19-1160; Rev 1; 8/97 MAX1241 Evaluation System/Evaluation Kit ____________________________Features ♦ Proven PC Board Layout ♦ Complete Evaluation System The MAX1241 evaluation system (EV system) is a complete, low-cost, single-channel data-acquisition system consisting of a MAX1241 EV kit and a Maxim 3V microcontroller (µC) module. IBM PC-compatible software provides a handy user interface to exercise the MAX1241’s features. Source code is provided. Order the EV system for comprehensive evaluation of the MAX1241 using a personal computer. Order the EV kit if you have already purchased the 3V µC module with another Maxim EV system, or for custom use in other µC-based systems. The MAX1241 EV kit evaluates both the MAX1241 and the MAX1240. To evaluate the MAX1240, order a free sample of the MAX1240BCPA along with the MAX1241 EV kit. ♦ Convenient On-Board Test Points __MAX1241 EV Kit Component List MAX1241 EV System _________________________Quick Start DESIGNATION QTY C1 1 0.01µF capacitor DESCRIPTION C2, C3, C6 3 0.1µF capacitors C4 1 4.7µF capacitor C5 1 10µF capacitor C7 1 0.047µF capacitor J1 1 2x20 header J7 1 6-pin header JU1, JU2 2 2-pin headers R1 1 1kΩ resistor U1 1 MAX1241BCPA U2 1 MAX872CPA None 1 PC board __MAX1241 EVL11 Component List QTY 1 1 DESCRIPTION MAX1241EVKIT-DIP 68L11D µC Module (68L11D MODULE) ♦ Data-Logging Software ♦ Source Code Provided ♦ Fully Assembled and Tested _______________Ordering Information PART MAX1241EVKIT-DIP MAX1241EVL11-DIP TEMP. RANGE 0°C to +70°C 0°C to +70°C BOARD TYPE Through-Hole Through-Hole The MAX1241 EV kit is fully assembled and tested. Follow these steps to verify board operation. Do not turn on the power supply until all connections are completed. 1) Copy the files from the distribution disk to your hard disk or to blank floppy disks. The MAX1241 EV kit software should be in its own directory. The necessary files are in the distribution disk’s root directory, and the source code is in the SOURCE subdirectory. The SOURCE subdirectory is not required to operate the EV kit. 2) Make sure that jumper JU1 is open and JU2 is closed (Table 1). 3) Carefully connect the boards by aligning the MAX1241 EV kit’s 40-pin header with the 68L11D module’s 40-pin connector. Gently press them together. The two boards should be flush against one another. 4) Connect a 5V DC power source (16V max) to the µC module. This is located at the terminal block next to the on/off switch, in the upper-right corner of the µC module. Observe the polarity marked on the board. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. Evaluates: MAX1240/MAX1241 ________________General Description The MAX1241 evaluation kit (EV kit) is an assembled and tested PC board that demonstrates the 3V, 12-bit MAX1241 analog-to-digital converter. Evaluates: MAX1240/MAX1241 MAX1241 Evaluation System/Evaluation Kit 5) 6) 7) 8) 9) Connect a cable from the computer’s serial port to the µC module. If using a 9-pin serial port, use a straight-through, 9-pin, female-to-male cable. If the only available serial port uses a 25-pin connector, a standard 25-pin to 9-pin adapter is required. The EV kit software checks the modem status lines (CTS, DSR, DCD) to confirm that the correct port has been selected. Start the MAX1241 software on the IBM PC by setting the current directory to match the directory containing the Maxim programs, then type the program name “MAX1241”. Do not turn off or disconnect the µC module while the program is running; if you do, you will have to restart the program. The program will ask which port the µC module is connected to. Press the space bar until the correct PC serial port is highlighted, then press ENTER. The MAX1241 program will be in terminal-emulation mode. Systems Using 3V and 5V Logic Systems that have both 3V and 5V logic must provide level translation for the MAX1241’s data output. No level translation is necessary on the inputs. Changing the Reference Voltage The MAX872 is a 2.5V reference. To supply a different external reference, open JU2 and apply the reference voltage between VREF and GND. Refer to the MAX1241 data sheet for reference voltage requirements. Table 1. Jumper Settings JUMPER 10) Press ALT+C to switch to the control-panel screen after the RAM resident program has been successfully downloaded. 11) Apply input signals to AIN on the MAX1241 EV kit board. Observe the readout on the screen. Table 2 lists the commands that are available from the control-panel screen. 12) Before turning off power to the MAX1241 EV kit, exit the program by pressing ALT+X. Detailed Description _________________________of Hardware MAX1241 Stand-Alone EV Kit The MAX1241 EV kit provides a proven PC board layout to facilitate evaluation of the MAX1241. It must be interfaced to appropriate timing signals for proper operation. Refer to the MAX1241 data sheet for timing requirements. FUNCTION Closed The µC module controls the state of SHDN. Open (default) Force SHDN to float. Disable internal reference (MAX1240). Closed (default) Drive VREF with on-board MAX872 reference. JU1 Turn on the power for the µC module. The module will display its logon banner and test its RAM. Download and run the RAM resident program on the µC module by pressing ALT+L (i.e., hold down the ALT key as you strike the L key). The program prompts you for the file name. Press the ENTER key to download and run the file. STATE JU2 Open Disconnect MAX872 reference. Use internal reference (MAX1240) or drive VREF pad with a user-supplied reference. Detailed Description ________________________ of Software The software allows the user to control the throughput rate, power-up delay, and reference-range setting. It also provides for data logging. Refer to Table 2 for a complete listing of the available features. The EV kit software program (KIT1241.L11) loaded into the 68L11D module operates at a 6.7ksps throughput. For faster throughput, download the program FAST1241.L11 at step 9 of the MAX1241 EV System Quick Start section. This program has a throughput rate of approximately 14ksps. Evaluating the MAX1240 To evaluate the MAX1240, turn off power to the kit, remove the MAX1241, and replace it with a MAX1240BCPA. Select the internal reference by opening JU2 and closing JU1. 2 _______________________________________________________________________________________ MAX1241 Evaluation System/Evaluation Kit KEY FUNCTION C Display the input codes in decimal format. D Delay between samples. Delays longer than one second are handled by the IBM PC; otherwise, the µC module handles the delay. Timing is approximate and should be verified with an oscilloscope. L Enable or disable data logging. If the -L command-line option was not specified, the L command prompts for a log-file name. O Oscilloscope demo. Samples are collected and discarded as quickly as possible. Observe waveforms and timing with an oscilloscope. P Power-up delay. Timing is approximate and should be verified with an oscilloscope. When VREF = VDD, power-up delay is not necessary and should be set to zero. Power-up delay is used regardless of which power-cycling mode is selected. S Sample the input at high speed. The sampling rate is controlled by the P and D delays. Due to program overhead, the O and S commands operate at different rates. Timing should be verified with an oscilloscope. V Display the input voltages. F3 Write a marker into the data-log file. F5 Change the assumed value of VREF. ↑, ↓ Evaluates: MAX1240/MAX1241 Table 2. Command Reference Table 3. Command-Line Options when Starting MAX1241 Software COMMAND FUNCTION 1 Default to COM1 PC serial port. 2 Default to COM2 PC serial port. MONO For use with LCD or monochrome display. -Lfilename Open file “filename” for data logging, and enable the data-logging commands. VREF vvv Specify the actual measured voltage at the REF pin (nominally 2.5V). ? List command-line options. Select power-down mode. ALT+T Switch back to terminal mode. ALT+X Exit to DOS. _______________________________________________________________________________________ 3 Evaluates: MAX1240/MAX1241 MAX1241 Evaluation System/Evaluation Kit TO 68L11D MODULE GND GND J1-1 GND J1-2 GND J1-3 GND J1-4 VDD J1-7 VDD J1-8 VDD C5 10µF VDD PA1/IN2 J1-28 PA3/IN4/OUT5 J1-30 VDD SHDN SCLK MAX1241 JU1 PA3/SHDN 3 6 PA6/OUT2 J1-33 PA7/PAL/OUT1 J1-34 MISO SCK J1-35 J1-37 J1-38 C2 0.1µF U2 CS 8 DOUT 7 1 SHDN VDD DOUT AIN REF SCLK GND CS R1 1k 2 4 C1 0.01µF 5 GND DOUT SCLK C3 0.1µF U1 VDD CS TEST POINTS 2 J7-1 GND J7-2 VDD J7-3 SCLK J7-4 CS J7-5 DOUT J7-6 SHDN C6 0.1µF C4 4.7µF MAX872CPA 1 COMP VOUT GND 8 7 VIN 3 4 6 C7 0.047µF JU2 5 Figure 1. MAX1241 EV Kit Schematic 4 AIN _______________________________________________________________________________________ VREF (2.5V NOMINAL) MAX1241 Evaluation System/Evaluation Kit Evaluates: MAX1240/MAX1241 1.0" Figure 2. MAX1241 EV Kit Component Placement Guide _______________________________________________________________________________________ 5 Evaluates: MAX1240/MAX1241 MAX1241 Evaluation System/Evaluation Kit 1.0" Figure 3. MAX1241 EV Kit PC Board Layout—Component Side 6 _______________________________________________________________________________________ MAX1241 Evaluation System/Evaluation Kit Evaluates: MAX1240/MAX1241 1.0" Figure 4. MAX1241 EV Kit PC Board Layout—Solder Side _______________________________________________________________________________________ 7 Evaluates: MAX1240/MAX1241 MAX1241 Evaluation System/Evaluation Kit NOTES 8 _______________________________________________________________________________________ 68L11D Module ____________________Component List DESIGNATION QTY DESCRIPTION C1, C2 2 22pF ceramic capacitors C3 1 0.01µF ceramic capacitor C4–C9, C12–C18 13 0.1µF ceramic capacitors C10, C11 2 22µF, 20V tantalum capacitors D1 1 1N4001 diode J1 1 40-pin, right-angle header ____________________Getting Started J2 1 2-circuit terminal block All system components are guaranteed by their various manufacturers over the +3V to +3.6V power-supply range. Not all system components are guaranteed over the entire 2.5V to 5V V DD power-supply adjustment range. Verify correct operation using the following procedures: 1) Connect a +5V DC power source (16V max) to the µC module at the terminal block located next to the on/off switch, in the upper-right corner of the µC module. Turn the power switch on. 2) Connect a cable from the computer’s serial port to the µC module. If using a 9-pin serial port, use a straight-through, 9-pin, female-to-male cable. If the only available serial port uses a 25-pin connector, a standard 25-pin to 9-pin adapter is required. 3) Start the evaluation kit software on the IBM PC. When the program asks which port the µC module is connected to, press the space bar until the correct port is highlighted, and then press ENTER. The software will be in terminal-emulation mode. (If using a generic terminal-emulation program instead of Maxim EV kit software, select 1200 baud, eight-bit character, no parity, one stop bit. Send a space character to start the monitor program.) 4) Adjust trim potentiometer R2 for the desired VDD supply voltage. Measure V DD between test point TP1 and ground. The mounting hole next to R2 is grounded. 5) To verify correct system operation, press the ESC key, type a capital “T”, and then select the countdown memory test. If the memory test fails or any other malfunction is reported, the VDD voltage is too low; increase VDD and repeat from step 4. 6) Turn the power switch off and connect the µC board to an appropriate Maxim EV kit board. J3 1 DB9 right-angle socket JU1, JU2 2 Open LED1 1 Light-emitting diode R1 1 10MΩ, 5% resistor R2 1 100kΩ potentiometer R3 1 274kΩ, 1% resistor R4 1 133kΩ, 1% resistor R5 1 200Ω, 5% resistor R6 1 10kΩ SIP resistor pack, pin 1 common SW1 1 Slide switch SW2 1 Momentary push-button switch U1 1 Motorola MC68L11D0FN2 U2 1 Maxim MAX3232CSE U3 1 74HC00 U4 1 Maxim MAX667CSA U5 1 32k x 8 static RAM 28-pin socket Motorola MCM6306DJ15 U10 1 28-pin socket U6 1 74HCT245 U7 1 Maxim MAX708RCSA U8 1 74HC573 U9 1 74HC139 U10 1 3V, 8k x 8 ROM Y1 1 8MHz crystal ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. 68L11D Module _______________General Description The 68L11D module is an assembled and tested PC board intended for use with Maxim’s low-voltage dataacquisition evaluation kits (EV kits). The module uses Motorola’s MC68L11D0FN2 microcontroller (µC) to collect data samples using the SPI interface. It requires an IBM PC computer and an external DC power supply of +5V to +16V, or as specified in the appropriate EV kit manual. Maxim’s 68L11D module allows customers to evaluate selected Maxim products. It is not intended to be a microprocessor development platform, and Maxim does not support such use. 68L11D Module 68L11D Module _______________Detailed Description Power Requirements The 68L11D module draws its power from a user-supplied power source connected to terminal block J2. Note the positive and negative markings on the board. Nominal input voltages should be between +5V and +16V. The input current requirement for the 68L11D module is typically 20mA plus the current drawn by the evaluation kit (EV kit). The VDD supply is set by U4, a MAX667 low-dropout CMOS regulator. Trim potentiometer R2 sets the supply voltage, with an adjustment range of approximately 2.5V to 5V. Although the board is designed primarily for 3V applications, all of the circuitry is rated to withstand 5V levels. 68L11D Microcontroller (µC) Module Hardware U1 is Motorola’s 68L11D µC. Contact Motorola for µC information, development, and support. A MAX708R supervisory circuit on the module monitors the VDD logic supply, generates the power-on reset, and produces a reset pulse whenever the manual reset button (SW2) is pressed. Note that the MAX708R resets the CPU if the supply voltage falls below 2.66V. The module provides 32kbytes of external CMOS static RAM (U5). The 74HCT245 octal buffer (U6) provides access to an eight-bit port on the 40-pin interface connector. This memory-mapped port consists of Intel-compatible read and write strobes, four chip selects, four address LSB's, and eight data bits. Table 3 lists the address ranges for each of the memory-mapped elements on the 68L11D module. The MAX3232 is a 3V-powered, RS-232 interface voltage-level shifter. Its built-in charge pump uses external capacitors to generate the output voltages necessary to drive RS-232 lines. 2 The 20 x 2-pin header (J1) connects the 68L11D module to a Maxim EV kit. Table 2 lists the function of each pin. Use the 68L11D module only with EV kits that are designed to support it, and download only code that is targeted for the Maxim 68L11D module. Downloading incorrect object code into the 68L11D module will produce unpredictable results. The 8k x 8 boot ROM (U10) checks the system and waits for commands from the host. Refer to the EV kit manual for specific startup procedures. Software All software is supplied on a disk with the EV kit. Software operating instructions are included in the EV kit manual. Serial Communications J3 is an RS-232 serial port, designed to be compatible with the IBM PC 9-pin serial port. Use a straight-through DB9 male-to-female cable to connect J3 to the IBM PC serial port. If the only available serial port has a 25-pin connector, use a standard 25-pin to 9-pin adapter. Table 1 shows J3’s pinout. The hardware-handshake lines are used by the evaluation software to confirm that the EV kit is connected to the correct serial port. Table 1. Serial Communications Port J3 PIN 1 NAME DCD FUNCTION Handshake; hard-wired to DTR and DSR 2 RXD RS-232-compatible data output from 68L11D module 3 TXD RS-232-compatible data input to 68L11D module 4 DTR Handshake; hard-wired to DCD and DSR 5 GND Signal ground connection 6 DSR Handshake; hard-wired to DCD and DTR 7 RTS Handshake; hard-wired to CTS 8 9 CTS None Handshake; hard-wired to RTS Unused _______________________________________________________________________________________ 68L11D Module PIN 1–4 NAME GND 5, 6 V++ FUNCTION Ground 9 RD Unregulated input voltage VDD from on-board MAX667 regulator Read strobe 10 WR Write strobe 11 CS0 Chip select for 8000-8FFF 12 CS1 Chip select for 9000-9FFF 13 CS2 Chip select for A000-AFFF 7, 8 VDD Table 3. 68L11D Module Memory Map ADDRESS RANGE (HEX) FUNCTION 0000-7FFF User RAM area (U5) 8000-8FFF External chip-select 0 (J1 pin 11) 9000-9FFF External chip-select 1 (J1 pin 12) A000-AFFF External chip-select 2 (J1 pin 13) B000-BFFF External chip-select 3 (J1 pin 14) C000-C03F Unused C040-C0FF Internal RAM (U1) Unused Chip select for B000-BFFF 15 CS3 ADDR0 C100-CFFF Address bit 0 (LSB) D000-D03F Internal register area (U1) 16 ADDR1 Address bit 1 D040-DFFF Unused 17 ADDR2 Address bit 2 E000-FFFF Boot ROM (U10) 18 ADDR3 Address bit 3 14 19 DB0 20–26 DB1–DB7 27 PA0/IC3 General I/O port bit 0 (LSB) 28 PA1/IC2 General I/O port 29 PA2/IC1 General I/O port 30 PA3/IC4/OC5 General I/O port 31 PA4/OC4 General I/O port 32 PA5/OC3 General I/O port 33 PA6/OC2 General I/O port 34 PA7/OC1/PAI 35 MISO SPI master-in, slave-out 36 MOSI SPI master-out, slave-in 37 SCK SPI serial clock 38 RESERVED 39 40 E SS 68L11D Module Table 2. 40-Pin Data-Connector Signals Data bus bit 0 (LSB) Data bus bits 1–7 General I/O port MSB Reserved for factory use System E-clock output SPI slave-select input _______________________________________________________________________________________ 3 68L11D Module 68L11D Module J2 VPREREG D1 1N4001 VDD U4 SW1 C10 22µF 20V 1 2 VDD VDD 3 C16 4 C13 C12 0.1µF 0.1µF TXD 1 3 4 5 16 VCC C1+ C1C2+ C2- U2 V+ MAX3232 V- C14 2 C15 6 11 T1 T2 12 LBI J3-7 RTS 14 J3-2 RXD 7 J3-3 TXD SHDN 7 6 1.255V R2 100k 5 R4 133k 1% C3 0.01µF C4 0.1µF VDD VCC U7 J3-4 DTR 8 R2 VSET GND MAX708R 1 J3-6 DSR 9 LBO C11 22µF 20V R3 274k 1% 0.1µF 13 R1 VOUT 8 VDD J3-8 CTS 0.1µF 10 RXD 0.1µF DD MAX667 VIN PFO MR SW2 RESET NC J3-1 DCD RESET GND 4 15 J3-5 GND PFI GND 3 RESET 5 6 8 7 RESET J3-9 RI POWER CONNECTIONS U1 GND VDD 1, 2 22 PA0/IN3 PA1/IN2 PA2/IN1 PA3/IN4/OUT5 PA4/OUT4 PA5/OUT3 PA6/OUT2 PA7/OUT1/PULSE ACCIN VDD C17 0.1µF RXD TXD MISO MOSI SCK SS C2 22pF Y1 8.00MHz C1 22pF R1 10M RESET XIRQ IRQ E 30 29 28 27 26 25 24 23 16 17 18 19 20 21 14 11 15 44 43 42 3 PA0 PC0 U1 4 PA1 PC1 5 PA2 PC2 MC68L11D0FN2 PC3 6 PA3 7 PA4 PC4 8 PA5 PC5 9 PA6 PC6 10 PA7 PC7 13 PD6/AS PD0/RXD PD1/TXD 12 PD7/R/W 39 PD2/MISO PB0 38 PD3/MOSI PD4/SCK PB1 37 PD5/SS PB2 36 PB3 35 RESET PB4 34 XIRQ/VPP PB5 33 IRQ/CE PB6 32 PB7 XTAL 41 EXTAL MODA/LIR 40 E MODB/VSTBY Figure 1. 68L11D Module Schematic Diagram 4 _______________________________________________________________________________________ D0 D1 D2 D3 D4 D5 D6 D7 AS R/W A8 A9 A10 A11 A12 A13 A14 A15 MODA MODB 68L11D Module 68L11D Module U9A 74HC139 A14 A15 2 3 A0 A1 Y0 Y1 Y2 GND VDD 1 E Y3 4 5 6 IOBUFFER 7 CS-11XXX U9B 74HC139 C5 0.1µF A12 14 A0 Y0 A13 13 A1 Y1 Y2 IOBUFFER 15 E Y3 12 CSAXXX 9 U3A 2 CS9XXX 10 1 R/W CS8XXX 11 A15 RD WR CSBXXX 3 R/W 74HC00 4 R/W VDD 6 RD U3B 5 E 74HC00 C6 0.1µF 9 R/W U3C 10 E 8 WR 74HC00 12 E U3D 13 A13 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 11 DATA-XX1X A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 VDD VDD CS-11XXX 10 9 8 7 6 5 4 3 25 24 21 23 2 26 1 A0 U5 A1 A2 32 x 8 STATIC RAM A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 20 22 27 CS OE WE 10 9 8 7 6 5 4 3 25 24 21 23 2 26 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 27 1 22 20 PGM VPP OE CE 10 U10 9 8 27LV64 8k x 8 ROM 7 6 5 4 3 25 24 21 23 2 26 I/0 I/1 I/2 I/3 I/4 I/5 I/6 I/7 11 12 13 15 16 17 18 19 D0 D1 D2 D3 D4 D5 D6 D7 VDD C7 0.1µF DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 11 12 13 15 16 17 18 19 D0 D1 D2 D3 D4 D5 D6 D7 VDD C8 0.1µF 74HC00 POWER CONNECTIONS GND AS D0 D1 D2 D3 D4 D5 D6 D7 1 OE 11 C U8 2 3 4 5 6 7 8 9 VDD 74HC573 D0 D1 D2 D3 D4 D5 D6 D7 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 19 18 17 16 15 14 13 12 A0 A1 A2 A3 A4 A5 A6 A7 GND U3 14 7 U5 28 14 U8 20 10 U9 16 8 U10 28 14 VDD C18 0.1µF Figure 1. 68L11D Module Schematic Diagram (continued) _______________________________________________________________________________________ 5 68L11D Module 68L11D Module VDD R5 200Ω GND LED1 19 1 OE DIR U6 IOBUFFER RD 2 3 4 5 6 7 8 9 D0 D1 D2 D3 D4 D5 D6 D7 U6 VDD GND 20 10 VDD 74HCT245 18 B1 A1 A2 A3 A4 A5 A6 A7 A8 B2 B3 B4 B5 B6 B7 B8 17 16 15 14 13 12 11 EXTD0 EXTD1 EXTD2 EXTD3 EXTD4 EXTD5 EXTD6 EXTD7 C9 0.1µF VDD R6A 10k 2 XIRQ GND J1-1 J1-2 GND GND J1-3 J1-4 GND VPREREG J1-5 J1-6 VPREREG VDD J1-7 J1-8 VDD RD J1-9 J1-10 WR CS8XXX J1-11 J1-12 CS9XXX CSAXXX J1-13 J1-14 CSBXXX A0 J1-15 J1-16 A1 A2 J1-17 J1-18 A3 EXTD0 J1-19 J1-20 EXTD1 EXTD2 J1-21 J1-22 EXTD3 EXTD4 J1-23 J1-24 EXTD5 EXTD6 J1-25 J1-26 EXTD7 PA0/IN3 J1-27 J1-28 PA1/IN2 PA2/IN1 J1-29 J1-30 PA3/IN4/OUT5 PA4/OUT4 J1-31 J1-32 PA5/OUT3 PA6/OUT2 J1-33 J1-34 PA7/OUT1/PULSE ACCIN MISO J1-35 J1-36 SCK J1-37 J1-38 E J1-39 J1-40 VDD MOSI 8 RESERVED SS 7 R6F R6G 10k 10k VDD R6E 10k R6H 10k R6I 10k VDD 6 9 10 R6B 10k R6C 10k R6D 10k SS 3 4 IRQ JU1 MODA MODA MODB 5 JU2 MODB Figure 1. 68L11D Module Schematic Diagram (continued) 6 _______________________________________________________________________________________ 68L11D Module 68L11D Module Figure 2. 68L11D Module Component Placement Guide Figure 3. 68L11D Module PC Board Layout—Component Side _______________________________________________________________________________________ 7 68L11D Module 68L11D Module Figure 4. 68L11D Module PC Board Layout—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.