19-5245; Rev 0; 4/10 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs Features The MAX11102/MAX11103/MAX11105/MAX11106/MAX11110 MAX11111/MAX11115/MAX11116/MAX11117 are 12-/10/8-bit, compact, high-speed, low-power, successive approximation analog-to-digital converters (ADCs). These high-performance ADCs include a high-dynamic range sample-and-hold and a high-speed serial interface. These ADCs accept a full-scale input from 0V to the power supply or to the reference voltage. S 2Msps/3Msps Conversion Rate, No Pipeline Delay The MAX11102/MAX11103/MAX11106/MAX11111 feature dual, single-ended analog inputs connected to the ADC core using a 2:1 MUX. The devices also include a separate supply input for data interface and a dedicated input for reference voltage. In contrast, the single-channel devices generate the reference voltage internally from the power supply. S 2.2V to 3.6V Supply Voltage S 12-/10-/8-Bit Resolution S 1-/2-Channel, Single-Ended Analog Inputs Y S Low-Noise 73dB SNR AR S Variable I/O: 1.5V to 3.6V (Dual-Channel Only) Allows the Serial Interface to Connect Directly to 1.5V, 1.8V, 2.5V, or 3V Digital Systems S Low Power 8.3mW at 3Msps 6.2mW at 2Msps Very Low Power Consumption at 2.5µA/ksps IN S External Reference Input (Dual-Channel Devices Only) These ADCs operate from a 2.2V to 3.6V supply and consume only 8.3mW at 3Msps and 6.2mW at 2Msps. The devices include full power-down mode and fast wake-up for optimal power management and a highspeed 3-wire serial interface. The 3-wire serial interface directly connects to SPIK, QSPIK, and MICROWIREK devices without external logic. S 1.3µA Power-Down Current Excellent dynamic performance, low voltage, low power, ease of use, and small package size make these converters ideal for portable battery-powered data-acquisition applications, and for other applications that demand low-power consumption and minimal space. S Wide -40NC to +125NC Operation S SPI-/QSPI-/MICROWIRE-Compatible Serial Interface S 10-Pin, 3mm x 3mm TDFN Package PR EL IM S 10-Pin, 3mm x 5mm µMAX Package These ADCs are available in a 10-pin TDFN package, 10-pin FMAX® package, and a 6-pin SOT23 package. These devices operate over the -40NC to +125NC temperature range. PART S 6-Pin, 2.8mm x 2.9mm SOT23 Package Applications Data Acquisition Portable Data Logging Medical Instrumentation Battery-Operated Systems Communication Systems Automotive Systems Ordering Information PIN-PACKAGE BITS SPEED (Msps) NO. OF CHANNELS MAX11102AUB+ 10 FMAX-EP* 12 2 2 MAX11102ATB+** 10 TDFN-EP* 12 2 2 MAX11103AUB+ 10 FMAX-EP* 12 3 2 Ordering Information continued at end of data sheet. Note: All devices are specified over the -40°C to +125°C operating temperature range. +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. **Future product—contact factory for availability. SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. µMAX is a registered trademark of Maxim Integrated Products, Inc. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX11102/03/05/06/10/11/15/16/17 General Description ABSOLUTE MAXIMUM RATINGS 10-Pin TDFN (derate 24.4mW/NC above +70NC)........1951mW 10-Pin FMAX (derate 8.8mW/NC above +70NC)........707.3mW Operating Temperature Range........................ .-40NC to +125NC Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC AR Y VDD to GND.............................................................-0.3V to +4V REF, OVDD, AIN1, AIN2, AIN to GND.........-0.3V to the lower of (VDD + 0.3V) and +4V CS, SCLK, CHSEL, DOUT TO GND.............-0.3V to the lower of (VOVDD + 0.3V) and +4V AGND to GND.......................................................-0.3V to +0.3V Input/Output Current (all pins)............................................50mA Continuous Power Dissipation (TA = +70NC) 6-Pin SOT23 (derate 8.7mW/NC above +70NC)............696mW Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105) PARAMETER SYMBOL DC ACCURACY Resolution Differential Nonlinearity Offset Error Gain Error Total Unadjusted Error Channel-to-Channel Offset Matching CONDITIONS 12 bits INL MIN DNL Excluding offset and reference errors TUE Channel-to-Channel Gain Matching MAX UNITS Q1 LSB Bits No missing codes OE GE TYP 12 IM Integral Nonlinearity IN (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) Q1 LSB Q0.3 Q3 LSB Q1 Q3 LSB Q1.5 LSB MAX11102/MAX11103 Q0.4 LSB MAX11102/MAX11103 Q0.05 LSB PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs DYNAMIC PERFORMANCE (MAX11102/MAX11105: fIN = 0.5MHz, MAX11103: fIN = 1MHz) Signal-to-Noise and Distortion SINAD Signal-to-Noise Ratio SNR Total Harmonic Distortion THD Spurious-Free Dynamic Range SFDR Intermodulation Distortion IMD MAX11103 70 72 MAX11102/MAX11105 70 72.5 MAX11103 70.5 72 MAX11102/MAX11105 70.5 73 dB dB MAX11103 -85 -75 MAX11102/MAX11105 -85 -76 MAX11103 76 85 MAX11102/MAX11105 77 85 f1 = 1.0003MHz, f2 = 0.99955MHz (MAX11103), f1 = 500.15kHz, f2 = 499.56 kHz (MAX11102/MAX11105) dB dB -84 dB Full-Power Bandwidth -3dB point 40 MHz Full-Linear Bandwidth SINAD > 68dB 2.5 MHz 2 _______________________________________________________________________________________ 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) SYMBOL CONDITIONS Small-Signal Bandwidth Crosstalk MAX11102/MAX11103 CONVERSION RATE Conversion Time 45 MHz dB MAX11102/MAX11105 0.02 2 MAX11103 260 ns 4 From CS falling edge fCLK ANALOG INPUT (AIN1, AIN2/AIN) Input Leakage Current Input Capacitance VINA__ IILA CAIN_ ps MAX11103 0.48 48 MAX11102/MAX11105 0.32 32 IM Input Voltage Range IN 15 Serial-Clock Frequency 0 2nA Track 20 Hold 4 Msps ns 391 52 Aperture Jitter UNITS -90 3 tACQ Aperture Delay MAX 0.03 MAX11102/MAX11105 Acquisition Time TYP AR MAX11103 Throughput MIN Y PARAMETER MHz VREF V Q1 FA pF EXTERNAL REFERENCE INPUT (REF) (MAX11102/MAX11103) Reference Input Voltage Range IILR Reference Input Capacitance 0.005 CREF DIGITAL INPUTS (SCLK, CS, CHSEL) Digital Input High Voltage VIH (Note 2) Digital Input Low Voltage VIL (Note 2) VHYST (Note 2) Digital Input Hysteresis 1 Conversion stopped PR EL Reference Input Leakage Current VREF Digital Input Leakage Current IIL Digital Input Capacitance CIN VDD + 0.05 V Q1 FA 5 pF 75 %OVDD 25 15 Inputs at GND or VDD 1nA %OVDD %OVDD Q1 2 FA pF DIGITAL OUTPUT (DOUT) Output High Voltage VOH ISOURCE = 200FA (Note 2) Output Low Voltage VOL ISINK = 200FA (Note 2) High-Impedance Leakage Current IOL High-Impedance Output Capacitance 85 COUT %OVDD 15 %OVDD Q1.0 FA 4 pF POWER SUPPLY Positive Supply Voltage Digital I/O Supply Voltage VDD VOVDD MAX11102/MAX11103 2.2 3.6 V 1.5 VDD V _______________________________________________________________________________________ 3 MAX11102/03/05/06/10/11/15/16/17 ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105) (continued) ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105) (continued) (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) Positive Supply Current (Full-Power Mode) IOVDD Positive Supply Current (FullPower Mode), No Clock IVDD Power-Down Current IPD Line Rejection tQ CS Pulse Width t1 CS Fall to SCLK Setup t2 CS Falling Until DOUT High Impedance Disabled t3 SCLK Pulse Width High Data Hold Time from SCLK Falling Edge MAX11103, VIN = GND MAX11102, VIN = GND MAX11103 SCLK Falling Until DOUT High Impedance MAX 2.6 MAX11102/MAX11105 1.48 Leakage only 1.3 (Note 1) UNITS mA 0.33 0.22 1.98 IM Quiet Time SCLK Pulse Width Low fSAMPLE = 2Msps, MAX11102/MAX11105, VIN = GND TYP 3.3 VDD = 2.2V to 3.6V, VREF = 2.2V TIMING CHARACTERISTICS (Note 3) Data Access Time After SCLK Falling Edge fSAMPLE = 3Msps, MAX11103, VIN = GND MIN AR IVDD CONDITIONS Y SYMBOL IN PARAMETER mA 10 0.7 FA LSB/V 4 ns 10 ns 5 ns 1 ns Figure 2, VOVDD = 2.2V - 3.6V 15 16.5 t5 Figure 2, VOVDD = 1.5V - 2.2V Percentage of clock period 40 60 % t6 Percentage of clock period 40 60 % t4 PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs t7 Figure 3 t8 Figure 4 (Note 1) Power-Up Time 5 ns ns 2.5 Conversion cycle 14 ns 1 Cycle ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117)) (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Q0.5 LSB Q0.5 LSB DC ACCURACY Resolution 10 bits Integral Nonlinearity INL Differential Nonlinearity DNL Offset Error OE Gain Error GE 10 Bits No missing codes MAX11106/MAX11110 Q0.3 Q1.2 MAX11117 Q0.5 Q1.65 Excluding offset and reference errors, MAX11106/MAX11110 Q0.15 Q1 MAX11117 Q0.7 Q1.4 4 _______________________________________________________________________________________ LSB LSB 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) CONDITIONS TUE Channel-to-Channel Offset Matching MAX11106 Channel-to-Channel Gain Matching MAX11106 MIN TYP MAX UNITS Y SYMBOL Q1 LSB Q0.1 LSB AR PARAMETER Total Unadjusted Error LSB Q0.1 DYNAMIC PERFORMANCE (MAX11106/MAX11117: fIN = 1MHz, MAX11110: fIN = 0.5MHz) SINAD SNR Total Harmonic Distortion THD Spurious-Free Dynamic Range SFDR Intermodulation Distortion Full-Power Bandwidth Full-Linear Bandwidth MAX11106/MAX11117 MAX11110 59 61.5 60.5 61.5 59 61.5 60.5 61.5 IMD Crosstalk dB dB MAX11106/MAX11117 -85 -74 MAX11110 -85 -73 MAX11106/MAX11117 75 MAX11110 75 f1 = 1.0003MHz, f2 = 0.99955MHz (MAX11106/MAXX11117); f1 = 500.15kHz, f2 = 499.56 kHz (MAX11110) dB dB -82 dB -3dB point 40 MHz SINAD > 60dB 2.5 MHz 45 MHz -90 dB PR EL Small-Signal Bandwidth MAX11110 IM Signal-to-Noise Ratio MAX11106/MAX11117 IN Signal-to-Noise and Distortion MAX11106 CONVERSION RATE Throughput Conversion Time Acquisition Time MAX11106/MAX11117 0.03 3 Msps MAX11110 0.02 2 Msps MAX11106/MAX11117 260 ns MAX11110 391 ns tACQ Aperture Delay 52 From CS falling edge Aperture Jitter Serial-Clock Frequency fCLK ns 4 ns 15 ps MAX11106/MAX11117 0.48 48 MAX11110 0.32 32 MHz ANALOG INPUT (AIN1/AIN2 for MAX11106) (AIN for MAX11110/MAX11117) Input Voltage Range Input Leakage Current Input Capacitance VINA__ 0 IILA CAIN_ 2nA Track 20 Hold 4 VREF V Q1 FA pF EXTERNAL REFERENCE INPUT (REF) (MAX11106) Reference Input Voltage Range VREF Reference Input Leakage Current IILR 1 Conversion stopped VDD + 0.05 0.005 Q1 V FA _______________________________________________________________________________________ 5 MAX11102/03/05/06/10/11/15/16/17 ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117) (continued) ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117) (continued) (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) CONDITIONS CREF (Note 2) Digital Input Hysteresis (Note 2) Digital Input Leakage Current IIL Digital Input Capacitance CIN (Note 2) ISOURCE = 200µA (Note 2) VOL ISINK = 200µA (Note 2) High-Impedance Leakage Current IOL IM Digital I/O Supply Voltage VDD VOVDD 0.001 MAX11106 IVDD IOVDD Positive Supply Current (FullPower Mode), No Clock Power-Down Current IVDD IPD Line Rejection Q1 FA pF %OVDD 15 %OVDD Q1.0 FA 4 pF 2.2 3.6 V 1.5 VDD V fSAMPLE = 3Msps, MAX11106, VIN = GND Positive Supply Current (FullPower Mode) %OVDD %OVDD 85 IN VOH Positive Supply Voltage %OVDD 25 2 Output Low Voltage POWER SUPPLY UNITS pF 15 Output High Voltage COUT MAX 75 Inputs at GND or VDD DIGITAL OUTPUT (DOUT) High-Impedance Output Capacitance TYP 5 DIGITAL INPUTS (SCLK, CS, CHSEL) Digital Input High Voltage VIH Digital Input Low Voltage VIL VHYST MIN Y SYMBOL AR PARAMETER Reference Input Capacitance 3.3 fSAMPLE = 2Msps, MAX11110, VIN = GND 2.6 fSAMPLE = 3Msps, MAX11117, VIN = GND 3.55 MAX11106 PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs mA 0.33 MAX11106/MAX11117 1.98 MAX11110 1.48 Leakage only 1.3 VDD = 2.2V to 3.6V, VREF = 2.2V 0.17 mA 10 FA LSB/V TIMING CHARACTERISTICS (Note 3) Quiet Time tQ 4 ns CS Pulse Width t1 10 ns CS Fall to SCLK Setup t2 5 ns CS Falling Until DOUT High Impedance Disabled t3 (Note 1) 1 ns Data Access Time After SCLK Falling Edge t4 Figure 2 SCLK Pulse Width Low t5 Percentage of clock period 40 60 % SCLK Pulse Width High t6 Percentage of clock period 40 60 % Data Hold Time from SCLK Falling Edge t7 Figure 3 5 SCLK Falling Until DOUT High Impedance t8 Figure 4 (Note 1) Power-Up Time VOVDD = 2.2V - 3.6V 15 VOVDD = 1.5V - 2.2V 16.5 2.5 Conversion cycle 6 _______________________________________________________________________________________ ns ns 14 ns 1 Cycle 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) SYMBOL CONDITIONS 8 bits Integral Nonlinearity INL Differential Nonlinearity DNL Offset Error OE Gain Error GE Total Unadjusted Error TUE No missing codes Channel-to-Channel Gain Matching MAX11111 IN MAX11111 MAX 8 Excluding offset and reference errors Channel-to-Channel Offset Matching TYP UNITS Bits Q0.25 LSB Q0.25 LSB Q0.45 Q0.75 LSB Q0.04 Q0.5 LSB AR Resolution MIN Y PARAMETER DC ACCURACY Q0.75 LSB 0.025 LSB 0.025 LSB DYNAMIC PERFORMANCE (MAX11111/MAX11116: fIN = 1MHz, MAX11115: fIN = 500kHz) Signal-to-Noise Ratio Total Harmonic Distortion SNR MAX11111/MAX11116 49 49.5 MAX11115 49 49.5 MAX11111/MAX11116 49 49.5 49 49.5 THD SFDR MAX11115 Intermodulation Distortion IMD dB dB MAX11111/MAX11116 -70 -66 MAX11115 -75 -67 MAX11111/MAX11116 63 66 MAX11115 63 66 f1 = 1.0003MHz, f2 = 0.99955MHz (MAX11111/MAX11116); f1 = 500.15kHz, f2 = 499.56kHz (MAX11115) PR EL Spurious-Free Dynamic Range SINAD IM Signal-to-Noise and Distortion dB dB -65 dB Full-Power Bandwidth -3dB point 40 MHz Full-Linear Bandwidth SINAD > 49dB 2.5 MHz 45 MHz -90 dB Small-Signal Bandwidth Crosstalk MAX11111 CONVERSION RATE Throughput Conversion Time Acquisition Time MAX11111/MAX11116 0.03 3 MAX11115 0.02 2 MAX11111/MAX11116 260 MAX11115 391 tACQ Aperture Delay ns 52 ns 4 From CS falling edge Aperture Jitter ns 15 Serial-Clock Frequency fCLK Msps ps MAX11111/MAX11116 0.48 48 MAX11115 0.32 32 MHz _______________________________________________________________________________________ 7 MAX11102/03/05/06/10/11/15/16/17 ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116) ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116) (continued) (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) SYMBOL CONDITIONS ANALOG INPUT (AIN1/AIN2 for MAX11111)(AIN for MAX11115/MAX11116) VINA_ Input Leakage Current IILA Input Capacitance CAIN 0 2nA Track Hold EXTERNAL REFERENCE INPUT (REF) Reference Input Voltage Range VREF Reference Input Leakage Current IILR VIH (Note 2) Digital Input Low Voltage VIL (Note 2) VHYST (Note 2) Digital Input Hysteresis Digital Input Capacitance DIGITAL OUTPUT (DOUT) Output High Voltage Output Low Voltage IIL FA pF VDD + 0.05 V Q1 FA VOH ISOURCE = 200µA (Note 2) VOL ISINK = 200µA (Note 2) pF 75 %OVDD 25 15 0.001 CIN High-Impedance Leakage Current High-Impedance Output Capacitance 0.005 Inputs at GND or VDD IM Digital Input Leakage Current V Q1 5 Digital Input High Voltage UNITS VREF 4 Conversion stopped CREF DIGITAL INPUTS (SCLK, CS) MAX 20 1 IN Reference Input Capacitance TYP AR Input Voltage Range MIN Y PARAMETER FA pF 85 COUT %OVDD %OVDD Q1 2 %OVDD IOL PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 15 %OVDD Q1.0 FA 4 pF POWER SUPPLY Positive Supply Voltage Digital I/O Supply Voltage VDD VOVDD Positive Supply Current (FullPower Mode) Positive Supply Current (FullPower Mode), No Clock Power-Down Current IVDD IVDD IPD Line Rejection MAX11111 2.2 3.6 V 1.5 VDD V fSAMPLE = 3Msps, MAX11111, VIN = GND 3.3 fSAMPLE = 2Msps, MAX11115, VIN = GND 2.6 fSAMPLE = 3Msps, MAX11116, VIN = GND 3.55 MAX11111/MAX11116, VIN = GND 1.98 MAX11115, VIN = GND 1.48 Leakage only 1.3 VDD = 2.2V to 3.6V, VREF = 2.2V 0.17 mA mA 10 FA LSB/V TIMING CHARACTERISTICS (Note 3) Quiet Time tQ 4 ns CS Pulse Width t1 10 ns CS Fall to SCLK Setup t2 5 ns 8 _______________________________________________________________________________________ 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs (VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz, 50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA = +25NC.) SYMBOL CONDITIONS MIN TYP MAX UNITS Y PARAMETER CS Falling Until DOUT High Impedance Disabled t3 (Note 1) Data Access Time After SCLK Falling Edge t4 Figure 2 SCLK Pulse Width Low t5 Percentage of clock period 40 60 % SCLK Pulse Width High t6 Percentage of clock period 40 60 % Data Hold Time from SCLK Falling Edge t7 Figure 3 5 SCLK Falling Until DOUT High Impedance t8 Figure 4 (Note 1) VOVDD = 2.2V - 3.6V 15 AR VOVDD = 1.5V - 2.2V IN Power-Up Time 1 Conversion cycle 2.5 16.5 ns ns ns 14 ns 1 Cycles PR EL IM Note 1: Guaranteed by design and characterization; not production tested. Note 2: VOVDD is tied to VDD internally for all SOT devices. Note 3: All timing specifications given are with a 10pF load capacitor. _______________________________________________________________________________________ 9 MAX11102/03/05/06/10/11/15/16/17 ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116) (continued) SAMPLE SAMPLE t1 CS t5 Y t6 t2 DOUT 16 1 2 0 HIGH IMPEDANCE 3 D11 4 D10 5 D9 6 7 D8 D7 8 D6 (MSB) t3 t4 t7 tCONVERT 9 10 11 12 13 14 15 AR SCLK D5 D4 D3 D2 D1 D0 0 16 0 t8 tQUIET tACQ IN Figure 1. Interface Signals for Maximum Throughput, 12-Bit Devices SCLK IM t4 t7 SCLK VIH DOUT OLD DATA NEW DATA Figure 2. Setup Time After SCLK Falling Edge VIL VIH DOUT OLD DATA Figure 3. Hold Time After SCLK Falling Edge t8 SCLK DOUT NEW DATA VIL HIGH IMPEDANCE Figure 4. SCLK Falling Edge DOUT Three-State 10 ������������������������������������������������������������������������������������� 1 HIGH IMPEDANCE 1/fSAMPLE PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 0 -0.5 2 OFFSET ERROR (LSB) DNL (LSB) 0.5 0 -0.5 Y fS = 3.0Msps MAX11102 toc03 OFFSET ERROR vs. TEMPERATURE 3 1 AR fS = 3.0Msps 0.5 INL (LSB) 1.0 MAX11102 toc01 1.0 DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE MAX11102 toc02 INTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODE 0 -1 -2 -1.0 2000 4000 3000 0 DIGITAL OUTPUT CODE 1000 2000 GAIN ERROR vs. TEMPERATURE 35,000 MAX11102 toc04 0 PR EL -1 30,000 25,000 CODE COUNT 1 20,000 15,000 10,000 -2 5000 -3 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 2047 2046 TEMPERATURE (˚C) 74 2049 2050 THD vs. ANALOG INPUT FREQUENCY -60 MAX11102 toc06 fS = 3Msps 2048 DIGITAL CODE OUTPUT SNR AND SINAD vs. ANALOG INPUT FREQUENCY 75 TEMPERATURE (˚C) HISTOGRAM FOR 30,000 CONVERSIONS IM 2 GAIN ERROR (LSB) -40 -25 -10 5 20 35 50 65 80 95 110 125 DIGITAL OUTPUT CODE 3 fS = 3Msps -70 SNR 73 72 SINAD -80 THD (dB) SNR AND SINAD (dB) -3 4000 3000 MAX11102 toc05 1000 MAX11102 toc07 0 IN -1.0 -90 -100 71 -110 70 0 300 600 900 fIN (kHz) 1200 1500 -120 0 300 600 900 1200 1500 fIN (kHz) ______________________________________________________________________________________ 11 MAX11102/03/05/06/10/11/15/16/17 µMAX Typical Operating Characteristics (MAX11103AUB+, TA = +25°C, unless otherwise noted.) µMAX Typical Operating Characteristics (continued) (MAX11103AUB+, TA = +25°C, unless otherwise noted.) THD vs. INPUT RESISTANCE fS = 3Msps 120 -75 THD (dB) AR -80 100 90 -85 -90 80 -95 70 -100 600 900 1200 fIN (kHz) 0 -40 -60 20 40 60 80 100 RIN (I) REFERENCE CURRENT vs. SAMPLING RATE IM fS = 3.0Msps fIN = 1.0183MHz -20 0 200 MAX11102 toc10 1MHz SINE-WAVE INPUT (16,834-POINT FFT PLOT) 1500 MAX11102 toc11 300 IN 0 150 IREF (µA) SFDR (dB) 110 AMPLITUDE (dB) fS = 3.0Msps fIN = 1.0183MHz Y MAX11102 toc08 -70 MAX11102 toc09 SFDR vs. ANALOG INPUT FREQUENCY 130 100 AHD3 = -91.2dB -80 PR EL AHD2 = -110.3dB 50 -100 0 -120 250 500 750 1000 1250 0 1500 500 1000 ANALOG SUPPLY CURRENT vs. TEMPERATURE IVDD (mA) 3.2 VDD = 3.6V 2000 2500 3000 SNR vs. REFERENCE VOLTAGE 73.5 2.9 2.6 73.0 SNR (dB) 3.5 1500 fS (ksps) FREQUENCY (kHz) MAX11102 toc13 0 MAX11102 toc12 MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs fS = 3Msps fIN = 1.0183MHz 72.5 72.0 VDD = 3.0V 71.5 2.3 VDD = 2.2V 71.0 2.0 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (˚C) 2.2 2.4 2.6 2.8 3.0 3.2 3.4 VREF (V) 12 ������������������������������������������������������������������������������������� 3.6 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs INTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODE DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE 0 -0.5 -1.0 3000 DIGITAL OUTPUT CODE 4000 0 GAIN ERROR (LSB) 0 PR EL -1 4000 GAIN ERROR vs. TEMPERATURE MAX11102 toc16 1 3000 2 IM 2 2000 DIGITAL OUTPUT CODE OFFSET ERROR vs. TEMPERATURE 3 1000 -2 MAX11102 toc17 2000 IN 1000 0 1 0 -1 -2 -3 -3 -4 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (˚C) TEMPERATURE (˚C) HISTOGRAM FOR 30,000 CONVERSIONS SNR AND SINAD vs. ANALOG INPUT FREQUENCY 25,000 20,000 15,000 10,000 fS = 2.0Msps SNR AND SINAD (dB) 30,000 73.5 MAX11102 toc18 35,000 MAX11102 toc19 OFFSET ERROR (LSB) Y 0 -0.5 -1.0 CODE COUNT MAX11102 toc15 0.5 DNL (LSB) 0.5 fS = 2.0Msps AR fS = 2.0Msps INL (LSB) 1.0 MAX11102 toc14 1.0 73.0 SNR 72.5 SINAD 72.0 5000 71.5 0 2046 2047 2048 2049 DIGITAL CODE OUTPUT 2050 0 200 400 600 800 1000 fIN (kHz) ______________________________________________________________________________________ 13 MAX11102/03/05/06/10/11/15/16/17 SOT Typical Operating Characteristics (MAX11105AUB+, TA = +25°C, unless otherwise noted.) SOT Typical Operating Characteristics (continued) (MAX11105AUB+, TA = +25°C, unless otherwise noted.) THD vs. ANALOG INPUT FREQUENCY SFDR vs. ANALOG INPUT FREQUENCY fS = 2.0Msps 105 SFDR (dB) -95 -100 95 90 -105 85 -110 80 600 800 fIN (kHz) -75 -85 -90 0 40 60 80 AHD3 = -96.5dB -80 2.0 AHD2 = -92.0dB -120 0 100 250 500 750 1000 FREQUENCY (kHz) SNR vs. REFERENCE VOLTAGE (VDD) MAX11102 toc24 75 VDD = 3.0V fS = 2.0Msps fIN = 500.122kHz 74 SNR (dB) IVDD (mA) 2.4 1000 -60 ANALOG SUPPLY CURRENT vs. TEMPERATURE VDD = 3.6V 800 -40 RIN (I) 2.6 600 fIN (kHz) -100 -100 20 400 fS = 2.0Msps fIN = 500.122kHz -20 -95 0 200 500kHz SINE-WAVE INPUT (16,834-POINT FFT PLOT) IM fS = 2.0Msps fIN = 500.122kHz -80 0 MAX11102 toc22 THD vs. INPUT RESISTANCE 1000 MAX11102 toc23 400 MAX11102 toc25 200 IN 0 THD (dB) AR 100 AMPLITUDE (dB) THD (dB) -90 2.2 Y fS = 2.0Msps -85 MAX11102 toc21 110 MAX11102 toc20 -80 PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 73 VDD = 2.2V 72 1.8 71 1.6 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (˚C) 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDD (V) 14 ������������������������������������������������������������������������������������� 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 1 AIN2 2 AGND 3 REF 4 VDD 5 + MAX11102 MAX11103 MAX11106 MAX11111 EP* AIN1 1 AIN2 2 10 SCLK 9 DOUT AGND 3 8 OVDD REF 4 7 CHSEL VDD 5 6 CS TOP VIEW + MAX11102 MAX11103 10 SCLK 9 DOUT 8 OVDD 7 CHSEL VDD 1 + GND 2 EP* 6 CS AIN 3 CS MAX11105 MAX11110 MAX11115 MAX11116 MAX11117 5 DOUT 4 SCLK SOT23 µMAX TDFN 6 Y AIN1 TOP VIEW AR TOP VIEW SOT23 1 1 — 2 2 — — — 3 NAME FUNCTION AIN1 Analog Input Channel 1. Single-ended analog input with respect to AGND with range of 0V to VREF. AIN2 Analog Input Channel 2. Single-ended analog input with respect to AGND with range of 0V to VREF. AIN Analog Input Channel. Single-ended analog input with respect to GND with range of 0V to VDD. PR EL µMAX Pin Description IM PIN TDFN IN *CONNECT EXPOSED PAD TO GROUND PLANE. DEVICES DO NOT OPERATE WHEN EP IS NOT CONNECTED TO GROUND! — — 2 GND 3 3 — AGND Ground. Connect GND to the GND ground plane. 4 4 — REF External Reference Input. REF defines the signal range of the input signal AIN1/AIN2: 0V to VREF. The range of VREF is 1V to VDD. Bypass REF to AGND with 10FF || 0.1FF capacitor. 5 5 1 VDD Positive Supply Voltage. Bypass VDD with a 10FF || 0.1FF capacitor to GND. VDD range is 2.2V to 3.6V. For the SOT23 package, VDD also defines the signal range of the input signal AIN: 0V to VDD. 6 6 6 CS Active-Low Chip-Select Input. The falling edge of CS samples the analog input signal, starts a conversion, and frames the serial data transfer. 7 7 — CHSEL Channel Select. Set CHSEL high to select AIN2 for conversion. Set CHSEL low to select AIN1 for conversion. 8 8 — OVDD Digital Interface Supply for SCLK, CS, DOUT, and CHSEL. The OVDD range is 1.5V to VDD. Bypass OVDD with a 10FF || 0.1FF capacitor to GND. 9 9 5 DOUT Three-State Serial Data Output. ADC conversion results are clocked out on the falling edge of SCLK, MSB first. See Figure 1. 10 10 4 SCLK Serial Clock Input. SCLK drives the conversion process. DOUT is updated on the falling edge of SCLK. See Figures 2 and 3. EP EP — GND Exposed Pad. Connect EP directly to a solid ground plane. Devices do not operate when EP is not connected to ground! Analog Ground. Connect AGND directly the GND ground plane. ______________________________________________________________________________________ 15 MAX11102/03/05/06/10/11/15/16/17 Pin Configurations Functional Diagrams CONTROL LOGIC SAR VDD CS SCLK MAX11102/MAX11103/ MAX11106/MAX11111 OUTPUT BUFFER DOUT CHSEL AIN MUX CDAC MAX11105/MAX11110/ MAX11115/MAX11116/ MAX11117 OUTPUT BUFFER SAR DOUT CDAC VREF = VDD REF GND (EP) IM AGND IN AIN1 AIN2 CONTROL LOGIC Y CS SCLK OVDD AR VDD VDD +3V AIN1 ANALOG INPUTS AIN2 MAX11102 MAX11103 MAX11106 MAX11111 AGND REF +2.5V GND (EP) Typical Operating Circuit OVDD PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs GND (EP) SCLK VOVDD SCK CPU DOUT CS MISO SS CHSEL VDD +3V GND (EP) ANALOG INPUT AIN MAX11105 MAX11110 MAX11115 MAX11116 MAX11117 SCLK SCK DOUT MISO CS CPU SS 16 ������������������������������������������������������������������������������������� 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs These ADCs include a power-down feature allowing minimized power consumption at 2.5FA/ksps for lower throughput rates. The wake-up and power-down feature is controlled using the SPI interface as described in the Operating Modes section. The MAX11102/MAX11103/MAX11105/MAX11106/MAX11110/ MAX11111/MAX11115/MAX11116/MAX11117 are fast, 12-/10-/8-bit, low-power, single-supply ADCs. The devices operate from a 2.2V to 3.6V supply and consume only 8.3mW at 3Msps and 6.2mW at 2Msps. The 3Msps devices are capable of sampling at full rate when driven by a 48MHz clock and the 2Msps devices can sample at full rate when driven by a 32MHz clock. The dual-channel devices provide a separate digital supply input (OVDD) to power the digital interface enabling communication with 1.5V, 1.8V, 2.5V, or 3V digital systems. Y Serial Interface AR The devices feature a 3-wire serial interface that directly connects to SPI, QSPI, and MICROWIRE devices without external logic. Figures 1 and 5 show the interface signals for a single conversion frame to achieve maximum throughput. The falling edge of CS defines the sampling instant. Once CS transitions low, the external clock signal (SCLK) controls the conversion. The conversion result appears at DOUT, MSB first, with a leading zero followed by the 12-bit, 10-bit, or 8-bit result. A 12-bit result is followed by two trailing zeros, a 10-bit result is followed by four trailing zeros, and an 8-bit result is followed by six trailing zeros. See Figures 1 and 5. IN The SAR core successively extracts binary-weighted bits in every clock cycle. The MSB appears on the data bus during the 2nd clock cycle with a delay outlined in the timing specifications. All extracted data bits appear successively on the data bus with the LSB appearing during the 13th/11th/9th clock cycle for 12-/10-/8-bit operation. The serial data stream of conversion bits is preceded by a leading “zero” and succeeded by trailing “zeros.” The data output (DOUT) goes into high-impedance state during the 16th clock cycle. IM The dual-channel devices feature a dedicated reference input (REF). The input signal range for AIN1/AIN2 is defined as 0V to VREF with respect to AGND. The single-channel devices use VDD as the reference. The input signal range of AIN is defined as 0V to VDD with respect to GND. PR EL SAMPLE SAMPLE CS SCLK DOUT 16 1 2 D9 0 HIGH IMPEDANCE 3 4 D8 5 D7 6 D6 7 D5 8 D4 9 D3 10 D2 11 D1 12 D0 13 0 14 0 15 0 16 1 0 HIGH IMPEDANCE SAMPLE SAMPLE CS SCLK DOUT 16 HIGH IMPEDANCE 1 2 0 3 D7 4 D6 5 D5 6 D4 7 D3 8 D2 9 D1 10 D0 11 0 12 0 13 0 14 0 15 0 16 1 0 HIGH IMPEDANCE Figure 5. 10-/8-Bit Timing Diagrams ______________________________________________________________________________________ 17 MAX11102/03/05/06/10/11/15/16/17 Detailed Description The source impedance of the external driving stage in conjunction with the sampling switch resistance affects the settling performance. The THD vs. Input Resistance graph in the Typical Operating Characteristics shows THD sensitivity as a function of the signal source impedance. Keep the source impedance at a minimum for high-dynamic performance applications. Use a highperformance op amp such as the MAX4430 to drive the analog input, thereby decoupling the signal source and the ADC. Y To sustain the maximum sample rate, all devices have to be resampled immediately after the 16th clock cycle. For lower sample rates, the CS falling edge can be delayed leaving DOUT in a high-impedance condition. Pull CS high after the 10th SCLK falling edge (see the Operating Modes section). Analog Input AR The devices produce a digital output that corresponds to the analog input voltage within the specified operating range of 0 to VREF for the dual-channel devices and 0 to VDD for the single-channel devices. While the ADC is in conversion mode, the sampling switch is open presenting a pin capacitance, CP (CP = 5pF), to the driving stage. See the Applications Information section for information on choosing an appropriate buffer for the ADC. Figure 6 shows an equivalent circuit for the analog input AIN (for single-channel devices) and AIN1/AIN2 (for dual-channel devices). Internal protection diodes D1/D2 confine the analog input voltage within the power rails (VDD, GND). The analog input voltage can swing from GND - 0.3V to VDD + 0.3V without damaging the device. Operating Modes IN The ICs offer two modes of operation: normal mode and power-down mode. The logic state of the CS signal during a conversion activates these modes. The powerdown mode can be used to optimize power dissipation with respect to sample rate. The electric load presented to the external stage driving the analog input varies depending on which mode the ADC is in: track mode vs. conversion mode. In track mode, the internal sampling capacitor CS (16pF) has to be charged through the resistor R (R = 50I) to the input voltage. For faithful sampling of the input, the capacitor voltage on CS has to settle to the required accuracy during the track time. IM Normal Mode In normal mode, the devices are powered up at all times, thereby achieving their maximum throughput rates. Figure 7 shows the timing diagram of these devices in normal mode. The falling edge of CS samples the analog input signal, starts a conversion, and frames the serial data transfer. PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs VDD SWITCH CLOSED IN TRACK MODE SWITCH OPEN IN CONVERSION MODE D1 R AIN1/AIN2 AIN CP To remain in normal mode, keep CS low until the falling edge of the 10th SCLK cycle. Pulling CS high after the 10th SCLK falling edge keeps the part in normal mode. However, pulling CS high before the 10th SCLK falling edge terminates the conversion, DOUT goes into highimpedance mode, and the device enters power-down mode. See Figure 8. CS D2 Figure 6. Analog Input Circuit KEEP CS LOW UNTIL AFTER THE 10TH SCLK FALLING EDGE PULL CS HIGH AFTER THE 10TH SCLK FALLING EDGE CS SCLK DOUT 1 2 HIGH IMPEDANCE 3 4 5 6 7 8 9 10 11 12 13 14 VALID DATA Figure 7. Normal Mode 18 ������������������������������������������������������������������������������������� 15 16 HIGH IMPEDANCE 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs CS 1 2 3 4 5 6 7 8 9 10 11 HIGH IMPEDANCE INVALID DATA INVALID DATA OR HIGH IMPEDANCE CS 2 3 4 DOUT 5 6 7 8 9 10 11 INVALID DATA (DUMMY CONVERSION) HIGH IMPEDANCE 13 14 15 16 OUTPUT CODE 111...110 000...010 000...001 1 16 1 2 3 4 5 6 7 8 9 VALID DATA 10 11 12 13 14 15 16 HIGH IMPEDANCE conversions is ideal for saving power when sampling the analog input infrequently. PR EL 111...101 0 N HIGH IMPEDANCE FS - 1.5 x LSB 111...111 000...000 15 IM Figure 9. Exiting Power-Down Mode 12 IN 1 14 HIGH IMPEDANCE Figure 8. Entering Power-Down Mode SCLK 13 AR DOUT 12 Y SCLK 2 3 2n-2 2n-1 2n ANALOG INPUT (LSB) FULL SCALE (FS): AIN1/AIN2 = REF (TDFN, µMax) AIN = VDD (SOT) n = RESOLUTION Figure 10. ADC Transfer Function Power-Down Mode In power-down mode, all bias circuitry is shut down drawing typically only 1.3FA of leakage current. To save power, put the device in power-down mode between conversions. Using the power-down mode between Entering Power-Down Mode To enter power-down mode, drive CS high between the 2nd and 10th falling edges of SCLK (see Figure 8). By pulling CS high, the current conversion terminates and DOUT enters high impedance. Exiting Power-Down Mode To exit power-down mode, implement one dummy conversion by driving CS low for at least 10 clock cycles (see Figure 9). The data on DOUT is invalid during this dummy conversion. The first conversion following the dummy cycle contains a valid conversion result. The power-up time equals the duration of the dummy cycle, and is dependent on the clock frequency. The power-up time for 3Msps operation (48MHz SCLK) is 333ns. The power-up time for 2Msps operation (32MHz SCLK) is 500ns. ADC Transfer Function The output format is straight binary. The code transitions midway between successive integer LSB values such as 0.5 LSB, 1.5 LSB, etc. The LSB size for singlechannel devices is VDD/2n and for dual-channel devices is VREF/2n, where n is the resolution. The ideal transfer characteristic is shown in Figure 10. ______________________________________________________________________________________ 19 MAX11102/03/05/06/10/11/15/16/17 PULL CS HIGH AFTER THE 2ND AND BEFORE THE 10TH SCLK FALLING EDGE VDD = 3V fSCLK = VARIABLE 16 CYCLES/CONVERSION 3 IVDD (mA) 3 2 2 IN IVDD (mA) AR VDD = 3V fSCLK = VARIABLE 16 CYCLES/CONVERSION 4 4 MAX11102 fig11 5 The user can also power down the ADC between conversions by using the power-down mode. Figure 12 shows for the 3Msps device that as the sample rate is reduced, the device remains in the power-down state longer and the average supply current (IVDD) drops accordingly over time. Figure 14 pertains to the 2Msps devices. Y Supply Current vs. Sampling Rate For applications requiring lower throughput rates, the user can reduce the clock frequency (fSCLK) to lower the sample rate. Figure 11 shows the typical supply current (IVDD) as a function of sample rate (fS) for the 3Msps devices. The part operates in normal mode and is never powered down. Figure 13 pertains to the 2Msps devices. 1 1 0 0 0 500 1000 1500 2000 2500 3000 Figure 11. Supply Current vs. Sample Rate (Normal Operating Mode, 3Msps Devices) 3.0 VDD = 3V fSCLK = 48MHz 2.5 0 IM fS (ksps) PR EL 500 1000 1500 2000 fS (ksps) Figure 13. Supply Current vs. Sample Rate (Normal Operating Mode, 2Msps Devices) 2.0 VDD = 3V fSCLK = 32MHz 1.5 IVDD (mA) 2.0 1.5 IVDD (mA) MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 1.0 1.0 0.5 0.5 0 0 200 400 600 800 1000 fS (ksps) Figure 12. Supply Current vs. Sample Rate (Device Powered Down Between Conversions, 3Msps Devices) 0 0 100 200 300 400 500 fS (ksps) Figure 14. Supply Current vs. Sample Rate (Device Powered Down Between Conversions, 2Msps Devices) 20 ������������������������������������������������������������������������������������� 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs The MAX11102/MAX11103/MAX11106/MAX11111 feature dual-input channels. These devices use a channelselect (CHSEL) input to select between analog input AIN1 (CHSEL = 0) or AIN2 (CHSEL = 1). As shown in Figure 15, the CHSEL signal is required to change between the 2nd and 12th clock cycle within a regular conversion to guarantee proper switching between channels. Layout, Grounding, and Bypassing Y For best performance, use PCBs with a solid ground plane. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another or digital lines underneath the ADC package. Noise in the VDD power supply, OVDD, and REF affects the ADC’s performance. Bypass the VDD, OVDD, and REF to ground with 0.1FF and 10FF bypass capacitors. Minimize capacitor lead and trace lengths for best supply-noise rejection. AR 14-Cycle Conversion Mode The ICs can operate with 14 cycles per conversion. Figure 16 shows the corresponding timing diagram. Observe that DOUT does not go into high-impedance mode. Also, observe that tACQ needs to be sufficiently long to guarantee proper settling of the analog input voltage. See the Electrical Characteristics table for tACQ requirements and the Analog Input section for a description of the analog inputs. Choosing an Input Amplifier CS SCLK 1 2 3 4 5 6 8 9 10 11 12 13 14 PR EL CHSEL 7 IM IN It is important to match the settling time of the input amplifier to the acquisition time of the ADC. The conversion results are accurate when the ADC samples the input signal for an interval longer than the input signal’s worst-case settling time. By definition, settling time is the interval between the application of an input voltage step and the point at which the output signal reaches DOUT 15 16 1 2 3 4 5 6 DATA CHANNEL AIN2 7 8 9 10 11 12 13 14 15 16 DATA CHANNEL AIN1 Figure 15. Channel Select Timing Diagram SAMPLE SAMPLE CS SCLK DOUT 1 2 0 3 D11 4 D10 5 D9 6 D8 D7 7 8 D6 (MSB) 9 D5 10 D4 11 D3 12 D2 13 D1 14 D0 1 0 0 tACQ 1/fSAMPLE tCONVERT Figure 16. 14-Clock Cycle Operation ______________________________________________________________________________________ 21 MAX11102/03/05/06/10/11/15/16/17 Applications Information Dual-Channel Operation Y Figure 17 shows a typical application circuit. The MAX4430, offering a settling time of 37ns at 16 bits, is an excellent choice for this application. See the THD vs. Input Resistance graph in the Typical Operating Characteristics. Choosing a Reference For devices using an external reference, the choice of the reference determines the output accuracy of the ADC. An ideal voltage reference provides a perfect initial accuracy and maintains the reference voltage independent of changes in load current, temperature, and time. Considerations in selecting a reference include initial voltage accuracy, temperature drift, current source, sink capability, quiescent current, and noise. Figure 17 shows a typical application circuit using the MAX6126 to provide the reference voltage. The MAX6033 and MAX6043 are also excellent choices. AR and stays within a given error band centered on the resulting steady-state amplifier output level. The ADC input sampling capacitor charges during the sampling cycle, referred to as the acquisition period. During this acquisition period, the settling time is affected by the input resistance and the input sampling capacitance. This error can be estimated by looking at the settling of an RC time constant using the input capacitance and the source impedance over the acquisition time period. IN +5V 0.1µF 10µF VOVDD 3V 100pF COG IM VDD 500I AIN1 500I 0.1µF 10I 1 MAX4430 VDC 4 0.1µF -5V 10µF +5V 0.1µF 10I 1 MAX4430 VDC AIN2 SCLK SCK DOUT MISO CS REF 10µF SS CPU CHSEL 10µF EP +3V 7 8 0.1µF 4 5 3 MAX11102 MAX11103 MAX11106 MAX11111 10µF 500I AIN2 AIN1 470pF COG CAPACITOR 100pF COG 500I 0.1µF AGND 470pF COG CAPACITOR 2 OVDD 10µF 5 3 PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 3 OUTF IN 2 1µF OUTS MAX6126 GNDS GND NR 1 0.1µF -5V 4 2 0.1µF 10µF Figure 17. Typical Application Circuit 22 ������������������������������������������������������������������������������������� 0.1µF 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs Offset Error SIGNAL RMS SINAD(dB) = 20 × log NOISE + DISTORTION) RMS ( Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as: IN The deviation of the first code transition (00 . . . 000) to (00 . . . 001) from the ideal, that is, AGND + 0.5 LSB. . Y Differential Nonlinearity Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of ±1 LSB or less guarantees no missing codes and a monotonic transfer function. SINAD is a dynamic figure of merit that indicates the converter’s noise and distortion performance. SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency excluding the fundamental and the DC offset: AR Integral Nonlinearity Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. For these devices, the straight line is a line drawn between the end points of the transfer function after offset and gain errors are nulled. Signal-to-Noise Ratio and Distortion (SINAD) Gain Error V 2 + V32 + V42 + V52 THD = 20 × log 2 V1 The deviation of the last code transition (111 . . . 110) to (111 . . . 111) from the ideal after adjusting for the offset error, that is, VREF - 1.5 LSB. where V1 is the fundamental amplitude and V2–V5 are the amplitudes of the 2nd- through 5th-order harmonics. Aperture Delay SFDR is a dynamic figure of merit that indicates the lowest usable input signal amplitude. SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset. SFDR is specified in decibels with respect to the carrier (dBc). IM Aperture Jitter Aperture jitter (tAJ) is the sample-to-sample variation in the time between the samples. PR EL Aperture delay (tAD) is the time between the falling edge of sampling clock and the instant when an actual sample is taken. Signal-to-Noise Ratio (SNR) SNR is a dynamic figure of merit that indicates the converter’s noise performance. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC’s resolution (N bits): SNR (dB) (MAX) = (6.02 x N + 1.76) (dB) In reality, there are other noise sources such as thermal noise, reference noise, and clock jitter that also degrade SNR. SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first five harmonics, and the DC offset. Spurious-Free Dynamic Range (SFDR) Full-Power Bandwidth Full-power bandwidth is the frequency at which the input signal amplitude attenuates by 3dB for a full-scale input. Full-Linear Bandwidth Full-linear bandwidth is the frequency at which the signal-to-noise ratio and distortion (SINAD) is equal to a specified value. Intermodulation Distortion Any device with nonlinearities creates distortion products when two sine waves at two different frequencies (f1 and f2) are applied into the device. Intermodulation distortion (IMD) is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones, f1 and f2. The individual input tone levels are at -6dBFS. ______________________________________________________________________________________ 23 MAX11102/03/05/06/10/11/15/16/17 Definitions Ordering Information (continued) PIN-PACKAGE BITS SPEED (Msps) NO. OF CHANNELS 10 TDFN-EP* 12 3 2 6 SOT23 12 2 1 10 TDFN-EP* 10 3 2 MAX11105AUT+ MAX11106ATB+** 10 2 8 3 MAX11115AUT+ 6 SOT23 8 2 MAX11116AUT+ 6 SOT23 8 MAX11117AUT+ 6 SOT23 10 MAX11111ATB+** 1 2 AR 6 SOT23 10 TDFN-EP* MAX11110AUT+ Y PART MAX11103ATB+** 1 3 1 3 1 IN Note: All devices are specified over the -40°C to +125°C operating temperature range. +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. **Future product—contact factory for availability. PROCESS: CMOS IM Chip Information PR EL MAX11102/03/05/06/10/11/15/16/17 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 10 TDFN-EP T1033+2 21-0137 10 FMAX U10+2 21-0061 6 SOT23 U6+1 21-0058 24 ������������������������������������������������������������������������������������� 2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs REVISION DATE 0 4/10 PAGES CHANGED DESCRIPTION Initial release — PR EL IM IN AR Y REVISION NUMBER Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2010 Maxim Integrated Products 25 Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX11102/03/05/06/10/11/15/16/17 Revision History