PQ070XZ1HZxH PQ070XZ1HZxH Low Voltage Operation Low Power-loss Voltage Regulator ■ Outline Dimensions Features (Unit : mm) 1.Low voltage operation (Minimum operating voltage: 2.35V) 2.Low dissipation current Dissipation current at no load: MAX.2mA Output OFF-state dissipation current: MAX.5μA 3.Low power-loss (Dropout voltage: MAX.0.5V) 4.Built-in overcurrent and overheat protection functions 5.RoHS directive compliant 2.3±0.5 MAX. 6.6 ±0.5 (0.5) 5.2 3 (1.7) H (0~0.25) 0.5+0.2 –0.1 Applications (0.5) 4–(1.27) ( 1.Power supplies for personal computers and peripheral equipment 2.Power supplies for various electronic equipment such as DVD player or STB (0.9) 5.5±0.5 Lead finish identification markaa 2.5MIN. 9.7MAX. Epoxy resin 070XZ1H ) : Typical dimensions Product mass:(0.3g) 1 2 3 4 5 1 3 Specific IC Model Line-up 2 4 5 Output current (IO) Package type 1.5A Taping Sleeve 1 Model No. 2 3 4 PQ070XZ1HZPH 5 DC input (VIN) ON/OFF control (VC) DC output (VO) Output adjustment (VADJ) GND PQ070XZ1HZZH Lead finish:Lead-free solder plating (Composition: Sn2Cu) Absolute Maximum Ratings (Ta=25°C) Parameter *1 Input voltage Symbol VIN *1 ON/OFF control terminal voltage VC *1 Output adjustment terminal voltage VADJ Output current IO *2 Power dissipation PD *3 Junction temperature Tj Operating temperature Topr Storage temperature Tstg Soldering temperature Tsol Rating Unit 10 V 10 V V 5 A 1.5 8 W 150 °C -40 to +85 °C -40 to +150 °C 260(10s) °C *1 All are open except GND and applicable terminals. *2 PD:With infinite heat sink *3 Overheat protection may operate at Tj:125°C to 150°C Notice The content of data sheet is subject to change without prior notice. In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. 1 Sheet No.: OP06020 PQ070XZ1HZxH Electrical Characteristics (Unless otherwise specified,condition shall be VIN=5V,VO=3V(R1=1kΩ),IO=0.5A,VC=2.7V,Ta=25°C) Parameter Symbol Conditions MIN. TYP. MAX. Unit VIN 2.35 - 10 V 7 V % Output voltage VO - Load regulation RegL IO=5mA to 1.5A Line regulation Ripple rejection RegI RR Dropout voltage VI-O VIN=3.3V,IO=1.25A Reference voltage Temperature coefficient of reference voltage Vref - TCVref Tj=0 to 125°C, IO=5mA ON-state voltage for control VC(ON) ON-state current for control IC(ON) VC(OFF) IO=0mA IC(OFF) IO=0mA, VC=0.4V Iq IO=0A Iqs VC=0.4V Input voltage OFF-state voltage for control OFF-state current for control Quiescent current Output OFF-state consumption current 4 1.5 0.2 2.0 VIN=4 to 8V,IO=5mA - 0.2 1.0 Refer to Fig.2 45 60 V - - 1.0 1.25 1.275 V - ±1.0 % - 200 0.8 μA V 2 μA 1 2 mA - 5 μA - - dB 1.225 2.0 4 % - V In case of opening control terminal ② , output voltage turns off. Fig.1 Test Circuit VIN R2 VC 2 + A Vref 4 IO + 5 A 0.33μF VO 3 1 V 47μF IC A R1 1kΩ Iq V RL VO=Vref×(1+R2/R1) [R1=1kΩ,Vref≒1.25V] Fig.2 Test Circuit for Ripple Rejection + 3 1 ei ~ R2 VC + VIN 4 2 Vref 5 0.33μF IO eo + 47μF V ~ RL R1 1kΩ 2.7V f=120Hz sine wave ei(rms)=0.5V VO=3V(R1=1kΩ) VIN=5V IO=0.3A RR=20log(ei(rms)/eo(rms)) Sheet No.: OP06020 2 PQ070XZ1HZxH Fig.3 Power Dissipation vs. Ambient Temperature Fig.4 Overcurrent Protection Characteristics 3 10 8 Output voltage VO (V) Power dissipation PD (W) V IN =10V PD : With infinite heat sink 5 2.5 V IN =7V V IN =5.5V 2 V IN =4.5V 1.5 V IN =5V 1 0.5 0 -40 -20 0 0 20 40 60 80 100 120 140 150 0 Ambient temperature Ta (°C) 0.5 1 1.5 2 Output current IO (A) 2.5 Note) Oblique line portion:Overheat protection may operate in this area. Fig.6 Output Voltage vs. Input Voltage 1.26 3.5 1.255 3 Output voltage VO(V) RL=∞Ω(IO=0A) 1.25 1.245 V IN =4V V C =2.7V I O =0.5V R 1=1kΩ R 2=1.4kΩ 1.24 1.235 1 2 3 4 5 Fig.8 Dropout Voltage vs. Junction Temperature Dropout voltage VI-O(V) 0.4 RL=2Ω (IO=1.5A) R L =∞Ω (I O =0A) 2 3 4 Input voltage VIN(V) V IN =2.35V 0.35 V C =2.7V I O =1.25V 0.3 R 1=1kΩ R 2=1.4kΩ 0.25 0.2 0.15 0.1 0.05 0 -50 -25 0 25 50 75 100 125 Junction temperature Tj (°C) 0 1 1 Input voltage VIN(V) RL=4Ω (IO=0.7.5A) 0 V C =2.7V T a=Room temp. R 1=1kΩ R 2=1.4kΩ (V O =3V) C IN =0.33μF C O =47μF 1.5 0 30 10 R L =2Ω(I O =1.5A) 2 0 Fig.7 Circuit Operating Current vs. Input Voltage V C =2.7V T a=Room temp. R 1=1kΩ R 2=1.4kΩ (V O =3V) 20 C IN =0.33μF C O =47μF R L =4Ω(I O =0.75A) 2.5 0.5 1.23 -50 -25 0 25 50 75 100 125 Junction temperature Tj (°C) Circuit operating current IBIAS(mA) Reference voltage Vref(V) Fig.5 Reference Voltage vs. Junction Temperature 5 Sheet No.: OP06020 3 PQ070XZ1HZxH Fig.10 Ripple Rejection vs. Input Ripple Frequency 1.4 75 1.2 70 Ripple rejection RR (dB) Quiescent current Iq(mA) Fig.9 Quiescent Current vs. Junction Temperature 1 0.8 0.6 V IN =4V V C =2.7V I O =0A R 1=1kΩ R 2=1.4kΩ 0.4 0.2 0 -50 -25 0 25 50 75 100 125 Junction temperature Tj (°C) 65 60 ei(rms) =0.5V 55 V IN =5V V C =2.7V 50 I O =0.3A C O =47μF 45 T a=Room temp. R 1=1kΩ 40 R 2=1.4kΩ 35 (V O =3V) 0.1 1 10 Input ripple frequency f (kHz) 100 Fig.11 Ripple Rejection vs. Output Current Ripple rejection RR (dB) 80 75 70 65 60 ei(rms) =0.5V f=120Hz V IN =5V, V C =2.7V C O =47μF T a=Room temp. R 1=1kΩ R 2=1.4kΩ (V O =3V) 55 50 45 40 0 0.25 0.5 0.75 1 1.25 Output current IO(A) 1.5 Power dissipation PD(W) Fig.12 Power Dissipation vs. Ambient Temperature (Typical Value) 2.0 1.5 1.0 Cu area 740mm 2 Cu area 180mm 2 Mounting PCB Cu area 100mm 2 Cu area 70mm 2 PCB Cu Cu area 36mm 2 0.5 0 -40 -20 0 20 40 60 Ambient temperature Ta(°C) : Glass-cloth epoxy resin Material : 50×50×1.6mm Size Cu thickness : 35μm 80 Sheet No.: OP06020 4 PQ070XZ1HZxH Fig.13 Output Voltage Adjustment Characteristics (Typical Value) 10 R 1=1kΩ Output voltage VO(V) 9 8 7 6 5 4 3 2 1 0 100 103 R 2 (Ω) 104 ■ Typical Application DC input 1 VO 3 R2 VIN 2 + CIN CO 4 + Load 5 R1 1kΩ ON/OFF signal ⎞High:Output ON ⎞ ⎟ ⎟ ⎠Low or open:Output OFF⎠ ■ Setting of Output Voltage Output voltage is able to set from 1.5V to 7V when resistors R1 and R2 are attached to ③,④,⑤ terminals. As for the external resistors to set output voltage, refer to the figure below and Fig.13. VO 3 R2 - 4 R1 + 5 Vref VO=Vref×(1+R2/R1) [RL=1kΩ, Vref≒1.25V] Sheet No.: OP06020 5