MAXIM MAX1241EVKIT

19-1160; Rev 1; 8/97
MAX1241 Evaluation System/Evaluation Kit
____________________________Features
♦ Proven PC Board Layout
♦ Complete Evaluation System
The MAX1241 evaluation system (EV system) is a complete, low-cost, single-channel data-acquisition system
consisting of a MAX1241 EV kit and a Maxim 3V microcontroller (µC) module. IBM PC-compatible software
provides a handy user interface to exercise the
MAX1241’s features. Source code is provided.
Order the EV system for comprehensive evaluation of
the MAX1241 using a personal computer. Order the EV
kit if you have already purchased the 3V µC module
with another Maxim EV system, or for custom use in
other µC-based systems.
The MAX1241 EV kit evaluates both the MAX1241 and
the MAX1240. To evaluate the MAX1240, order a free
sample of the MAX1240BCPA along with the MAX1241
EV kit.
♦ Convenient On-Board Test Points
__MAX1241 EV Kit Component List
MAX1241 EV System
_________________________Quick Start
DESIGNATION
QTY
C1
1
0.01µF capacitor
DESCRIPTION
C2, C3, C6
3
0.1µF capacitors
C4
1
4.7µF capacitor
C5
1
10µF capacitor
C7
1
0.047µF capacitor
J1
1
2x20 header
J7
1
6-pin header
JU1, JU2
2
2-pin headers
R1
1
1kΩ resistor
U1
1
MAX1241BCPA
U2
1
MAX872CPA
None
1
PC board
__MAX1241 EVL11 Component List
QTY
1
1
DESCRIPTION
MAX1241EVKIT-DIP
68L11D µC Module (68L11D MODULE)
♦ Data-Logging Software
♦ Source Code Provided
♦ Fully Assembled and Tested
_______________Ordering Information
PART
MAX1241EVKIT-DIP
MAX1241EVL11-DIP
TEMP. RANGE
0°C to +70°C
0°C to +70°C
BOARD TYPE
Through-Hole
Through-Hole
The MAX1241 EV kit is fully assembled and tested.
Follow these steps to verify board operation. Do not
turn on the power supply until all connections are
completed.
1) Copy the files from the distribution disk to your hard
disk or to blank floppy disks. The MAX1241 EV kit
software should be in its own directory. The necessary files are in the distribution disk’s root directory,
and the source code is in the SOURCE subdirectory. The SOURCE subdirectory is not required to
operate the EV kit.
2) Make sure that jumper JU1 is open and JU2 is
closed (Table 1).
3) Carefully connect the boards by aligning the
MAX1241 EV kit’s 40-pin header with the 68L11D
module’s 40-pin connector. Gently press them
together. The two boards should be flush against
one another.
4) Connect a 5V DC power source (16V max) to the µC
module. This is located at the terminal block next to
the on/off switch, in the upper-right corner of the µC
module. Observe the polarity marked on the board.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 408-737-7600 ext. 3468.
Evaluates: MAX1240/MAX1241
________________General Description
The MAX1241 evaluation kit (EV kit) is an assembled
and tested PC board that demonstrates the 3V, 12-bit
MAX1241 analog-to-digital converter.
Evaluates: MAX1240/MAX1241
MAX1241 Evaluation System/Evaluation Kit
5)
6)
7)
8)
9)
Connect a cable from the computer’s serial port to
the µC module. If using a 9-pin serial port, use a
straight-through, 9-pin, female-to-male cable. If the
only available serial port uses a 25-pin connector, a
standard 25-pin to 9-pin adapter is required. The
EV kit software checks the modem status lines
(CTS, DSR, DCD) to confirm that the correct port
has been selected.
Start the MAX1241 software on the IBM PC by setting the current directory to match the directory
containing the Maxim programs, then type the program name “MAX1241”. Do not turn off or disconnect the µC module while the program is running; if
you do, you will have to restart the program.
The program will ask which port the µC module is
connected to. Press the space bar until the correct
PC serial port is highlighted, then press ENTER.
The MAX1241 program will be in terminal-emulation
mode.
Systems Using 3V and 5V Logic
Systems that have both 3V and 5V logic must provide
level translation for the MAX1241’s data output. No level
translation is necessary on the inputs.
Changing the Reference Voltage
The MAX872 is a 2.5V reference. To supply a different
external reference, open JU2 and apply the reference
voltage between VREF and GND. Refer to the MAX1241
data sheet for reference voltage requirements.
Table 1. Jumper Settings
JUMPER
10) Press ALT+C to switch to the control-panel screen
after the RAM resident program has been successfully downloaded.
11) Apply input signals to AIN on the MAX1241 EV kit
board. Observe the readout on the screen. Table 2
lists the commands that are available from the control-panel screen.
12) Before turning off power to the MAX1241 EV kit, exit
the program by pressing ALT+X.
Detailed Description
_________________________of Hardware
MAX1241 Stand-Alone EV Kit
The MAX1241 EV kit provides a proven PC board layout
to facilitate evaluation of the MAX1241. It must be interfaced to appropriate timing signals for proper operation. Refer to the MAX1241 data sheet for timing
requirements.
FUNCTION
Closed
The µC module controls the
state of SHDN.
Open
(default)
Force SHDN to float. Disable
internal reference (MAX1240).
Closed
(default)
Drive VREF with on-board
MAX872 reference.
JU1
Turn on the power for the µC module. The module
will display its logon banner and test its RAM.
Download and run the RAM resident program on
the µC module by pressing ALT+L (i.e., hold down
the ALT key as you strike the L key). The program
prompts you for the file name. Press the ENTER key
to download and run the file.
STATE
JU2
Open
Disconnect MAX872 reference. Use internal reference
(MAX1240) or drive VREF
pad with a user-supplied
reference.
Detailed Description
________________________ of Software
The software allows the user to control the throughput
rate, power-up delay, and reference-range setting. It
also provides for data logging. Refer to Table 2 for a
complete listing of the available features.
The EV kit software program (KIT1241.L11) loaded into
the 68L11D module operates at a 6.7ksps throughput.
For faster throughput, download the program
FAST1241.L11 at step 9 of the MAX1241 EV System
Quick Start section. This program has a throughput rate
of approximately 14ksps.
Evaluating the MAX1240
To evaluate the MAX1240, turn off power to the kit,
remove the MAX1241, and replace it with a
MAX1240BCPA. Select the internal reference by opening JU2 and closing JU1.
2
_______________________________________________________________________________________
MAX1241 Evaluation System/Evaluation Kit
KEY
FUNCTION
C
Display the input codes in decimal format.
D
Delay between samples. Delays longer than one
second are handled by the IBM PC; otherwise,
the µC module handles the delay. Timing is
approximate and should be verified with an
oscilloscope.
L
Enable or disable data logging. If the -L
command-line option was not specified, the L
command prompts for a log-file name.
O
Oscilloscope demo. Samples are collected and
discarded as quickly as possible. Observe
waveforms and timing with an oscilloscope.
P
Power-up delay. Timing is approximate and
should be verified with an oscilloscope. When
VREF = VDD, power-up delay is not necessary
and should be set to zero. Power-up delay is
used regardless of which power-cycling mode is
selected.
S
Sample the input at high speed. The sampling
rate is controlled by the P and D delays. Due to
program overhead, the O and S commands
operate at different rates. Timing should be verified with an oscilloscope.
V
Display the input voltages.
F3
Write a marker into the data-log file.
F5
Change the assumed value of VREF.
↑, ↓
Evaluates: MAX1240/MAX1241
Table 2. Command Reference
Table 3. Command-Line Options when
Starting MAX1241 Software
COMMAND
FUNCTION
1
Default to COM1 PC serial port.
2
Default to COM2 PC serial port.
MONO
For use with LCD or monochrome display.
-Lfilename
Open file “filename” for data logging, and
enable the data-logging commands.
VREF vvv
Specify the actual measured voltage at the REF
pin (nominally 2.5V).
?
List command-line options.
Select power-down mode.
ALT+T
Switch back to terminal mode.
ALT+X
Exit to DOS.
_______________________________________________________________________________________
3
Evaluates: MAX1240/MAX1241
MAX1241 Evaluation System/Evaluation Kit
TO 68L11D MODULE
GND
GND
J1-1
GND
J1-2
GND
J1-3
GND
J1-4
VDD
J1-7
VDD
J1-8
VDD
C5
10µF
VDD
PA1/IN2
J1-28
PA3/IN4/OUT5 J1-30
VDD
SHDN
SCLK
MAX1241
JU1
PA3/SHDN
3
6
PA6/OUT2
J1-33
PA7/PAL/OUT1 J1-34
MISO
SCK
J1-35
J1-37
J1-38
C2
0.1µF
U2
CS
8
DOUT
7
1
SHDN
VDD
DOUT
AIN
REF
SCLK
GND
CS
R1
1k
2
4
C1
0.01µF
5
GND
DOUT
SCLK
C3
0.1µF
U1
VDD
CS
TEST POINTS
2
J7-1
GND
J7-2
VDD
J7-3
SCLK
J7-4
CS
J7-5
DOUT
J7-6
SHDN
C6
0.1µF
C4
4.7µF
MAX872CPA
1
COMP
VOUT
GND
8
7
VIN
3
4
6
C7
0.047µF
JU2
5
Figure 1. MAX1241 EV Kit Schematic
4
AIN
_______________________________________________________________________________________
VREF
(2.5V NOMINAL)
MAX1241 Evaluation System/Evaluation Kit
Evaluates: MAX1240/MAX1241
1.0"
Figure 2. MAX1241 EV Kit Component Placement Guide
_______________________________________________________________________________________
5
Evaluates: MAX1240/MAX1241
MAX1241 Evaluation System/Evaluation Kit
1.0"
Figure 3. MAX1241 EV Kit PC Board Layout—Component Side
6
_______________________________________________________________________________________
MAX1241 Evaluation System/Evaluation Kit
Evaluates: MAX1240/MAX1241
1.0"
Figure 4. MAX1241 EV Kit PC Board Layout—Solder Side
_______________________________________________________________________________________
7
Evaluates: MAX1240/MAX1241
MAX1241 Evaluation System/Evaluation Kit
NOTES
8
_______________________________________________________________________________________
68L11D Module
____________________Component List
DESIGNATION QTY
DESCRIPTION
C1, C2
2
22pF ceramic capacitors
C3
1
0.01µF ceramic capacitor
C4–C9,
C12–C18
13
0.1µF ceramic capacitors
C10, C11
2
22µF, 20V tantalum capacitors
D1
1
1N4001 diode
J1
1
40-pin, right-angle header
____________________Getting Started
J2
1
2-circuit terminal block
All system components are guaranteed by their various
manufacturers over the +3V to +3.6V power-supply
range. Not all system components are guaranteed over
the entire 2.5V to 5V V DD power-supply adjustment
range. Verify correct operation using the following
procedures:
1) Connect a +5V DC power source (16V max) to the
µC module at the terminal block located next to the
on/off switch, in the upper-right corner of the µC
module. Turn the power switch on.
2) Connect a cable from the computer’s serial port to
the µC module. If using a 9-pin serial port, use a
straight-through, 9-pin, female-to-male cable. If the
only available serial port uses a 25-pin connector, a
standard 25-pin to 9-pin adapter is required.
3) Start the evaluation kit software on the IBM PC.
When the program asks which port the µC module is
connected to, press the space bar until the correct
port is highlighted, and then press ENTER. The software will be in terminal-emulation mode. (If using a
generic terminal-emulation program instead of
Maxim EV kit software, select 1200 baud, eight-bit
character, no parity, one stop bit. Send a space
character to start the monitor program.)
4) Adjust trim potentiometer R2 for the desired VDD
supply voltage. Measure V DD between test point
TP1 and ground. The mounting hole next to R2 is
grounded.
5) To verify correct system operation, press the ESC
key, type a capital “T”, and then select the countdown memory test. If the memory test fails or any
other malfunction is reported, the VDD voltage is too
low; increase VDD and repeat from step 4.
6) Turn the power switch off and connect the µC board
to an appropriate Maxim EV kit board.
J3
1
DB9 right-angle socket
JU1, JU2
2
Open
LED1
1
Light-emitting diode
R1
1
10MΩ, 5% resistor
R2
1
100kΩ potentiometer
R3
1
274kΩ, 1% resistor
R4
1
133kΩ, 1% resistor
R5
1
200Ω, 5% resistor
R6
1
10kΩ SIP resistor pack, pin 1 common
SW1
1
Slide switch
SW2
1
Momentary push-button switch
U1
1
Motorola MC68L11D0FN2
U2
1
Maxim MAX3232CSE
U3
1
74HC00
U4
1
Maxim MAX667CSA
U5
1
32k x 8 static RAM 28-pin socket
Motorola MCM6306DJ15
U10
1
28-pin socket
U6
1
74HCT245
U7
1
Maxim MAX708RCSA
U8
1
74HC573
U9
1
74HC139
U10
1
3V, 8k x 8 ROM
Y1
1
8MHz crystal
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 408-737-7600 ext. 3468.
68L11D Module
_______________General Description
The 68L11D module is an assembled and tested PC
board intended for use with Maxim’s low-voltage dataacquisition evaluation kits (EV kits). The module uses
Motorola’s MC68L11D0FN2 microcontroller (µC) to collect data samples using the SPI interface. It requires an
IBM PC computer and an external DC power supply of
+5V to +16V, or as specified in the appropriate EV kit
manual.
Maxim’s 68L11D module allows customers to evaluate
selected Maxim products. It is not intended to be a
microprocessor development platform, and Maxim
does not support such use.
68L11D Module
68L11D Module
_______________Detailed Description
Power Requirements
The 68L11D module draws its power from a user-supplied
power source connected to terminal block J2. Note the
positive and negative markings on the board. Nominal
input voltages should be between +5V and +16V. The
input current requirement for the 68L11D module is typically 20mA plus the current drawn by the evaluation kit
(EV kit).
The VDD supply is set by U4, a MAX667 low-dropout
CMOS regulator. Trim potentiometer R2 sets the supply
voltage, with an adjustment range of approximately 2.5V
to 5V. Although the board is designed primarily for 3V
applications, all of the circuitry is rated to withstand 5V
levels.
68L11D Microcontroller (µC)
Module Hardware
U1 is Motorola’s 68L11D µC. Contact Motorola for µC
information, development, and support.
A MAX708R supervisory circuit on the module monitors
the VDD logic supply, generates the power-on reset,
and produces a reset pulse whenever the manual reset
button (SW2) is pressed. Note that the MAX708R resets
the CPU if the supply voltage falls below 2.66V.
The module provides 32kbytes of external CMOS static
RAM (U5).
The 74HCT245 octal buffer (U6) provides access to an
eight-bit port on the 40-pin interface connector. This
memory-mapped port consists of Intel-compatible read
and write strobes, four chip selects, four address
LSB's, and eight data bits. Table 3 lists the address
ranges for each of the memory-mapped elements on
the 68L11D module.
The MAX3232 is a 3V-powered, RS-232 interface voltage-level shifter. Its built-in charge pump uses external
capacitors to generate the output voltages necessary
to drive RS-232 lines.
2
The 20 x 2-pin header (J1) connects the 68L11D module to a Maxim EV kit. Table 2 lists the function of each
pin. Use the 68L11D module only with EV kits that are
designed to support it, and download only code that is
targeted for the Maxim 68L11D module. Downloading
incorrect object code into the 68L11D module will produce unpredictable results.
The 8k x 8 boot ROM (U10) checks the system and
waits for commands from the host. Refer to the EV kit
manual for specific startup procedures.
Software
All software is supplied on a disk with the EV kit.
Software operating instructions are included in the EV
kit manual.
Serial Communications
J3 is an RS-232 serial port, designed to be compatible
with the IBM PC 9-pin serial port. Use a straight-through
DB9 male-to-female cable to connect J3 to the IBM PC
serial port. If the only available serial port has a 25-pin
connector, use a standard 25-pin to 9-pin adapter.
Table 1 shows J3’s pinout. The hardware-handshake
lines are used by the evaluation software to confirm that
the EV kit is connected to the correct serial port.
Table 1. Serial Communications Port J3
PIN
1
NAME
DCD
FUNCTION
Handshake; hard-wired to DTR and DSR
2
RXD
RS-232-compatible data output from
68L11D module
3
TXD
RS-232-compatible data input to
68L11D module
4
DTR
Handshake; hard-wired to DCD and DSR
5
GND
Signal ground connection
6
DSR
Handshake; hard-wired to DCD and DTR
7
RTS
Handshake; hard-wired to CTS
8
9
CTS
None
Handshake; hard-wired to RTS
Unused
_______________________________________________________________________________________
68L11D Module
PIN
1–4
NAME
GND
5, 6
V++
FUNCTION
Ground
9
RD
Unregulated input voltage
VDD from on-board MAX667
regulator
Read strobe
10
WR
Write strobe
11
CS0
Chip select for 8000-8FFF
12
CS1
Chip select for 9000-9FFF
13
CS2
Chip select for A000-AFFF
7, 8
VDD
Table 3. 68L11D Module Memory Map
ADDRESS RANGE
(HEX)
FUNCTION
0000-7FFF
User RAM area (U5)
8000-8FFF
External chip-select 0 (J1 pin 11)
9000-9FFF
External chip-select 1 (J1 pin 12)
A000-AFFF
External chip-select 2 (J1 pin 13)
B000-BFFF
External chip-select 3 (J1 pin 14)
C000-C03F
Unused
C040-C0FF
Internal RAM (U1)
Unused
Chip select for B000-BFFF
15
CS3
ADDR0
C100-CFFF
Address bit 0 (LSB)
D000-D03F
Internal register area (U1)
16
ADDR1
Address bit 1
D040-DFFF
Unused
17
ADDR2
Address bit 2
E000-FFFF
Boot ROM (U10)
18
ADDR3
Address bit 3
14
19
DB0
20–26
DB1–DB7
27
PA0/IC3
General I/O port bit 0 (LSB)
28
PA1/IC2
General I/O port
29
PA2/IC1
General I/O port
30
PA3/IC4/OC5
General I/O port
31
PA4/OC4
General I/O port
32
PA5/OC3
General I/O port
33
PA6/OC2
General I/O port
34
PA7/OC1/PAI
35
MISO
SPI master-in, slave-out
36
MOSI
SPI master-out, slave-in
37
SCK
SPI serial clock
38
RESERVED
39
40
E
SS
68L11D Module
Table 2. 40-Pin Data-Connector Signals
Data bus bit 0 (LSB)
Data bus bits 1–7
General I/O port MSB
Reserved for factory use
System E-clock output
SPI slave-select input
_______________________________________________________________________________________
3
68L11D Module
68L11D Module
J2
VPREREG
D1
1N4001
VDD
U4
SW1
C10
22µF
20V
1
2
VDD
VDD
3
C16
4
C13
C12
0.1µF
0.1µF
TXD
1
3
4
5
16
VCC
C1+
C1C2+
C2-
U2
V+
MAX3232
V-
C14
2
C15
6
11
T1
T2
12
LBI
J3-7
RTS
14
J3-2
RXD
7
J3-3
TXD
SHDN
7
6
1.255V
R2
100k
5
R4
133k
1%
C3
0.01µF
C4
0.1µF
VDD
VCC
U7
J3-4
DTR
8
R2
VSET
GND
MAX708R
1
J3-6
DSR
9
LBO
C11
22µF
20V
R3
274k
1%
0.1µF
13
R1
VOUT
8
VDD
J3-8
CTS
0.1µF
10
RXD
0.1µF
DD MAX667 VIN
PFO
MR
SW2
RESET
NC
J3-1
DCD
RESET
GND
4
15
J3-5
GND
PFI
GND
3
RESET
5
6
8
7
RESET
J3-9
RI
POWER CONNECTIONS
U1
GND
VDD
1, 2
22
PA0/IN3
PA1/IN2
PA2/IN1
PA3/IN4/OUT5
PA4/OUT4
PA5/OUT3
PA6/OUT2
PA7/OUT1/PULSE ACCIN
VDD
C17
0.1µF
RXD
TXD
MISO
MOSI
SCK
SS
C2
22pF
Y1
8.00MHz
C1
22pF
R1
10M
RESET
XIRQ
IRQ
E
30
29
28
27
26
25
24
23
16
17
18
19
20
21
14
11
15
44
43
42
3
PA0
PC0
U1
4
PA1
PC1
5
PA2
PC2
MC68L11D0FN2 PC3 6
PA3
7
PA4
PC4
8
PA5
PC5
9
PA6
PC6
10
PA7
PC7
13
PD6/AS
PD0/RXD
PD1/TXD
12
PD7/R/W 39
PD2/MISO
PB0 38
PD3/MOSI
PD4/SCK
PB1 37
PD5/SS
PB2 36
PB3 35
RESET
PB4 34
XIRQ/VPP
PB5 33
IRQ/CE
PB6 32
PB7
XTAL
41
EXTAL
MODA/LIR 40
E
MODB/VSTBY
Figure 1. 68L11D Module Schematic Diagram
4
_______________________________________________________________________________________
D0
D1
D2
D3
D4
D5
D6
D7
AS
R/W
A8
A9
A10
A11
A12
A13
A14
A15
MODA
MODB
68L11D Module
68L11D Module
U9A
74HC139
A14
A15
2
3
A0
A1
Y0
Y1
Y2
GND
VDD
1
E
Y3
4
5
6
IOBUFFER
7
CS-11XXX
U9B
74HC139
C5
0.1µF
A12
14 A0
Y0
A13
13 A1
Y1
Y2
IOBUFFER
15 E
Y3
12
CSAXXX
9
U3A
2
CS9XXX
10
1
R/W
CS8XXX
11
A15
RD
WR
CSBXXX
3
R/W
74HC00
4
R/W
VDD
6
RD
U3B
5
E
74HC00
C6
0.1µF
9
R/W
U3C
10
E
8
WR
74HC00
12
E
U3D
13
A13
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
11 DATA-XX1X
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
VDD
VDD
CS-11XXX
10
9
8
7
6
5
4
3
25
24
21
23
2
26
1
A0
U5
A1
A2 32 x 8 STATIC RAM
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
20
22
27
CS
OE
WE
10
9
8
7
6
5
4
3
25
24
21
23
2
26
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
27
1
22
20
PGM
VPP
OE
CE
10
U10
9
8
27LV64
8k x 8 ROM
7
6
5
4
3
25
24
21
23
2
26
I/0
I/1
I/2
I/3
I/4
I/5
I/6
I/7
11
12
13
15
16
17
18
19
D0
D1
D2
D3
D4
D5
D6
D7
VDD
C7
0.1µF
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
11
12
13
15
16
17
18
19
D0
D1
D2
D3
D4
D5
D6
D7
VDD
C8
0.1µF
74HC00
POWER CONNECTIONS
GND
AS
D0
D1
D2
D3
D4
D5
D6
D7
1
OE
11
C U8
2
3
4
5
6
7
8
9
VDD
74HC573
D0
D1
D2
D3
D4
D5
D6
D7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
19
18
17
16
15
14
13
12
A0
A1
A2
A3
A4
A5
A6
A7
GND
U3
14
7
U5
28
14
U8
20
10
U9
16
8
U10
28
14
VDD
C18
0.1µF
Figure 1. 68L11D Module Schematic Diagram (continued)
_______________________________________________________________________________________
5
68L11D Module
68L11D Module
VDD
R5
200Ω
GND
LED1
19
1 OE
DIR U6
IOBUFFER
RD
2
3
4
5
6
7
8
9
D0
D1
D2
D3
D4
D5
D6
D7
U6
VDD
GND
20
10
VDD
74HCT245 18
B1
A1
A2
A3
A4
A5
A6
A7
A8
B2
B3
B4
B5
B6
B7
B8
17
16
15
14
13
12
11
EXTD0
EXTD1
EXTD2
EXTD3
EXTD4
EXTD5
EXTD6
EXTD7
C9
0.1µF
VDD
R6A
10k
2
XIRQ
GND
J1-1
J1-2
GND
GND
J1-3
J1-4
GND
VPREREG
J1-5
J1-6
VPREREG
VDD
J1-7
J1-8
VDD
RD
J1-9
J1-10
WR
CS8XXX
J1-11
J1-12
CS9XXX
CSAXXX
J1-13
J1-14
CSBXXX
A0
J1-15
J1-16
A1
A2
J1-17
J1-18
A3
EXTD0
J1-19
J1-20
EXTD1
EXTD2
J1-21
J1-22
EXTD3
EXTD4
J1-23
J1-24
EXTD5
EXTD6
J1-25
J1-26
EXTD7
PA0/IN3
J1-27
J1-28
PA1/IN2
PA2/IN1
J1-29
J1-30
PA3/IN4/OUT5
PA4/OUT4
J1-31
J1-32
PA5/OUT3
PA6/OUT2
J1-33
J1-34
PA7/OUT1/PULSE ACCIN
MISO
J1-35
J1-36
SCK
J1-37
J1-38
E
J1-39
J1-40
VDD
MOSI
8
RESERVED
SS
7
R6F
R6G
10k
10k
VDD
R6E
10k
R6H
10k
R6I
10k
VDD
6
9
10
R6B
10k
R6C
10k
R6D
10k
SS
3
4
IRQ
JU1
MODA
MODA
MODB
5
JU2
MODB
Figure 1. 68L11D Module Schematic Diagram (continued)
6
_______________________________________________________________________________________
68L11D Module
68L11D Module
Figure 2. 68L11D Module Component Placement Guide
Figure 3. 68L11D Module PC Board Layout—Component Side
_______________________________________________________________________________________
7
68L11D Module
68L11D Module
Figure 4. 68L11D Module PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.