ATMEL ATMEGA329V-8AI

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase Cycles
32K bytes (ATmega329/ATmega3290)
64K bytes (ATmega649/ATmega6490)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– EEPROM, Endurance: 100,000 Write/Erase Cycles
1K bytes (ATmega329/ATmega3290)
2K bytes (ATmega649/ATmega6490)
– Internal SRAM
2K bytes (ATmega329/ATmega3290)
4K bytes (ATmega649/ATmega6490)
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– 4 x 25 Segment LCD Driver (ATmega329/ATmega649)
– 4 x 40 Segment LCD Driver (ATmega3290/ATmega6490)
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 53/68 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP
Speed Grade:
– ATmega329V/ATmega3290V/ATmega649V/ATmega6490V:
0 - 4 MHz @ 1.8 - 5.5V, 0 - 8 MHz @ 2.7 - 5.5V
– ATmega329/3290/649/6490:
0 - 8 MHz @ 2.7 - 5.5V, 0 - 16 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
8-bit
Microcontroller
with In-System
Programmable
Flash
ATmega329/V
ATmega3290/V
ATmega649/V
ATmega6490/V
Preliminary
Summary
2552HS–AVR–11/06
Features (Continued)
• Ultra-Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 350 µA
32 kHz, 1.8V: 20 µA (including Oscillator)
32 kHz, 1.8V: 40 µA (including Oscillator and LCD)
– Power-down Mode:
100 nA at 1.8V
Pin Configurations
Figure 1. Pinout ATmega3290/6490
2
AVCC
AGND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
DNC
DNC
PH7 (PCINT23/SEG36)
PH6 (PCINT22/SEG37)
PH5 (PCINT21/SEG38)
PH4 (PCINT20/SEG39)
DNC
DNC
GND
VCC
DNC
PA0 (COM0)
PA1 (COM1)
PA2 (COM2)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
TQFP
LCDCAP
1
75
PA3 (COM3)
(RXD/PCINT0) PE0
2
74
PA4 (SEG0)
(TXD/PCINT1) PE1
3
73
PA5 (SEG1)
(XCK/AIN0/PCINT2) PE2
4
72
PA6 (SEG2)
(AIN1/PCINT3) PE3
5
71
PA7 (SEG3)
(USCK/SCL/PCINT4) PE4
6
70
PG2 (SEG4)
(DI/SDA/PCINT5) PE5
7
69
PC7 (SEG5)
(DO/PCINT6) PE6
8
68
PC6 (SEG6)
(CLKO/PCINT7) PE7
9
67
DNC
VCC
10
66
PH3 (PCINT19/SEG7)
GND
11
65
PH2 (PCINT18/SEG8)
DNC
12
64
PH1 (PCINT17/SEG9)
(PCINT24/SEG35) PJ0
13
63
PH0 (PCINT16/SEG10)
(PCINT25/SEG34) PJ1
14
62
DNC
DNC
15
61
DNC
DNC
16
60
DNC
DNC
17
59
DNC
DNC
18
58
PC5 (SEG11)
(SS/PCINT8) PB0
19
57
PC4 (SEG12)
(SCK/PCINT9) PB1
20
56
PC3 (SEG13)
(MOSI/PCINT10) PB2
21
55
PC2 (SEG14)
(MISO/PCINT11) PB3
22
54
PC1 (SEG15)
(OC0A/PCINT12) PB4
23
53
PC0 (SEG16)
(OC1A/PCINT13) PB5
24
52
PG1 (SEG17)
(OC1B/PCINT14) PB6
25
51
PG0 (SEG18)
INDEX CORNER
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
(OC2A/PCINT15) PB7
DNC
(T1/SEG33) PG3
(T0/SEG32) PG4
RESET/PG5
VCC
GND
(TOSC2) XTAL2
(TOSC1) XTAL1
DNC
DNC
(PCINT26/SEG31) PJ2
(PCINT27/SEG30) PJ3
(PCINT28/SEG29) PJ4
(PCINT29/SEG28) PJ5
(PCINT30/SEG27) PJ6
DNC
(ICP1/SEG26) PD0
(INT0/SEG25) PD1
(SEG24) PD2
(SEG23) PD3
(SEG22) PD4
(SEG21) PD5
(SEG20) PD6
(SEG19) PD7
ATmega3290/6490
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
LCDCAP
1
(RXD/PCINT0) PE0
2
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0 (COM0)
PA1 (COM1)
PA2 (COM2)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 2. Pinout ATmega329/649
48 PA3 (COM3)
47 PA4 (SEG0)
INDEX CORNER
(TXD/PCINT1) PE1
3
46 PA5 (SEG1)
(XCK/AIN0/PCINT2) PE2
4
45 PA6 (SEG2)
(AIN1/PCINT3) PE3
5
44 PA7 (SEG3)
(USCK/SCL/PCINT4) PE4
6
43 PG2 (SEG4)
(DI/SDA/PCINT5) PE5
7
42 PC7 (SEG5)
(DO/PCINT6) PE6
8
(CLKO/PCINT7) PE7
9
40 PC5 (SEG7)
(SS/PCINT8) PB0
10
39 PC4 (SEG8)
Disclaimer
(SEG15) PD7 32
29
(SEG18) PD4
(SEG16) PD6 31
28
(SEG17) PD5 30
27
(SEG19) PD3
33 PG0 (SEG14)
(SEG20) PD2
16
26
(OC1B/PCINT14) PB6
25
34 PG1 (SEG13)
(INT0/SEG21) PD1
15
(ICP1/SEG22) PD0
(OC1A/PCINT13) PB5
(TOSC1) XTAL1
35 PC0 (SEG12)
24
14
23
(OC0A/PCINT12) PB4
22
36 PC1 (SEG11)
GND
13
(TOSC2) XTAL2
(MISO/PCINT11) PB3
VCC 21
37 PC2 (SEG10)
RESET/PG5 20
38 PC3 (SEG9)
12
(T0/SEG23) PG4 19
11
(T1/SEG24) PG3 18
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(OC2A/PCINT15) PB7 17
Note:
41 PC6 (SEG6)
ATmega329/649
The large center pad underneath the QFN/MLF packages is made of metal and internally
connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the
board.
Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
3
2552HS–AVR–11/06
Overview
The ATmega329/3290/649/6490 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega329/3290/649/6490 achieves throughputs
approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Block Diagram
PF0 - PF7
VCC
DATA DIR.
REG. PORTF
DATA REGISTER
PORTF
PC0 - PC7
PA0 - PA7
PORTA DRIVERS
PORTF DRIVERS
PORTC DRIVERS
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
XTAL1
GND
XTAL2
Figure 3. Block Diagram
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
AGND
CALIB. OSC
ADC
INTERNAL
OSCILLATOR
AREF
STACK
POINTER
WATCHDOG
TIMER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
BOUNDARYSCAN
INSTRUCTION
REGISTER
LCD
CONTROLLER/
DRIVER
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
CONTROL
LINES
+
-
ANALOG
COMPARATOR
Z
INTERRUPT
UNIT
ALU
EEPROM
Y
STATUS
REGISTER
AVR CPU
USART
UNIVERSAL
SERIAL INTERFACE
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
PORTE DRIVERS
PE0 - PE7
4
TIMING AND
CONTROL
RESET
DATA DIR.
REG. PORTH
DATA REGISTER
PORTH
PROGRAM
COUNTER
DATA DIR.
REG. PORTJ
DATA REGISTER
PORTJ
PORTH DRIVERS
PORTJ DRIVERS
PJ0 - PJ6
PH0 - PH7
OSCILLATOR
JTAG TAP
SPI
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
PORTB DRIVERS
PB0 - PB7
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
PORTD DRIVERS
PD0 - PD7
DATA REG.
PORTG
DATA DIR.
REG. PORTG
PORTG DRIVERS
PG0 - PG4
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega329/3290/649/6490 provides the following features: 32/64K bytes of InSystem Programmable Flash with Read-While-Write capabilities, 1/2K bytes EEPROM,
2/4K byte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and
programming, a complete On-chip LCD controller with internal contrast control, three
flexible Timer/Counters with compare modes, internal and external interrupts, a serial
programmable USART, Universal Serial Interface with Start Condition Detector, an 8channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI
serial port, and five software selectable power saving modes. The Idle mode stops the
CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In
Power-save mode, the asynchronous timer and the LCD controller continues to run,
allowing the user to maintain a timer base and operate the LCD display while the rest of
the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC, to minimize switching noise
during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with lowpower consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology.
The On-chip In-System re-Programmable (ISP) Flash allows the program memory to be
reprogrammed In-System through an SPI serial interface, by a conventional non-volatile
memory programmer, or by an On-chip Boot program running on the AVR core. The
Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the
Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic
chip, the Atmel ATmega329/3290/649/6490 is a powerful microcontroller that provides a
highly flexible and cost effective solution to many embedded control applications.
The ATmega329/3290/649/6490 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program
Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
5
2552HS–AVR–11/06
Comparison between
ATmega329,
ATmega3290,
ATmega649 and
ATmega6490
The ATmega329, ATmega3290, ATmega649, and ATmega6490 differs only in memory
sizes, pin count and pinout. Table 1 on page 6 summarizes the different configurations
for the four devices.
Table 1. Configuration Summary
Device
Flash
EEPROM
RAM
LCD
Segments
General Purpose
I/O Pins
ATmega329
32K bytes
1K bytes
2K bytes
4 x 25
54
ATmega3290
32K bytes
1K bytes
2K bytes
4 x 40
69
ATmega649
64K bytes
2K bytes
4K bytes
4 x 25
54
ATmega6490
64K bytes
2K bytes
4K bytes
4 x 40
69
Pin Descriptions
The following section describes the I/O-pin special functions.
VCC
Digital supply voltage.
GND
Ground.
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the
ATmega329/3290/649/6490 as listed on page 67.
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the
ATmega329/3290/649/6490 as listed on page 68.
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega329/3290/649/6490
as listed on page 71.
Port D (PD7..PD0)
6
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Port D also serves the functions of various special features of the
ATmega329/3290/649/6490 as listed on page 73.
Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the
ATmega329/3290/649/6490 as listed on page 75.
Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.
Port F also serves the functions of the JTAG interface.
Port G (PG5..PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port G also serves the functions of various special features of the
ATmega329/3290/649/6490 as listed on page 75.
Port H (PH7..PH0)
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port H output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port H pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port H also serves the functions of various special features of the ATmega3290/6490 as
listed on page 75.
Port J (PJ6..PJ0)
Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port J output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port J pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port J also serves the functions of various special features of the ATmega3290/6490 as
listed on page 75.
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table
16 on page 41. Shorter pulses are not guaranteed to generate a reset.
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
7
2552HS–AVR–11/06
XTAL2
Output from the inverting Oscillator amplifier.
AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
AREF
This is the analog reference pin for the A/D Converter.
LCDCAP
An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as
shown in Figure 99. This capacitor acts as a reservoir for LCD power (VLCD). A large
capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target
value.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.
8
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Register Summary
Note:
Registers with bold type only available in ATmega3290/6490.
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0xFF)
LCDDR19
SEG339
SEG338
SEG337
SEG336
SEG335
SEG334
SEG333
SEG332
234
(0xFE)
LCDDR18
SEG331
SEG330
SEG329
SEG328
SEG327
SEG326
SEG325
SEG324
234
(0xFD)
LCDDR17
SEG323
SEG322
SEG321
SEG320
SEG319
SEG318
SEG317
SEG316
234
(0xFC)
LCDDR16
SEG315
SEG314
SEG313
SEG312
SEG311
SEG310
SEG309
SEG308
234
(0xFB)
LCDDR15
SEG307
SEG306
SEG305
SEG304
SEG303
SEG302
SEG301
SEG300
234
(0xFA)
LCDDR14
SEG239
SEG238
SEG237
SEG236
SEG235
SEG234
SEG233
SEG232
234
(0xF9)
LCDDR13
SEG231
SEG230
SEG229
SEG228
SEG227
SEG226
SEG225
SEG224
234
(0xF8)
LCDDR12
SEG223
SEG222
SEG221
SEG220
SEG219
SEG218
SEG217
SEG216
234
(0xF7)
LCDDR11
SEG215
SEG214
SEG213
SEG212
SEG211
SEG210
SEG209
SEG208
234
(0xF6)
LCDDR10
SEG207
SEG206
SEG205
SEG204
SEG203
SEG202
SEG201
SEG200
234
(0xF5)
LCDDR09
SEG139
SEG138
SEG137
SEG136
SEG135
SEG134
SEG133
SEG132
234
(0xF4)
LCDDR08
SEG131
SEG130
SEG129
SEG128
SEG127
SEG126
SEG125
SEG124
234
(0xF3)
LCDDR07
SEG123
SEG122
SEG121
SEG120
SEG119
SEG118
SEG117
SEG116
234
(0xF2)
LCDDR06
SEG115
SEG114
SEG113
SEG112
SEG111
SEG110
SEG109
SEG108
234
(0xF1)
LCDDR05
SEG107
SEG106
SEG105
SEG104
SEG103
SEG102
SEG101
SEG100
234
(0xF0)
LCDDR04
SEG039
SEG038
SEG037
SEG036
SEG035
SEG034
SEG033
SEG032
234
(0xEF)
LCDDR03
SEG031
SEG030
SEG029
SEG028
SEG027
SEG026
SEG025
SEG024
234
(0xEE)
LCDDR02
SEG023
SEG022
SEG021
SEG020
SEG019
SEG018
SEG017
SEG016
234
(0xED)
LCDDR01
SEG015
SEG014
SEG013
SEG012
SEG011
SEG010
SEG009
SEG008
234
(0xEC)
LCDDR00
SEG007
SEG006
SEG005
SEG004
SEG003
SEG002
SEG001
SEG000
234
(0xEB)
Reserved
-
-
-
-
-
-
-
-
(0xEA)
Reserved
-
-
-
-
-
-
-
-
(0xE9)
Reserved
-
-
-
-
-
-
-
-
(0xE8)
Reserved
-
-
-
-
-
-
-
-
(0xE7)
LCDCCR
LCDDC2
LCDDC1
LCDDC0
-
LCDCC3
LCDCC2
LCDCC1
LCDCC0
(0xE6)
LCDFRR
-
LCDPS2
LCDPS1
LCDPS0
-
LCDCD2
LCDCD1
LCDCD0
231
(0xE5)
LCDCRB
LCDCS
LCD2B
LCDMUX1
LCDMUX0
LCDPM3
LCDPM2
LCDPM1
LCDPM0
229
229
233
(0xE4)
LCDCRA
LCDEN
LCDAB
-
LCDIF
LCDIE
-
-
LCDBL
(0xE3)
Reserved
-
-
-
-
-
-
-
-
(0xE2)
Reserved
-
-
-
-
-
-
-
-
(0xE1)
Reserved
-
-
-
-
-
-
-
-
(0xE0)
Reserved
-
-
-
-
-
-
-
-
(0xDF)
Reserved
-
-
-
-
-
-
-
-
(0xDE)
Reserved
-
-
-
-
-
-
-
-
(0xDD)
PORTJ
-
PORTJ6
PORTJ5
PORTJ4
PORTJ3
PORTJ2
PORTJ1
PORTJ0
88
(0xDC)
DDRJ
-
DDJ6
DDJ5
DDJ4
DDJ3
DDJ2
DDJ1
DDJ0
88
(0xDB)
PINJ
-
PINJ6
PINJ5
PINJ4
PINJ3
PINJ2
PINJ1
PINJ0
88
(0xDA)
PORTH
PORTH7
PORTH6
PORTH5
PORTH4
PORTH3
PORTH2
PORTH1
PORTH0
88
(0xD9)
DDRH
DDH7
DDH6
DDH5
DDH4
DDH3
DDH2
DDH1
DDH0
88
(0xD8)
PINH
PINH7
PINH6
PINH5
PINH4
PINH3
PINH2
PINH1
PINH0
88
(0xD7)
Reserved
-
-
-
-
-
-
-
-
(0xD6)
Reserved
-
-
-
-
-
-
-
-
(0xD5)
Reserved
-
-
-
-
-
-
-
-
(0xD4)
Reserved
-
-
-
-
-
-
-
-
(0xD3)
Reserved
-
-
-
-
-
-
-
-
(0xD2)
Reserved
-
-
-
-
-
-
-
-
(0xD1)
Reserved
-
-
-
-
-
-
-
-
(0xD0)
Reserved
-
-
-
-
-
-
-
-
(0xCF)
Reserved
-
-
-
-
-
-
-
-
(0xCE)
Reserved
-
-
-
-
-
-
-
-
(0xCD)
Reserved
-
-
-
-
-
-
-
-
(0xCC)
Reserved
-
-
-
-
-
-
-
-
(0xCB)
Reserved
-
-
-
-
-
-
-
-
(0xCA)
Reserved
-
-
-
-
-
-
-
-
(0xC9)
Reserved
-
-
-
-
-
-
-
-
(0xC8)
Reserved
-
-
-
-
-
-
-
-
(0xC7)
Reserved
-
-
-
-
-
-
-
-
(0xC6)
UDR0
(0xC5)
UBRR0H
(0xC4)
UBRR0L
(0xC3)
Reserved
USART0 Data Register
179
USART0 Baud Rate Register High
182
USART0 Baud Rate Register Low
-
-
-
-
-
182
-
-
-
9
2552HS–AVR–11/06
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0xC2)
UCSR0C
-
UMSEL0
UPM01
UPM00
USBS0
UCSZ01
UCSZ00
UCPOL0
181
(0xC1)
UCSR0B
RXCIE0
TXCIE0
UDRIE0
RXEN0
TXEN0
UCSZ02
RXB80
TXB80
180
(0xC0)
UCSR0A
RXC0
TXC0
UDRE0
FE0
DOR0
UPE0
U2X0
MPCM0
179
10
(0xBF)
Reserved
-
-
-
-
-
-
-
-
(0xBE)
Reserved
-
-
-
-
-
-
-
-
(0xBD)
Reserved
-
-
-
-
-
-
-
-
(0xBC)
Reserved
-
-
-
-
-
-
-
-
(0xBB)
Reserved
-
-
-
-
-
-
-
-
(0xBA)
USIDR
(0xB9)
USISR
USISIF
USIOIF
USIPF
USIDC
USICNT3
USICNT2
USICNT1
USICNT0
195
(0xB8)
USICR
USISIE
USIOIE
USIWM1
USIWM0
USICS1
USICS0
USICLK
USITC
196
USI Data Register
194
(0xB7)
Reserved
-
-
-
-
-
-
-
-
(0xB6)
ASSR
-
-
-
EXCLK
AS2
TCN2UB
OCR2UB
TCR2UB
(0xB5)
Reserved
-
-
-
-
-
-
-
-
(0xB4)
Reserved
-
-
-
-
-
-
-
-
(0xB3)
OCR2A
Timer/Counter 2 Output Compare Register A
146
(0xB2)
TCNT2
Timer/Counter2
146
(0xB1)
Reserved
-
-
-
-
-
-
-
-
(0xB0)
TCCR2A
FOC2A
WGM20
COM2A1
COM2A0
WGM21
CS22
CS21
CS20
(0xAF)
Reserved
-
-
-
-
-
-
-
-
147
144
(0xAE)
Reserved
-
-
-
-
-
-
-
-
(0xAD)
Reserved
-
-
-
-
-
-
-
-
(0xAC)
Reserved
-
-
-
-
-
-
-
-
(0xAB)
Reserved
-
-
-
-
-
-
-
-
(0xAA)
Reserved
-
-
-
-
-
-
-
-
(0xA9)
Reserved
-
-
-
-
-
-
-
-
(0xA8)
Reserved
-
-
-
-
-
-
-
-
(0xA7)
Reserved
-
-
-
-
-
-
-
-
(0xA6)
Reserved
-
-
-
-
-
-
-
-
(0xA5)
Reserved
-
-
-
-
-
-
-
-
(0xA4)
Reserved
-
-
-
-
-
-
-
-
(0xA3)
Reserved
-
-
-
-
-
-
-
-
(0xA2)
Reserved
-
-
-
-
-
-
-
-
(0xA1)
Reserved
-
-
-
-
-
-
-
-
(0xA0)
Reserved
-
-
-
-
-
-
-
-
(0x9F)
Reserved
-
-
-
-
-
-
-
-
(0x9E)
Reserved
-
-
-
-
-
-
-
-
(0x9D)
Reserved
-
-
-
-
-
-
-
-
(0x9C)
Reserved
-
-
-
-
-
-
-
-
(0x9B)
Reserved
-
-
-
-
-
-
-
-
(0x9A)
Reserved
-
-
-
-
-
-
-
-
(0x99)
Reserved
-
-
-
-
-
-
-
-
(0x98)
Reserved
-
-
-
-
-
-
-
-
(0x97)
Reserved
-
-
-
-
-
-
-
-
(0x96)
Reserved
-
-
-
-
-
-
-
-
(0x95)
Reserved
-
-
-
-
-
-
-
-
(0x94)
Reserved
-
-
-
-
-
-
-
-
(0x93)
Reserved
-
-
-
-
-
-
-
-
(0x92)
Reserved
-
-
-
-
-
-
-
-
(0x91)
Reserved
-
-
-
-
-
-
-
-
(0x90)
Reserved
-
-
-
-
-
-
-
-
(0x8F)
Reserved
-
-
-
-
-
-
-
-
(0x8E)
Reserved
-
-
-
-
-
-
-
-
(0x8D)
Reserved
-
-
-
-
-
-
-
-
(0x8C)
Reserved
-
-
-
-
-
-
-
-
(0x8B)
OCR1BH
Timer/Counter1 Output Compare Register B High
(0x8A)
OCR1BL
Timer/Counter1 Output Compare Register B Low
130
(0x89)
OCR1AH
Timer/Counter1 Output Compare Register A High
130
(0x88)
OCR1AL
Timer/Counter1 Output Compare Register A Low
130
(0x87)
ICR1H
Timer/Counter1 Input Capture Register High
130
(0x86)
ICR1L
Timer/Counter1 Input Capture Register Low
130
(0x85)
TCNT1H
Timer/Counter1 High
130
(0x84)
TCNT1L
Timer/Counter1 Low
130
130
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0x83)
Reserved
-
-
-
-
-
-
-
-
Page
(0x82)
TCCR1C
FOC1A
FOC1B
-
-
-
-
-
-
129
(0x81)
TCCR1B
ICNC1
ICES1
-
WGM13
WGM12
CS12
CS11
CS10
128
126
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
-
-
WGM11
WGM10
(0x7F)
DIDR1
-
-
-
-
-
-
AIN1D
AIN0D
201
(0x7E)
DIDR0
ADC7D
ADC6D
ADC5D
ADC4D
ADC3D
ADC2D
ADC1D
ADC0D
218
(0x7D)
Reserved
-
-
-
-
-
-
-
-
(0x7C)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
214
(0x7B)
ADCSRB
-
ACME
-
-
-
ADTS2
ADTS1
ADTS0
199/217
(0x7A)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
(0x79)
ADCH
ADC Data Register High
216
217
(0x78)
ADCL
(0x77)
Reserved
-
-
-
ADC Data Register Low
-
-
-
-
-
217
(0x76)
Reserved
-
-
-
-
-
-
-
-
(0x75)
Reserved
-
-
-
-
-
-
-
-
(0x74)
Reserved
-
-
-
-
-
-
-
-
(0x73)
PCMSK3
-
PCINT30
PCINT29
PCINT28
PCINT27
PCINT26
PCINT25
PCINT24
(0x72)
Reserved
-
-
-
-
-
-
-
-
(0x71)
Reserved
-
-
-
-
-
-
-
-
(0x70)
TIMSK2
-
-
-
-
-
-
OCIE2A
TOIE2
(0x6F)
TIMSK1
-
-
ICIE1
-
-
OCIE1B
OCIE1A
TOIE1
131
(0x6E)
TIMSK0
-
-
-
-
-
-
OCIE0A
TOIE0
102
(0x6D)
PCMSK2
PCINT23
PCINT22
PCINT21
PCINT20
PCINT19
PCINT18
PCINT17
PCINT16
58
(0x6C)
PCMSK1
PCINT15
PCINT14
PCINT13
PCINT12
PCINT11
PCINT10
PCINT9
PCINT8
58
(0x6B)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
58
(0x6A)
Reserved
-
-
-
-
-
-
-
-
(0x69)
EICRA
-
-
-
-
-
-
ISC01
ISC00
(0x68)
Reserved
-
-
-
-
-
-
-
-
(0x67)
Reserved
-
-
-
-
-
-
-
-
(0x66)
OSCCAL
(0x65)
Reserved
-
-
-
-
-
-
-
-
(0x64)
PRR
-
-
-
PRLCD
PRTIM1
PRSPI
PSUSART0
PRADC
(0x63)
Reserved
-
-
-
-
-
-
-
-
(0x62)
Reserved
-
-
-
-
-
-
-
-
(0x61)
CLKPR
CLKPCE
-
-
-
CLKPS3
CLKPS2
CLKPS1
CLKPS0
31
(0x60)
WDTCR
-
-
-
WDCE
WDE
WDP2
WDP1
WDP0
46
I
T
H
S
V
N
Z
C
11
Oscillator Calibration Register [CAL7..0]
57
149
55
29
38
0x3F (0x5F)
SREG
0x3E (0x5E)
SPH
Stack Pointer High
0x3D (0x5D)
SPL
Stack Pointer Low
0x3C (0x5C)
Reserved
-
-
-
-
-
-
-
-
0x3B (0x5B)
Reserved
-
-
-
-
-
-
-
-
0x3A (0x5A)
Reserved
-
-
-
-
-
-
-
-
0x39 (0x59)
Reserved
-
-
-
-
-
-
-
-
0x38 (0x58)
Reserved
-
-
-
-
-
-
-
-
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
-
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
271
0x36 (0x56)
Reserved
52/67/244
13
13
0x35 (0x55)
MCUCR
JTD
-
-
PUD
-
-
IVSEL
IVCE
0x34 (0x54)
MCUSR
-
-
-
JTRF
WDRF
BORF
EXTRF
PORF
44
0x33 (0x53)
SMCR
-
-
-
-
SM2
SM1
SM0
SE
38
0x32 (0x52)
Reserved
-
-
-
-
-
-
-
-
0x31 (0x51)
OCDR
IDRD/OCDR7
OCDR6
OCDR5
OCDR4
OCDR3
OCDR2
OCDR1
OCDR0
240
0x30 (0x50)
ACSR
ACD
ACBG
ACO
ACI
ACIE
ACIC
ACIS1
ACIS0
199
0x2F (0x4F)
Reserved
-
-
-
-
-
-
-
-
0x2E (0x4E)
SPDR
0x2D (0x4D)
SPSR
SPIF
WCOL
-
-
-
-
-
SPI2X
159
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
157
0x2B (0x4B)
GPIOR2
General Purpose I/O Register
0x2A (0x4A)
GPIOR1
General Purpose I/O Register
0x29 (0x49)
Reserved
-
-
-
0x28 (0x48)
Reserved
-
-
-
0x27 (0x47)
OCR0A
Timer/Counter0 Output Compare A
102
0x26 (0x46)
TCNT0
Timer/Counter0
101
0x25 (0x45)
Reserved
SPI Data Register
-
-
-
159
24
24
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
11
2552HS–AVR–11/06
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0x24 (0x44)
TCCR0A
FOC0A
WGM00
COM0A1
COM0A0
WGM01
CS02
CS01
CS00
99
0x23 (0x43)
GTCCR
TSM
-
-
-
-
-
PSR2
PSR10
104/151
0x22 (0x42)
EEARH
-
-
-
-
-
0x21 (0x41)
EEARL
EEPROM Address Register Low
0x20 (0x40)
EEDR
EEPROM Data Register
0x1F (0x3F)
EECR
-
-
-
-
EERIE
Page
EEPROM Address Register High
20
20
20
EEMWE
EEWE
EERE
20
0x1E (0x3E)
GPIOR0
0x1D (0x3D)
EIMSK
PCIE3
PCIE2
PCIE1
General Purpose I/O Register
PCIE0
-
-
-
INT0
24
56
0x1C (0x3C)
EIFR
PCIF3
PCIF2
PCIF1
PCIF0
-
-
-
INTF0
57
0x1B (0x3B)
Reserved
-
-
-
-
-
-
-
-
0x1A (0x3A)
Reserved
-
-
-
-
-
-
-
-
0x19 (0x39)
Reserved
-
-
-
-
-
-
-
-
0x18 (0x38)
Reserved
-
-
-
-
-
-
-
-
0x17 (0x37)
TIFR2
-
-
-
-
-
-
OCF2A
TOV2
149
0x16 (0x36)
TIFR1
-
-
ICF1
-
-
OCF1B
OCF1A
TOV1
131
0x15 (0x35)
TIFR0
-
-
-
-
-
-
OCF0A
TOV0
102
0x14 (0x34)
PORTG
-
-
-
PORTG4
PORTG3
PORTG2
PORTG1
PORTG0
88
0x13 (0x33)
DDRG
-
-
-
DDG4
DDG3
DDG2
DDG1
DDG0
88
0x12 (0x32)
PING
-
-
PING5
PING4
PING3
PING2
PING1
PING0
88
0x11 (0x31)
PORTF
PORTF7
PORTF6
PORTF5
PORTF4
PORTF3
PORTF2
PORTF1
PORTF0
87
0x10 (0x30)
DDRF
DDF7
DDF6
DDF5
DDF4
DDF3
DDF2
DDF1
DDF0
87
0x0F (0x2F)
PINF
PINF7
PINF6
PINF5
PINF4
PINF3
PINF2
PINF1
PINF0
87
0x0E (0x2E)
PORTE
PORTE7
PORTE6
PORTE5
PORTE4
PORTE3
PORTE2
PORTE1
PORTE0
87
0x0D (0x2D)
DDRE
DDE7
DDE6
DDE5
DDE4
DDE3
DDE2
DDE1
DDE0
87
0x0C (0x2C)
PINE
PINE7
PINE6
PINE5
PINE4
PINE3
PINE2
PINE1
PINE0
87
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
87
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
87
87
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
0x08 (0x28)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
86
0x07 (0x27)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
86
0x06 (0x26)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
86
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
86
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
86
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
86
0x02 (0x22)
PORTA
PORTA7
PORTA6
PORTA5
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
86
0x01 (0x21)
DDRA
DDA7
DDA6
DDA5
DDA4
DDA3
DDA2
DDA1
DDA0
86
0x00 (0x20)
PINA
PINA7
PINA6
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
86
Note:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega329/3290/649/6490 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used.
12
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Z,C
2
Z,C
2
2
FMULS
Rd, Rr
Fractional Multiply Signed
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
13
2552HS–AVR–11/06
Mnemonics
Operands
Description
Operation
Flags
#Clocks
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
IN
Rd, P
In Port
Rd ← P
None
1
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
SPM
14
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Mnemonics
POP
Operands
Rd
Description
Pop Register from Stack
Operation
Rd ← STACK
Flags
#Clocks
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
15
2552HS–AVR–11/06
Ordering Information
ATmega329
Speed (MHz)(3)
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega329V-8AI
ATmega329V-8AU(2)
ATmega329V-8MI
ATmega329V-8MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega329-16AI
ATmega329-16AU(2)
ATmega329-16MI
ATmega329-16MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
Power Supply
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 138 on page 314 and Figure 139 on page 315.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
16
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
ATmega3290
Speed (MHz)(3)
Power Supply
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega3290V-8AI
ATmega3290V-8AU(2)
100A
100A
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega3290-16AI
ATmega3290-16AU(2)
100A
100A
Industrial
(-40°C to 85°C)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 138 on page 314 and Figure 139 on page 315.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
17
2552HS–AVR–11/06
ATmega649
Speed (MHz)(3)
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega649V-8AI
ATmega649V-8AU(2)
ATmega649V-8MI
ATmega649V-8MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega649-16AI
ATmega649-16AU(2)
ATmega649-16MI
ATmega649-16MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
Power Supply
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 138 on page 314 and Figure 139 on page 315.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
18
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
ATmega6490
Speed (MHz)(3)
Power Supply
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega6490V-8AI
ATmega6490V-8AU(2)
100A
100A
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega6490-16AI
ATmega6490-16AU(2)
100A
100A
Industrial
(-40°C to 85°C)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 138 on page 314 and Figure 139 on page 315.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
19
2552HS–AVR–11/06
Packaging Information
64A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.30
–
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
10/5/2001
R
20
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
REV.
64A
B
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
64M1
D
Marked Pin# 1 ID
E
C
SEATING PLANE
A1
TOP VIEW
A
K
0.08 C
L
Pin #1 Corner
D2
1
2
3
Option A
SIDE VIEW
Pin #1
Triangle
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
Option B
Pin #1
Chamfer
(C 0.30)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
–
0.02
0.05
0.18
0.25
0.30
A1
b
K
Option C
b
e
Pin #1
Notch
(0.20 R)
BOTTOM VIEW
Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
D
8.90
9.00
9.10
D2
5.20
5.40
5.60
E
8.90
9.00
9.10
E2
5.20
5.40
5.60
e
NOTE
0.50 BSC
L
0.35
0.40
0.45
K
1.25
1.40
1.55
5/25/06
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
REV.
G
21
2552HS–AVR–11/06
100A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AED.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.08 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.17
–
0.27
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.50 TYP
10/5/2001
R
22
2325 Orchard Parkway
San Jose, CA 95131
TITLE
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
100A
REV.
C
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Errata
ATmega329 rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega329 rev. B
Not sampled.
ATmega329 rev. A
• LCD contrast voltage too high
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. LCD contrast voltage too high
When the LCD is active and using low power waveform, the LCD contrast voltage
can be too high. This occurs when VCC is higher than VLCD, and when using low
LCD drivetime.
Problem Fix/Workaround
There are several possible workarounds:
- Use normal waveform instead of low power waveform
- Use drivetime of 375 µs or longer
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
23
2552HS–AVR–11/06
ATmega3290 rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega3290 rev. B
Not sampled.
ATmega3290 rev. A
• LCD contrast voltage too high
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. LCD contrast voltage too high
When the LCD is active and using low power waveform, the LCD contrast voltage
can be too high. This occurs when VCC is higher than VLCD, and when using low
LCD drivetime.
Problem Fix/Workaround
There are several possible workarounds:
- Use normal waveform instead of low power waveform
- Use drivetime of 375 µs or longer
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
24
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
ATmega649 rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega6490 rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Wortkaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
25
2552HS–AVR–11/06
Datasheet Revision
History
Please note that the referring page numbers in this section are referring to this document.The referring revision in this section are referring to the document revision.
Rev. 2552H – 11/06
1.
2.
Updated Table 141 on page 318.
Updated note in Table 141 on page 318 and Table 143 on page 319.
1.
2.
3.
4.
5.
Updated Table 55 on page 100, Table 57 on page 100, Table 62 on page
127, Table 64 on page 128, Table 64 on page 128, Table 67 on page 144
and Table 69 on page 145.
Updated “Fast PWM Mode” on page 118.
Updated Features in “USI – Universal Serial Interface” on page 187.
Added “Clock speed considerations.” on page 194.
“Errata” on page 364.
1.
2.
3.
Updated “Calibrated Internal RC Oscillator” on page 28.
Updated “OSCCAL – Oscillator Calibration Register” on page 29
Added Table 143 on page 319.
1.
Updated “Calibrated Internal RC Oscillator” on page 28.
1.
Updated “Errata” on page 364.
1.
2.
3.
4.
Added “Resources” on page 8.
Added Addresses in Registers.
Updated number of General Purpose I/O pins.
Updated code example in “Bit 0 – IVCE: Interrupt Vector Change Enable”
on page 52.
Updated Introduction in “I/O-Ports” on page 59.
Updated “SPI – Serial Peripheral Interface” on page 152.
Updated “Bit 6 – ACBG: Analog Comparator Bandgap Select” on page
201.
Updated Features in “Analog to Digital Converter” on page 203.
Updated “Prescaling and Conversion Timing” on page 206.
Updated features in “LCD Controller” on page 220.
Updated “ATmega329/3290/649/6490 Boot Loader Parameters” on page
280.
Updated “DC Characteristics” on page 310.
Updated “LCD Controller Characteristics – Preliminary Data – TBD” on
page 319.
Rev. 2552G – 07/06
Rev. 2552F – 06/06
Rev. 2552E – 04/06
Rev. 2552D – 03/06
Rev. 2552C – 03/06
5.
6.
7.
8.
9.
10.
11.
12.
13.
26
ATmega329/3290/649/6490
2552HS–AVR–11/06
ATmega329/3290/649/6490
Rev. 2552B – 05/05
1.
4.
5.
6.
7.
8.
MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead
Frame Package QFN/MLF”.
Added “Pin Change Interrupt Timing” on page 54.
Updated Table 104 on page 233, Table 105 on page 234 and Table 137 on
page 299.
Added Figure 131 on page 300.
Updated Figure 92 on page 211 and Figure 124 on page 292.
Updated algorithm “Enter Programming Mode” on page 287.
Added “Supply Current of I/O modules” on page 325.
Updated “Ordering Information” on page 357.
1.
Initial version.
2.
3.
Rev. 2552A –11/04
27
2552HS–AVR–11/06
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, Everywhere You Are®, AVR ®, and AVR Studio ® are
registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
2552HS–AVR–11/06