19-1524; Rev 2; 11/99 MAX2264/MAX2265/MAX2266 Evaluation Kits Each kit is assembled with either the MAX2264, MAX2265 or MAX2266 and incorporates input and output matching components optimized for the 824MHz to 849MHz RF frequency band. These EV kits are capable of operating at RF frequencies from 750MHz to 1000MHz with the appropriate matching components. Features ♦ Easy Evaluation of MAX2264/MAX2265/MAX2266 ♦ +2.7V to +5V Single-Supply Operation ♦ RF Input/Output Matched for 824MHz to 849MHz Operation ♦ All Matching Components Included Ordering Information TEMP. RANGE IC PACKAGE MAX2264EVKIT PART -40°C to +85°C 16 TSSOP-EP* MAX2265EVKIT -40°C to +85°C 16 TSSOP-EP* MAX2266EVKIT *Exposed Paddle -40°C to +85°C 16 TSSOP-EP* MAX2264 EV Kit Component List DESIGNATION QTY DESCRIPTION DESCRIPTION C26 1 100pF ±5% ceramic capacitors (0402) Murata GRM36COG101J50 or Taiyo Yuden UMK105CH101JW GND, VCC 2 Test points IN, OUT 2 SMA connectors (PC edge mount) EF Johnson 142-0701-801 0.01µF ±5% ceramic capacitors (0402) Murata GRM36X7R103J16 or Taiyo Yuden EMK105B103KW JU1, JU2 2 3-pin headers L1 1 3.9nH ±0.3nH inductor (0603) Murata LQG11A3N9S00 L2 1 5.6nH ±2% inductor Coilcraft 1606-6G L3 1 12nH ±5% inductor (0603) Murata LQG11A12NJ00 L4 1 39nH ±5% inductor (0603) Murata LQG11A39NJ00 L5 1 1.2nH ±0.3nH inductor (0603) Murata LQG11A1N2S00 Q1 R1, R3 R2 1 2 1 0Ω resistor (0805) 51kΩ ±5% resistors (0603) 30.1kΩ ±1% resistor (0603) C1 1 C2, C4, C6, C7, C9, C14, C17 7 C3, C5, C8, C13, C16 5 C10 1 5.1pF ±0.1pF porcelain capacitor ATC 100A5R1BW150X 1 10pF ±0.1pF porcelain capacitor ATC 100A100FW150X Mounted with top side aligned six tick marks from the zero tick mark (ruler located to the right of C11; see Figure 3) C11 DESIGNATION QTY 470pF ±5% ceramic capacitor (0603) Murata GRM39COHG471J50 6.2pF ±0.25pF ceramic capacitor (0603) Murata GRM39COG6R2C50 C12 1 4.7pF ±0.1pF ceramic capacitor (0402) Murata GRM39COG4R7B50V C15 0 Not installed C18 1 220pF ±5% ceramic capacitor (0603) Murata GRM39COG221J050 1 7.5kΩ ±1% resistor (0603) 1 10µF ±20%, 16V tantalum capacitor AVX TAJB106M016 R4 C19 R5 1 24.3kΩ ±1% resistor (0603) 0.01µF ±5% ceramic capacitor (0603) Murata GRM39X7R103J50 R7 1 33.2kΩ ±1% resistor (0603) R8, R9, R10 3 0Ω resistors (0603) U1 1 MAX2264EUE (16-pin TSSOP-EP) None 2 Shunts (JU1, JU2) None 1 MAX226X PC board None 1 MAX2264/5/6 data sheet None 1 MAX2264/5/6 EV kits data sheet C20 C21 C22–C25 1 1 100pF ±5% ceramic capacitor (0603) Murata GRM39COG101J50 4 0.1µF ±10% ceramic capacitors (0603) Murata GRM39X7R104K50V or Taiyo Yuden EMK107BJ104KA ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. Evaluate: MAX2264/MAX2265/MAX2266 General Description The MAX2264/MAX2265/MAX2266 evaluation kits (EV kits) simplify evaluation of the MAX2264/MAX2265/ MAX2266 power amplifiers (PAs), which are designed for operation in IS-98-based CDMA, IS-136-based TDMA, and PDC cellular phones operating in the 900MHz range. The kits enable testing of the devices’ RF performance and require no additional support circuitry. The EV kits’ signal inputs and outputs use SMA connectors to facilitate the connection of RF test equipment. Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits MAX2265 EV Kit Component List DESIGNATION QTY C1 C2, C4, C6, C7, C9 C3, C5, C8 C10 C11 C12–C18, C24, C25 C19 5.1pF ±0.25pF ceramic capacitor (0603) Murata GRM39COG5R1C050 GND, VCC 2 IN, OUT 2 5 100pF ±5% ceramic capacitors (0402) Murata GRM36COG101J50 or Taiyo Yuden UMK105CH101JW SMA connectors (PC edge mount) EF Johnson 142-0701-801 JU1, JU2 2 3-pin headers L1 1 L2 1 L3, L5 0 L4 1 39nH ±5% inductor (0603) Murata LQG11A39NJ00 L6 1 2.2nH ±0.3nH inductor (0603) Coilcraft 0402CS-2N2XJBG Q1, R4, R5 0 Not installed R1, R3 2 51kΩ ±5% resistors (0603) R2 1 35.7kΩ ±1% resistor (0603) R7 1 33.2kΩ ±1% resistor (0603) R9, R10 2 0Ω resistors (0603) U1 1 MAX2265EUE (16-pin TSSOP-EP) None 2 Shunts (JU1, JU2) None 1 MAX226X PC board None 1 MAX2264/5/6 data sheet None 1 MAX2264/5/6 EV kits data sheet 3 0.01µF ±5% ceramic capacitors (0402) Murata GRM36X7R103J16 or Taiyo Yuden EMK105B103KW 1 0.01µF ±20% high-Q ceramic capacitor ATC 200A103MW50 1 9.1pF ±0.1pF porcelain capacitor ATC 100A9R1BW150X 0 1 Not installed 10µF ±20%, 16V tantalum capacitor AVX TAJB106M016 0.01µF ±5% ceramic capacitor (0603) Murata GRM39X7R103J50 100pF ±5% ceramic capacitor (0603) Murata GRM39COG101J50 2 0.1µF ±10% ceramic capacitors (0603) Murata GRM39X7R104K50V or Taiyo Yuden EMK107BJ104KA C26 1 470pF ±5% ceramic capacitor (0603) Murata GRM39COG471J50 C27 1 3.3pF ±5% ceramic capacitor (0402) Murata GRM36COG220J050 or Taiyo Yuden UMK1O5CH220JW C22, C23 DESCRIPTION 1 1 C21 DESIGNATION QTY Test points Mouser 151-203 1 C20 DESCRIPTION 5.6nH ±0.3nH inductor (0603) Murata LQG11A5N6S00 5.6nH ±2% inductor Coilcraft 1606-6G Not installed Component Suppliers SUPPLIER 2 PHONE FAX WEB ATC 516-622-4700 516-622-4748 www.atceramics.com AVX 803-946-0690 803-626-3123 www.avx-corp.com Coilcraft 847-639-6400 847-639-1469 www.coilcraft.com EF Johnson 402-474-4800 402-474-4858 www.efjohnson.com Kamaya 219-489-1533 219-489-2261 www.kamaya.com Murata Electronics 800-831-9172 814-238-0490 www.murata.com NEC 408-243-2111 408-243-2410 www.cel.com ROHM 408-433-2225 408-434-0531 www.rohm.com Taiyo Yuden 408-573-4150 408-573-4159 www.t-yuden.com _______________________________________________________________________________________ MAX2264/MAX2265/MAX2266 Evaluation Kits DESIGNATION QTY DESCRIPTION 2 JU1, JU2 2 3-pin headers L1 1 3.9nH ±0.3nH inductor (0603) Murata LQG11A3N9S00 L2 1 5.6nH ±2% inductor Coilcraft 1606-6G 3.9pF ±0.1pF porcelain capacitor ATC 100A3R9BW150X L3 1 4.7nH ±5% inductor (0603) Murata LQG11A4N7J00 7.5pF ±0.1pF porcelain capacitor ATC 100A7R5FW150X Mounted with top side aligned six tick marks from the zero tick mark (ruler located to the right of C11; see Figure 3) L4 1 39nH ±5% inductor (0603) Murata LQG11A39NJ00 L5 1 1.2nH ±0.3nH inductor (0603) Murata LQG11A1N2S00 L6 1 100nH ±5% inductor (0603) Murata LQG11AR10J00 Q2 1 Open collector inverter ROHM DTC143ZE R1, R3 R2 2 1 51kΩ ±5% resistors (0603) 26.1kΩ ±1% resistor (0603) R4 1 7.5kΩ ±1% resistor (0603) 1 1 24.3kΩ ±1% resistor (0603) 10kΩ ±5% resistor (0603) 1 C2, C4, C6, C7, C9, C14, C17 7 100pF ±5% ceramic capacitors (0402) Murata GRM36COG101J50 or Taiyo Yuden UMK105CH101JW C3, C5, C8, C13, C16 5 0.01µF ±5% ceramic capacitors (0402) Murata GRM36X7R103J16 or Taiyo Yuden EMK105B103KW C10 1 1 C12 1 DESCRIPTION IN, OUT C1 C11 DESIGNATION QTY SMA connectors (PC edge mount) EF Johnson 142-0701-801 6.2pF ±0.25pF ceramic capacitor (0603) Murata GRM39COG6R2C50 5.1pF ±0.1pF ceramic capacitor (0402) Murata GRM39COG5R1B50V C15, C27–C30 0 Not installed C18 1 220pF ±5% ceramic capacitor (0603) Murata GRM39COG221J050 C19 1 10µF ±20%, 16V tantalum capacitor AVX TAJB106M016 R5 R6 1 33.2kΩ ±1% resistor (0603) 1 0.01µF ±5% ceramic capacitor (0603) Murata GRM39X7R103J50 R7 C20 R8, R9, R10 3 0Ω resistors (0603) C21 1 100pF ±5% ceramic capacitor (0603) Murata GRM39COG101J50 R11 1 510Ω ±5% resistor (0603) U1 1 MAX2266EUE (16-pin TSSOP-EP) 1 NEC UPG152TA 4 0.1µF ±10% ceramic capacitors (0603) Murata GRM39X7R104K50V or Taiyo Yuden EMK107BJ104KA U2 C22–C25 None 2 Shunts (JU1, JU2) None 1 MAX226Z PC board 470pF ±5% ceramic capacitor (0603) Murata GRM39COHG471J50 None 1 MAX2264/5/6 data sheet None 1 MAX2264/5/6 EV kits data sheet C26 GND, VCC 1 2 Test points _______________________________________________________________________________________ 3 Evaluate: MAX2264/MAX2265/MAX2266 MAX2266 EV Kit Component List Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits _________________________Quick Start The MAX2264/MAX2265/MAX2266 EV kits are fully assembled and factory tested. Follow the instructions in the Connections and Setup section for proper device evaluation. Test Equipment Required This section lists the test equipment recommended to verify operation of the MAX2264/MAX2265/MAX2266. It is intended as a guide only, and some substitutions are possible. • An RF signal generator capable of delivering at least +10dBm of output power at the operating frequency with CDMA modulation (HP E4433G or equivalent) • An RF power sensor capable of handling at least +20dBm of output power at the operating frequency (HP 8482A, or equivalent) • A 20dB high-power attenuator • An RF power meter capable of measuring up to +20dBm of output power at the operating frequency (HP EPM-441A or equivalent) • An RF spectrum analyzer capable of measuring ACPR and covering the MAX2264/MAX2265/ MAX2266’s operating frequency range (Rhodes at Schwartz FSEA20, for example) • A power supply capable of up to 1A at +2.7V to +5V • A high-impedance voltmeter for measuring the actual operating voltage • An ammeter for measuring the supply current (optional) • Two 50Ω SMA cables • A network analyzer (HP 8753D, for example) to measure small-signal return loss and gain (optional) Connections and Setup This section provides a step-by-step guide to operating the EV kits and testing the devices’ functions. Do not turn on the DC power or RF signal generator until all connections are made. 1) Connect a 20dB high-power attenuator to the OUT SMA connector on the EV kit. This will prevent overloading the power sensor and the power meter. 2) Connect a DC supply set to +3.3V (through an ammeter if desired), and connect the voltmeter to the EV kit’s VCC and GND terminals. 3) Connect an RF signal generator to the IN SMA connector. Set the generator for an 836MHz output frequency at a 0dBm power level. 4 4) Connect the power sensor to the power meter. Calibrate the power sensor for 836MHz. Set the power meter offset to compensate the 20dB attenuator plus any cable loss (between 0.5dB and 2dB), and circuit board losses (approximately 0.1dB). 5) Connect a power sensor to the 20dB high-power attenuator. 6) Place the HIGH/LOW jumper (JU1) in the HIGH position and the ON/OFF jumper (JU2) in the ON position. 7) Turn on the DC supply. The supply current should read approximately 80mA to 90mA. 8) Activate the RF generator’s output. Set the RF generator’s output to produce a reading of +28dBm on the power meter. Verify that the voltmeter reads +3.3V. Iteratively adjust the power supply’s output and the RF generator’s output to produce a +3.3V reading on the voltmeter and a reading of 28dBm on the power meter. a) For the MAX2264, the supply current should increase to approximately 580mA. b) For the MAX2265, the supply current should increase to approximately 520mA. c) For the MAX2266, the supply current should increase to approximately 580mA. 9) For the MAX2264/MAX2266 EV kits: a) b) c) d) e) Adjust the RF generator’s output to -10dBm. Turn off the RF generator’s output. Place the HIGH/LOW jumper (JU1) in the LOW position. The supply current reading should drop to approximately 34mA. Activate the RF generator’s output. Adjust the RF generator’s output for a +16.5dBm power meter reading. Iteratively adjust the power supply’s output and the RF generator’s output to produce a reading of +3.3V on the voltmeter and a +16.5dBm reading on the power meter. The supply current should increase to approximately 105mA/70mA (MAX2264/MAX2266). _______________________________________________________________________________________ _______________________________________________________________________________________ VCC LOW HIGH C23 0.1µF OFF ON JU2 R9 0Ω VCC VCC JU1 R10 0Ω C22 0.1µF C26 470pF C9 100pF VCC C7 100pF L4 39nH BIAS1H VCC PWR IN1 5 V CC 4 3 2 1 L2 5.6nH SMA OUT U1 MAX2264 C10 5.1pF 7 BIAS2L 8 OUT1 6 SHDN C5 0.01µF C3 0.01µF R4 7.5k 1% C8 0.01µF R3 51k C6 100pF R2 30.1k 1% C4 100pF C2 100pF R1 51k C12 4.7pF C11 10pF OUT1 BIAS1L OUT0 NFP GND VCC BIA62H IN0 L1 3.9nH 9 10 11 12 13 14 15 16 Q1 0Ω R5 24.3k 1% N.C. C16 0.01µF R7 33.2k 1% L5 1.2nH C17 100pF C18 220pF C13 0.01µF L3 12nH C25 0.1µF R8 0Ω VCC C14 100pF C21 100pF VCC C24 0.1µF C20 0.01µF C19 10µF 16V GND VCC Evaluate: MAX2264/MAX2265/MAX2266 VCC C1 6.2pF SMA IN MAX2264/MAX2265/MAX2266 Evaluation Kits Figure 1. MAX2264 EV Kit Schematic 5 6 VCC LOW HIGH R9 0Ω JU1 C23 0.1µF OFF ON VCC VCC JU2 R10 0Ω C22 0.1µF C26 470pF C9 100pF VCC C7 100pF L4 39nH C8 0.01µF R3 51k C6 100pF C4 100pF R2 35.7k 1% C2 100pF R1 51k C1 5.1pF BIAS1 VCC SHDN IN1 5 V CC 4 L2 5.6nH 8 7 SMA OUT U1 MAX2265 C10 0.01µF OUT1 N.C. 6 SHDN C5 0.01µF C3 0.01µF 3 2 1 SMA IN C11 9.1pF L6 2.2nH OUT1 N.C. N.C. NFP GND N.C. BIAS2H N.C. L1 5.6nH C27 3.3pF 9 10 11 12 13 14 15 16 R7 33.2k 1% VCC C21 100pF C20 0.01µF C19 10µF 16V GND VCC Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits Figure 2. MAX2265 EV Kit Schematic _______________________________________________________________________________________ _______________________________________________________________________________________ VCC C23 0.1µF OFF ON VCC VCC JU2 C22 0.1µF R9 0Ω LOW HIGH VCC R10 0Ω JU1 C9 100pF C3 0.01µF R1 51k L4 39nH 2 3 2 1 C28 4 5 L6 100nH 9 10 11 12 13 14 1 C29 C12 5.1pF C11 7.5pF OUTH BIAS1L OUTL NOISE GND VCC BIAS2 15 16 6 SMA OUT C10 3.9pF MAX2266 U1 IN0 Q2 3 L2 5.6nH 7 BIAS2L 8 OUTH 6 SHDN C5 0.01µF R6 10k BIAS1 VCC PWR IN1 5 V CC 4 C30 100pF VCC R4 7.5k 1% C8 0.01µF R3 51k C6 100pF R2 26.1k 1% C2 100pF C7 100pF C4 100pF C26 470pF L1 3.9nH U2 UPG152TA R11 510Ω R5 24.3k 1% N.C. C16 0.01µF R7 33.2k 1% L5 1.2nH 3 2 1 C17 100pF C18 220pF C13 0.01µF L3 4.7nH C25 0.1µF R8 0Ω C21 100pF VCC C14 100pF VCC C20 0.01µF C24 0.1µF C19 10µF 16V GND VCC Evaluate: MAX2264/MAX2265/MAX2266 VCC C1 6.2pF SMA IN MAX2264/MAX2265/MAX2266 Evaluation Kits Figure 3. MAX2266 EV Kit Schematic 7 Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits Layout Issues A good PC board is an essential part of an RF circuit design. The EV kit PC board can serve as a guide for laying out a board using the MAX2264/MAX2265/MAX2266. Keep traces carrying RF signals as short as possible to minimize radiation and insertion loss due to the PC board. Each VCC node on the PC board should have its own decoupling capacitor. This minimizes supply coupling from one section of the IC to another. Using a star topology for the supply layout, in which each VCC node on the circuit has a separate connection to a central VCC node, can further minimize coupling between sections of the IC. 1.0" Figure 4. MAX2264/MAX2265 EV Kits—Component Placement Guide 1.0" Figure 5. MAX2264/MAX2265 EV Kits PC Board Layout— Component Side 8 1.0" Figure 6. MAX2264/MAX2265 EV Kits PC Board Layout— Ground Plane _______________________________________________________________________________________ MAX2264/MAX2265/MAX2266 Evaluation Kits Evaluate: MAX2264/MAX2265/MAX2266 1.0" 1.0" Figure 7. MAX2264/MAX2265 EV Kits PC Board Layout— Power Plane 1.0" Figure 8. MAX2264/MAX2265 EV Kits PC Board Layout— Solder Side 1.0" Figure 9. MAX2266 EV Kit—Component Placement Guide Figure 10. MAX2266 EV Kit PC Board Layout—Component Side _______________________________________________________________________________________ 9 Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits 1.0" 1.0" Figure 11. MAX2266 EV Kit PC Board Layout—Ground Plane Figure 12. MAX2266 EV Kit PC Board Layout—Power Plane 1.0" Figure 13. MAX2266 EV Kit PC Board Layout—Solder Side 10 ______________________________________________________________________________________ MAX2264/MAX2265/MAX2266 Evaluation Kits Evaluate: MAX2264/MAX2265/MAX2266 NOTES ______________________________________________________________________________________ 11 Evaluate: MAX2264/MAX2265/MAX2266 MAX2264/MAX2265/MAX2266 Evaluation Kits NOTES Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.