 / HCPL-2731 Only)
70
70
VCC = 5 V
TA = 25˚C
VCC = 5 V
TA = 25˚C
60
60
tP - PROPAGATION DELAY - µs
tP - PROPAGATION DELAY - µs
DUAL-CHANNEL
HCPL-2730
HCPL-2731
50
(tPHL) RL = 2.2 kΩ or 4.7 kΩ
40
30
20
(tPLH) RL = 4.7 kΩ
10
50
(tPHL) RL = 2.2 kΩ or 4.7 kΩ
40
30
(tPLH) RL = 4.7 kΩ
20
(tPLH) RL = 2.2 kΩ
10
(tPLH) RL = 2.2 kΩ
0
0
0
1
2
3
4
5
6
7
8
9
0
10
2
IF - INPUT DIODE FORWARD CURRENT - mA
6
8
10
Fig. 19 Propagation Delay to Logic Low vs. Pulse Period
Fig. 18 Propagation Delay to Logic Low vs. Pulse Period
(6N138 / 6N139 Only)
(HCPL-2730 / HCPL-2731 Only)
100
100
tPHL - PROPAGATION DELAY to LOGIC LOW - µs
tPHL - PROPAGATION DELAY to LOGIC LOW - µs
4
IF - INPUT DIODE FORWARD CURRENT - mA
6N139
IF = 0.5 mA
RL = 4.7 kΩ
10
6N138
IF = 1.6 mA
RL = 2.2 kΩ
1
0.1
1
HCPL-2730
HCPL-2731
IF =1.6 mA
RL = 2.2kΩ
0.1
0.01
TA = 25˚C
0.1
0.01
HCPL-2731
IF = 0.5 mA
RL = 4.7 kΩ
10
1
0.1
TA = 25˚C
1
10
T - INPUT PULSE PERIOD - ms
10
T - INPUT PULSE PERIOD - ms
Fig. 20 Propagation Delay vs. Temperature
(6N138 / 6N139 Only)
Fig. 21 Propagation Delay vs. Temperature
(HCPL-2730 / HCPL-2731 Only)
50
50
HCPL-2730 : IF = 1.6 mA, RL = 2.2 k
HCPL-2731 : IF = 0.5 mA, RL = 4.7 k
40
40
tP - PROPAGATION DELAY - µs
tP - PROPAGATION DELAY - µs
HCPL-2730 : IF = 1.6 mA, RL = 2.2 k
HCPL-2731 : IF = 0.5 mA, RL = 4.7 k
tPLH (HCPL-2731)
30
20
tPLH (HCPL-2730)
tPHL (HCPL-2731)
10
tPHL (HCPL-2730)
0
tPLH (HCPL-2731)
30
20
tPLH (HCPL-2730)
tPHL (HCPL-2731)
10
tPHL (HCPL-2730)
0
0
10
20
30
40
50
TA - TEMPERATURE (˚C)
60
70
80
0
10
20
30
40
50
60
70
80
TA - TEMPERATURE (˚C)
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
Pulse
Generator I
F
tr = 5ns
Z O = 50 $
10% D.C.
I/ f < 100 (s
1
Noise
Shield
8
+
2
7
VF
-
3
6
VCC
VB
+5 V
4
Rm
5
IF
VO
Noise
Shield
+
1
-
2
VO
IF
MONITOR
7
3
6
4
5
VCC
+5 V
RL
V01
0.1 µF
VO
CL = 15 µF*
V02
VF2
Rm
+
C L = 15 µF*
GND
8
VF1
10% DUTY CYCLE
I/f < 100 µS
RL
0.1 µF
I F Monitor
Pulse
Generator
tr = 5ns
Z O = 50 $
DUAL-CHANNEL
HCPL-2730
HCPL-2731
GND
Test Circuit for HCPL-2730 and HCPL-2731
Test Circuit for 6N138, 6N139
IF
0
5V
VO
1.5 V
1.5 V
VOL
TPHL
TPLH
Fig. 22 Switching Time Test Circuit
*Includes Probe and Fixture Capacitance
IF
1
Noise
Shield
8
+
2
A
B
7
VCC
+
+5 V
IF
VB
8
VCC
VF1
-
RL
Noise
Shield
1
+5 V
RL
2
7
V01
A
VF
-
3
6
B
VO
VO
0.1 µF
VFF
4
5
+
GND
VFF
VO
0.1 µF
-
3
6
4
5
VF2
+
-
V02
GND
VCM
-
+
Pulse Gen
VCM
-
Pulse Gen
Test Circuit for 6N138 and 6N139
Test Circuit for HCPL-2730 and HCPL-2731
VCM 10 V
0V
90%
90%
10%
tr
VO
10%
tf
5V
Switch at A : I F = 0 mA
VO
VOL
Switch at B : I F = 1.6 mA
Fig. 23 Common Mode Immunity Test Circuit
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
Package Dimensions (Through Hole)
DUAL-CHANNEL
HCPL-2730
HCPL-2731
Package Dimensions (Surface Mount)
0.390 (9.91)
0.370 (9.40)
PIN 1
ID.
4
3
4
2
3
2
1
1
PIN 1
ID.
0.270 (6.86)
0.250 (6.35)
5
6
7
0.270 (6.86)
0.250 (6.35)
8
SEATING PLANE
0.390 (9.91)
0.370 (9.40)
5
0.070 (1.78)
0.045 (1.14)
6
7
8
0.070 (1.78)
0.045 (1.14)
0.300 (7.62)
TYP
0.200 (5.08)
0.115 (2.92)
0.020 (0.51)
MIN
0.020 (0.51) MIN
0.016 (0.41)
0.008 (0.20)
0.154 (3.90)
0.120 (3.05)
0.045 [1.14]
0.022 (0.56)
0.016 (0.41)
0.022 (0.56)
0.016 (0.41)
15° MAX
0.016 (0.40)
0.008 (0.20)
0.100 (2.54) TYP
0.300 (7.62)
TYP
0.100 (2.54)
TYP
0.315 (8.00)
MIN
0.405 (10.30)
MIN
Lead Coplanarity : 0.004 (0.10) MAX
Package Dimensions (0.4”Lead Spacing)
4
3
2
1
PIN 1
ID.
0.270 (6.86)
0.250 (6.35)
5
6
7
8
SEATING PLANE
0.390 (9.91)
0.370 (9.40)
0.070 (1.78)
0.045 (1.14)
0.200 (5.08)
0.115 (2.92)
NOTE
0.004 (0.10) MIN
All dimensions are in inches (millimeters)
0.154 (3.90)
0.120 (3.05)
0.022 (0.56)
0.016 (0.41)
0° to15°
0.016 (0.40)
0.008 (0.20)
0.100 (2.54) TYP
0.400 (10.16)
TYP
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
SINGLE-CHANNEL
6N138
6N139
DUAL-CHANNEL
HCPL-2730
HCPL-2731
ORDERING INFORMATION
Option
Order
Entry
Identifier
Description
R2
.R2
Opto Plus Reliability Conditioning
S
.S
Surface Mount Lead Bend
SD
.SD
Surface Mount; Tape and reel
W
.W
0.4” Lead Spacing
QT Carrier Tape Specifications (“D” Taping Orientation)
12.0 ± 0.1
4.90 ± 0.20
4.0 ± 0.1
0.30 ± 0.05
4.0 ± 0.1
Ø1.55 ± 0.05
1.75 ± 0.10
7.5 ± 0.1
16.0 ± 0.3
13.2 ± 0.2
10.30 ± 0.20
0.1 MAX
10.30 ± 0.20
Ø1.6 ± 0.1
User Direction of Feed
Corporate Headquarters
QT Optoelectronics
610 North Mary Avenue
Sunnyvale, CA 94086
(408) 720-1440 Phone
(408) 720-0848 Fax
North American Sales
QT Optoelectronics
16775 Addison Rd.,Suite 200
Addison, TX 75001
(972) 447-1300 Phone
(972) 447-0784 Fax
European Sales
Quality Technologies Deutschland GmbH
Max-Huber-Strasse 8
D-85737 Ismaning, Germany
49 [0] 89/96.30.51 Phone
49 [0] 89/96.54.74 Fax
European Sales
QT Optoelectronics
“Le Levant”
2, rue du Nouveau Bercy
F-94277-CHARENTON-LE PONT Cedex
FRANCE
33 [0] 1.45.18.78.78 Phone
33 [0] 1.43.75.77.57 Fax
Asia/Pacific Sales
QT Optoelectronics
B613, 6th Floor
East Wing, Wisma Tractors
Jalan SS16/1, Subang Jaya
47500 Petaling Jaya
Selangor Darul Eshan, Malaysia
603/735-2417 Phone
603/736-3382 Fax
European Sales
Quality Technologies (U.K) Ltd.
10, Prebendal Court, Oxford Road
Aylesbury, Buckinghamshire
HP19-3EY United Kingdom
44 [0] 1296/30.44.99 Phone
44 [0] 1296/39.24.32 Fax
12/27/99
200023A
LOW INPUT CURRENT
HIGH GAIN SPLIT
DARLINGTON OPTOCOUPLERS
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
www.fairchildsemi.com
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
© 2000 Fairchild Semiconductor Corporation
12/27/99
200023A