VCE IC = = 3300 V 800 A ABB HiPakTM IGBT Module 5SNE 0800E330100 PRELIMINARY Doc. No. 5SYA1562-01 July 07 • Low-loss, rugged SPT chip-set • Smooth switching SPT chip-set for good EMC • Industry standard package • High power density • AlSiC base-plate for high power cycling capability • AlN substrate for low thermal resistance Maximum rated values 1) Parameter Symbol Collector-emitter voltage max Unit VGE = 0 V, Tvj ≥ 25 °C 3300 V IC Tc = 80 °C 800 A Peak collector current ICM tp = 1 ms, Tc = 80 °C 1600 A 20 V Tc = 25 °C, per switch (IGBT) 7700 W Either diode 800 A 1600 A 8000 A 10 µs 6000 V 150 °C Total power dissipation DC forward current VGES Ptot IF Peak forward current IFRM Surge current IFSM -20 VR = 0 V, Tvj = 125 °C, tp = 10 ms, half-sinewave, either diode IGBT short circuit SOA tpsc VCC = 2500 V, VCEM CHIP ≤ 3300 V VGE ≤ 15 V, Tvj ≤ 125 °C Isolation voltage Visol t = 1 min, f = 50 Hz Junction temperature Tvj Junction operating temperature Tvj(op) -40 125 °C Case temperature Tc -40 125 °C Storage temperature Tstg -40 125 °C Mounting torques 2) min DC collector current Gate-emitter voltage 1) VCES Conditions 2) Ms Base-heatsink, M6 screws 4 6 Mt1 Main terminals, M8 screws 8 10 Mt2 Auxiliary terminals, M4 screws 2 3 Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747 For detailed mounting instructions refer to ABB Document No. 5SYA2039 ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Nm 5SNE 0800E330100 IGBT characteristic values 3) Parameter Symbol Conditions min Collector (-emitter) breakdown voltage V(BR)CES VGE = 0 V, IC = 10 mA, Tvj = 25 °C 3300 Collector-emitter 4) saturation voltage VCE sat IC = 800 A, VGE = 15 V typ max Unit V Tvj = 25 °C 2.7 3.1 3.4 V Tvj = 125 °C 3.5 3.8 4.3 V Tvj = 25 °C 8 mA Tvj = 125 °C 80 mA Collector cut-off current ICES VCE = 3300 V, VGE = 0 V Gate leakage current IGES VCE = 0 V, VGE = ±20 V, Tvj = 125 °C -500 500 nA VGE(TO) IC = 160 mA, VCE = VGE, Tvj = 25 °C 5.5 7.5 V Gate-emitter threshold voltage Gate charge Qge Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Turn-on delay time td(on) Rise time Turn-off delay time Fall time Turn-on switching energy Turn-off switching energy Short circuit current tr td(off) tf Eon Eoff ISC IC = 800 A, VCE = 1800 V, VGE = -15 V .. 15 V 7.71 nF 1.48 VCC = 1800 V, IC = 800 A, RG = 2.2 Ω, VGE = ±15 V, Lσ = 100 nH, inductive load Tvj = 25 °C 525 Tvj = 125 °C 525 Tvj = 25 °C 190 Tvj = 125 °C 200 VCC = 1800 V, IC = 800 A, RG = 2.2 Ω, VGE = ±15 V, Lσ = 100 nH, inductive load Tvj = 25 °C 1060 Tvj = 125 °C 1210 Tvj = 25 °C 340 Tvj = 125 °C 460 VCC = 1800 V, IC = 800 A, VGE = ±15 V, RG = 2.2 Ω, Lσ = 100 nH, inductive load Tvj = 25 °C 1000 Tvj = 125 °C 1380 VCC = 1800 V, IC = 800 A, VGE = ±15 V, RG = 2.2 Ω, Lσ = 100 nH, inductive load Tvj = 25 °C 880 Tvj = 125 °C 1250 tpsc ≤ 10 μs, VGE = 15 V, Tvj = 125 °C, VCC = 2500 V, VCEM CHIP ≤ 3300 V Lσ CE Leg 1 + 2 parallel Resistance, terminal-chip RCC’+EE’ Leg 1 + 2 parallel 4) µC 125 VCE = 25 V, VGE = 0 V, f = 1 MHz, Tvj = 25 °C Module stray inductance 3) 8.07 ns ns ns ns mJ mJ 3300 A 15 nH TC = 25 °C 0.09 TC = 125 °C 0.13 mΩ Characteristic values according to IEC 60747 – 9 Collector-emitter saturation voltage is given at chip level ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 2 of 9 5SNE 0800E330100 Diode characteristic values Parameter Forward voltage 5) Symbol VF 6) Reverse recovery current Irr Recovered charge Qrr Reverse recovery time trr Conditions IF = 800 A VCC = 1800 V, IF = 800 A, VGE = ±15 V, RG = 2.2 Ω Lσ = 100 nH inductive load Reverse recovery energy Erec Stray inductance Lσ AC Leg 3 RAA’+CC’ Leg 3 Resistance, terminal-chip 5) 6) min typ max Tvj = 25 °C 2.0 2.3 2.6 Tvj = 125 °C 2.0 2.35 2.6 Tvj = 25 °C 710 Tvj = 125 °C 950 Tvj = 25 °C 500 Tvj = 125 °C 930 Tvj = 25 °C 850 Tvj = 125 °C 1550 Tvj = 25 °C 620 Tvj = 125 °C 1180 0.18 TC = 125 °C 0.26 V A µC ns mJ 30 TC = 25 °C Unit nH mΩ Characteristic values according to IEC 60747 – 2 Forward voltage is given at chip level Thermal properties 7) Parameter Symbol IGBT thermal resistance junction to case Rth(j-c)IGBT 0.013 K/W Diode thermal resistance junction to case Rth(j-c)DIODE 0.025 K/W IGBT thermal resistance case to heatsink 2) Diode thermal resistance case to heatsink 2) 2) Conditions min max Unit Rth(c-s)IGBT IGBT per switch, λ grease = 1W/m x K 0.012 K/W Rth(c-s)DIODE Diode per switch, λ grease = 1W/m x K 0.024 K/W For detailed mounting instructions refer to ABB Document No. 5SYA2039 Mechanical properties Parameter Dimensions 7) Symbol x L W x Conditions H Typical , see outline drawing min typ x max x 190 140 38 Clearance distance in air da according to IEC 60664-1 Term. to base: and EN 50124-1 Term. to term: 23 Surface creepage distance ds according to IEC 60664-1 Term. to base: and EN 50124-1 Term. to term: 33 Mass m 7) typ Unit mm mm 19 mm 32 1380 g Thermal and mechanical properties according to IEC 60747 – 15 ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 3 of 9 5SNE 0800E330100 Electrical configuration Outline drawing 2) Note: all dimensions are shown in mm 2) For detailed mounting instructions refer to ABB Document No. 5SYA2039 This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. IX. This product has been designed and qualified for Industrial Level. ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 4 of 9 5SNE 0800E330100 1600 1600 VCE = 20 V 1400 1400 1200 1200 25 °C 1000 125 °C IC [A] IC [A] 1000 800 600 800 600 125 °C 400 400 200 200 25 °C VGE = 15 V 0 0 0 1 2 3 4 5 0 6 1 2 3 4 Fig. 2 Typical on-state characteristics, chip level 7 8 9 10 11 12 13 Typical transfer characteristics, chip level 1600 1600 17 V 1400 17 V 1400 15 V 15 V 1200 1200 13 V 13 V 11 V 11 V 1000 IC [A] 1000 IC [A] 6 VGE [V] VCE [V] Fig. 1 5 800 800 600 600 400 400 9V 9V 200 200 Tvj = 125 °C Tvj = 25°C 0 0 0 1 2 3 4 5 0 VCE [V] Fig. 3 Typical output characteristics, chip level 1 2 3 4 5 6 7 VCE [V] Fig. 4 Typical output characteristics, chip level ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 5 of 9 5SNE 0800E330100 4.0 7.0 VCC = 1800 V VGE = ±15 V R G = 2.2 ohm Tvj = 125 °C Lσ = 100 nH 3.5 3.0 VCC = 1800 V IC = 800 A VGE = ±15 V Tvj = 125 °C L σ = 100 nH E on 6.0 5.0 E on E off E on, E off [J] E on, E off [J] 2.5 2.0 4.0 3.0 1.5 E off 2.0 1.0 1.0 0.5 E sw [J] = 1.03 x 10 -6 x I C2 + 1.86 x 10 -3 x I C + 419 x 10-3 0.0 0.0 0 400 800 1200 0 1600 5 10 Fig. 5 Typical switching energies per pulse vs collector current Fig. 6 10 25 10 VCC = 1800 V IC = 800 A VGE = ±15 V Tvj = 125 °C L σ = 100 nH tf 1 t d(on) , t r, t d(off) , t f [µs] td(on) , t r, t d(off) , t f [µs] 20 Typical switching energies per pulse vs gate resistor t d(off) t d(on) 0.1 tr td(off) td(on) tr 1 tf VCC = 1800 V RG = 2.2 ohm VGE = ±15 V Tvj = 125 °C Lσ = 100 nH 0.1 0.01 0 400 800 1200 0 1600 Typical switching times vs collector current 5 10 15 20 25 R G [ohm] IC [A] Fig. 7 15 R G [ohm] IC [A] Fig. 8 Typical switching times vs gate resistor ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 6 of 9 5SNE 0800E330100 1000 20 VGE = 0V f OSC = 1 MHz VOSC = 50 mV Cies 15 VCC = 1800 V V GE [V] C [nF] 100 Coes VCC = 2500 V 10 10 5 Cres IC = 800 A Tvj = 25 °C 0 1 0 Fig. 9 5 10 15 20 V CE [V] 25 30 0 35 Typical capacitances vs collector-emitter voltage Fig. 10 1 2 3 4 Q g [µC] 5 6 7 8 Typical gate charge characteristics 2.5 VCC ≤ 2500 V, Tvj = 125 °C VGE = ±15 V, RG = 2.2 ohm 2 ICpulse / I C 1.5 1 0.5 Chip Module 0 0 500 1000 1500 2000 2500 3000 3500 VCE [V] Fig. 11 Turn-off safe operating area (RBSOA) ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 7 of 9 5SNE 0800E330100 1500 1200 Q rr 500 E rec 400 R G = 22 ohm 200 E rec [mJ] = -600 x 10 -6 x I F2 + 1.72 x I F + 190 0 0 0 400 800 1200 0 1600 1 VCC = 1800 V IF = 800 A Tvj = 125 °C L σ = 100 nH 2 3 4 di/dt [kA/µs] IF [A] Fig. 12 R G = 2.7 ohm 600 Irr 250 R G = 3.3 ohm 750 Q rr R G = 5.6 ohm Irr 800 R G = 8.2 ohm 1000 R G = 2.2 ohm 1000 E rec [mJ],I rr [A], Q rr [µC] E rec [mJ], I rr [A], Q rr [µC] 1250 E rec R G = 15 ohm VCC = 1800 V VGE = ±15 V R G = 2.2 ohm Tvj = 125 °C L σ = 100 nH Typical reverse recovery characteristics vs forward current Fig. 13 Typical reverse recovery characteristics vs di/dt 2000 1600 VCC ≤ 2500 V di/dt ≤ 5000 A/µs Tvj = 125 °C 1400 1600 25°C 1200 125°C 1200 IR [A] IF [A] 1000 800 800 600 400 400 200 0 0 0 1 2 3 0 4 Typical diode forward characteristics, chip level 1000 1500 2000 2500 3000 3500 VR [V] VF [V] Fig. 14 500 Fig. 15 Safe operating area diode (SOA) ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. Doc. No. 5SYA1562-01 July 07 page 8 of 9 5SNE 0800E330100 0.1 Analytical function for transient thermal impedance: 0.01 n Z th (j-c) (t) = ∑ R i (1 - e -t/τ i ) Z th(j-c) IGBT 0.001 i 1 2 3 4 IGBT i =1 Ri(K/kW) 8.78 2.06 0.961 0.948 τi(ms) 207.4 30.1 7.55 1.57 DIODE Z th(j-c) [K/W] IGBT, DIODE Z th(j-c) Diode Ri(K/kW) 17.3 4.28 1.92 1.92 τi(ms) 203.6 30.1 7.53 1.57 5 0.0001 0.001 Fig. 16 0.01 0.1 t [s] 1 10 Thermal impedance vs time ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice. ABB Switzerland Ltd Semiconductors Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)58 586 1419 +41 (0)58 586 1306 [email protected] www.abb.com/semiconductors Doc. No. 5SYA1562-01 July 07