+ DS32506/DS32508/DS32512 6-/8-/12-Port DS3/E3/STS-1 LIU www.maxim-ic.com FEATURES GENERAL DESCRIPTION Pin-Compatible Family of Products Each Port Independently Configurable Receive Clock and Data Recovery for Up to 457 meters (1500 feet) of 75Ω Coaxial Cable Standards-Compliant Transmit Waveshaping Uses 1:1 Transformers on Both Tx and Rx Three Control Interface Options: 8/16-Bit Parallel, SPI, and Hardware Mode Jitter Attenuators (One Per Port) Can be Placed in the Receive Path or the Transmit Path Jitter Attenuators Have Provisionable Buffer Depth: 16, 32, 64, or 128 Bits Built-In Clock Adapter Generates All Line-Rate Clocks from a Single Input Clock (DS3, E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz, 77.76MHz) Per-Port Programmable Internal Line Termination Requiring Only External Transformers High-Impedance Tx and Rx, Even When VDD = 0, Enables Hot-Swappable, 1:1 and 1+1 Board Redundancy Without Relays Per-Port BERT for PRBS and Repetitive Pattern Generation and Detection Tx and Rx Open and Short Detection Circuitry Transmit Driver Monitor Circuitry Receive Loss-of-Signal (LOS) Monitoring Compliant with ANSI T1.231 and ITU G.775 Automatic Data Squelching on Receive LOS Large Line Code Performance-Monitoring Counters for Accumulation Intervals Up to 1s Local and Remote Loopbacks Transmit Common Clock Option Power-Down Capability for Unused Ports Low-Power 1.8V/3.3V Operation (5V Tolerant I/O) Industrial Temperature Range: -40°C to +85°C Small Package: 23mm x 23mm, 484-Pin BGA IEEE 1149.1 JTAG Support The DS32506 (6 port), DS32508 (8 port), and DS32512 (12 port) line interface units (LIUs) are highly integrated, low-power, feature-rich LIUs for DS3, E3, and STS-1 applications. Each LIU port in these devices has independent receive and transmit paths, a jitter attenuator, full-featured pattern generator and detector, performance-monitoring counters, and a complete set of loopbacks. An onchip clock adapter generates all line-rate clocks from a single input clock. Ports are independently software configurable for DS3, E3, and STS-1 and can be individually powered down. Control interface options include 8-bit parallel, SPI™, and hardware mode. APPLICATIONS SONET/SDH and PDH Multiplexers ATM and Frame Relay Equipment WAN Routers and Switches Digital CrossConnects Access Concentrators CSUs/DSUs PBXs DSLAMs FUNCTIONAL DIAGRAM EACH LIU LINE IN DS3, E3, OR STS-1 RXP CLK RXN DATA Dallas Semiconductor DS325xx LINE OUT DS3, E3, OR STS-1 TXP CLK TXN DATA RECEIVE CLOCK AND DATA CONTROL AND STATUS TRANSMIT CLOCK AND DATA ORDERING INFORMATION PART DS32506 DS32506N DS32508 DS32508N DS32512 DS32512N LIUs 6 6 8 8 12 12 TEMP RANGE 0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C PIN-PACKAGE 484 BGA 484 BGA 484 BGA 484 BGA 484 BGA 484 BGA Note: Add the “+” suffix for the lead-free package option. Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata. 1 of 130 REV: 103008 DS32506/DS32508/DS32512 TABLE OF CONTENTS 1. STANDARDS COMPLIANCE .............................................................................................6 2. BLOCK DIAGRAM ..............................................................................................................7 3. APPLICATION EXAMPLE ..................................................................................................8 4. DETAILED DESCRIPTION..................................................................................................9 5. DETAILED FEATURES.....................................................................................................11 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 GLOBAL FEATURES .......................................................................................................................11 RECEIVER .....................................................................................................................................11 TRANSMITTER ...............................................................................................................................11 JITTER ATTENUATOR .....................................................................................................................11 BIT ERROR-RATE TESTER (BERT) FEATURES ...............................................................................12 CLOCK ADAPTER ...........................................................................................................................12 PARALLEL MICROPROCESSOR INTERFACE FEATURES.....................................................................12 SPI SERIAL MICROPROCESSOR INTERFACE FEATURES ..................................................................12 MISCELLANEOUS FEATURES ..........................................................................................................12 TEST FEATURES............................................................................................................................12 LOOPBACK FEATURES ...................................................................................................................12 6. CONTROL INTERFACE MODES......................................................................................13 7. PIN DESCRIPTIONS .........................................................................................................14 7.1 7.2 8. SHORT PIN DESCRIPTIONS ............................................................................................................14 DETAILED PIN DESCRIPTIONS ........................................................................................................17 FUNCTIONAL DESCRIPTION ..........................................................................................24 8.1 8.2 LIU MODE ....................................................................................................................................24 TRANSMITTER ...............................................................................................................................24 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8 8.2.9 8.2.10 8.2.11 8.2.12 8.3 RECEIVER .....................................................................................................................................30 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8 8.3.9 8.3.10 8.4 8.5 Transmit Clock .................................................................................................................................... 24 Framer Interface Format and the B3ZS/HDB3 Encoder..................................................................... 24 Error Insertion ..................................................................................................................................... 24 AIS Generation.................................................................................................................................... 25 Waveshaping ...................................................................................................................................... 25 Line Build-Out ..................................................................................................................................... 25 Line Driver........................................................................................................................................... 25 Interfacing to the Line ......................................................................................................................... 25 Driver Monitor and Output Failure Detection ...................................................................................... 26 Power-Down........................................................................................................................................ 26 Jitter Generation (Intrinsic).................................................................................................................. 26 Jitter Transfer ...................................................................................................................................... 26 Interfacing to the Line ......................................................................................................................... 30 Optional Preamp ................................................................................................................................. 30 Automatic Gain Control (AGC) and Adaptive Equalizer ..................................................................... 30 Clock and Data Recovery (CDR) ........................................................................................................ 31 Loss-of-Signal (LOS) Detector............................................................................................................ 31 Framer Interface Format and the B3ZS/HDB3 Decoder .................................................................... 32 Power-Down........................................................................................................................................ 33 Input Failure Detection........................................................................................................................ 33 Jitter and Wander Tolerance............................................................................................................... 34 Jitter Transfer ...................................................................................................................................... 35 JITTER ATTENUATOR .....................................................................................................................35 BERT...........................................................................................................................................36 2 of 130 DS32506/DS32508/DS32512 8.5.1 8.5.2 8.5.3 8.6 8.7 LOOPBACKS ..................................................................................................................................40 GLOBAL RESOURCES ....................................................................................................................40 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.8 Configuration and Monitoring.............................................................................................................. 36 Receive Pattern Detection .................................................................................................................. 37 Transmit Pattern Generation............................................................................................................... 39 Clock Rate Adapter (CLAD)................................................................................................................ 40 One-Second Reference Generator ..................................................................................................... 41 General-Purpose I/O Pins................................................................................................................... 42 Performance Monitor Register Update ............................................................................................... 42 Transmit Manual Error Insertion ......................................................................................................... 43 8-/16-BIT PARALLEL MICROPROCESSOR INTERFACE ......................................................................43 8.8.1 8.8.2 8.8.3 8.8.4 8.8.5 8.8.6 8-Bit and 16-Bit Bus Widths ................................................................................................................ 43 Byte Swap Mode ................................................................................................................................. 43 Read-Write And Data Strobe Modes .................................................................................................. 43 Multiplexed and Nonmultiplexed Operation ........................................................................................ 43 Clear-On-Read And Clear-On-Write Modes ....................................................................................... 44 Global Write Mode .............................................................................................................................. 44 8.9 SPI SERIAL MICROPROCESSOR INTERFACE ...................................................................................44 8.10 INTERRUPT STRUCTURE ................................................................................................................46 8.11 RESET AND POWER-DOWN ............................................................................................................47 9. REGISTER MAPS AND DESCRIPTIONS.........................................................................49 9.1 OVERVIEW ....................................................................................................................................49 9.1.1 9.1.2 9.1.3 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Status Bits ........................................................................................................................................... 49 Configuration Fields ............................................................................................................................ 49 Counters.............................................................................................................................................. 49 OVERALL REGISTER MAP ..............................................................................................................50 GLOBAL REGISTERS ......................................................................................................................51 PORT COMMON REGISTERS ..........................................................................................................62 LIU REGISTERS ............................................................................................................................70 B3ZS/HDB3 ENCODER REGISTERS ..............................................................................................79 B3ZS/HDB3 DECODER REGISTERS ..............................................................................................80 BERT REGISTERS ........................................................................................................................84 10. JTAG INFORMATION ...................................................................................................91 11. ELECTRICAL CHARACTERISTICS .............................................................................92 12. PIN ASSIGNMENTS....................................................................................................106 13. PACKAGE INFORMATION.........................................................................................127 13.1 484-LEAD BGA (23MM X 23MM) (56-G60038-001) .....................................................................127 14. THERMAL INFORMATION .........................................................................................128 15. ACRONYMS AND ABBREVIATIONS.........................................................................129 16. TRADEMARK ACKNOWLEDGEMENTS....................................................................129 17. DATA SHEET REVISION HISTORY ...........................................................................130 3 of 130 DS32506/DS32508/DS32512 LIST OF FIGURES Figure 2-1. Block Diagram ........................................................................................................................................... 7 Figure 3-1. 12-Port Unchannelized DS3/E3 Card ....................................................................................................... 8 Figure 4-1. External Connections, Internal Termination Enabled................................................................................ 9 Figure 4-2. External Connections, Internal Termination Disabled............................................................................. 10 Figure 8-1. DS3 Waveform Template ........................................................................................................................ 27 Figure 8-2. STS-1 Waveform Template..................................................................................................................... 28 Figure 8-3. E3 Waveform Template........................................................................................................................... 29 Figure 8-4. STS-1 and E3 Jitter Tolerance................................................................................................................ 34 Figure 8-5. DS3 Jitter Tolerance................................................................................................................................ 34 Figure 8-6. DS3 and E3 Wander Tolerance .............................................................................................................. 35 Figure 8-7. Jitter Attenuation/Jitter Transfer .............................................................................................................. 36 Figure 8-8. PRBS Synchronization State Diagram.................................................................................................... 38 Figure 8-9. Repetitive Pattern Synchronization State Diagram................................................................................. 39 Figure 8-10. SPI Clock Polarity and Phase Options.................................................................................................. 45 Figure 8-11. SPI Bus Transactions............................................................................................................................ 46 Figure 8-12. Interrupt Signal Flow ............................................................................................................................. 47 Figure 11-1. Transmitter Framer Interface Timing Diagram...................................................................................... 95 Figure 11-2. Receiver Framer Interface Timing Diagram .......................................................................................... 95 Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed) .................................................. 99 Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed) .................................................. 99 Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed) ......................................... 100 Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed) ......................................... 100 Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed) ....................................................... 101 Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed) ....................................................... 101 Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)................................................ 102 Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed).............................................. 102 Figure 11-11. SPI Interface Timing Diagram ........................................................................................................... 104 Figure 11-12. JTAG Timing Diagram....................................................................................................................... 105 Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 109 Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only .......................................................................... 111 Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only ................................................................. 113 Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 115 Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only .......................................................................... 117 Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only ................................................................. 119 Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 121 Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only .......................................................................... 123 Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only ................................................................. 125 4 of 130 DS32506/DS32508/DS32512 LIST OF TABLES Table 1-1. Applicable Telecommunications Standards ............................................................................................... 6 Table 7-1. Short Pin Descriptions .............................................................................................................................. 14 Table 7-2. Analog Line Interface Pin Descriptions .................................................................................................... 17 Table 7-3. Digital Framer Interface Pin Descriptions................................................................................................. 17 Table 7-4. Global Pin Descriptions ............................................................................................................................ 18 Table 7-5. Hardware Interface Pin Descriptions........................................................................................................ 19 Table 7-6. Parallel Interface Pin Descriptions ........................................................................................................... 21 Table 7-7. SPI Serial Interface Pin Descriptions ....................................................................................................... 22 Table 7-8. CLAD Pin Descriptions ............................................................................................................................. 22 Table 7-9. JTAG Pin Descriptions ............................................................................................................................. 23 Table 7-10. Power-Supply Pin Descriptions .............................................................................................................. 23 Table 7-11. Manufacturing Test Pin Descriptions...................................................................................................... 23 Table 8-1. Jitter Generation ....................................................................................................................................... 26 Table 8-2. DS3 Waveform Equations ........................................................................................................................ 27 Table 8-3. DS3 Waveform Test Parameters and Limits ............................................................................................ 27 Table 8-4. STS-1 Waveform Equations ..................................................................................................................... 28 Table 8-5. STS-1 Waveform Test Parameters and Limits......................................................................................... 28 Table 8-6. E3 Waveform Test Parameters and Limits............................................................................................... 29 Table 8-7. Transformer Characteristics ..................................................................................................................... 30 Table 8-8. Recommended Transformers................................................................................................................... 30 Table 8-9. Pseudorandom Pattern Generation.......................................................................................................... 37 Table 8-10. Repetitive Pattern Generation ................................................................................................................ 37 Table 8-11. CLAD Clock Source Settings ................................................................................................................. 41 Table 8-12. CLAD Clock Pin Output Settings............................................................................................................ 41 Table 8-13. Global One-Second Reference Source.................................................................................................. 41 Table 8-14. GPIO Pin Global Signal Assignments .................................................................................................... 42 Table 8-15. GPIO Pin Control.................................................................................................................................... 42 Table 8-16. Reset and Power-Down Sources ........................................................................................................... 48 Table 9-1. Overall Register Map................................................................................................................................ 50 Table 9-2. Port Registers........................................................................................................................................... 50 Table 9-3. Global Register Map................................................................................................................................. 51 Table 9-4. Port Common Register Map..................................................................................................................... 62 Table 10-1. JTAG ID Code ........................................................................................................................................ 91 Table 11-1. Recommended DC Operating Conditions .............................................................................................. 92 Table 11-2. DC Characteristics.................................................................................................................................. 93 Table 11-3. Framer Interface Timing ......................................................................................................................... 94 Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes....................................................................... 96 Table 11-5. Receiver Input Characteristics—E3 Mode ............................................................................................. 96 Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes................................................................ 97 Table 11-7. Transmitter Output Characteristics—E3 Mode....................................................................................... 97 Table 11-8. Parallel CPU Interface Timing ................................................................................................................ 98 Table 11-9. SPI Interface Timing ............................................................................................................................. 103 Table 11-10. JTAG Interface Timing........................................................................................................................ 105 Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512 ....................................... 106 Table 14-1. Thermal Properties, Natural Convection .............................................................................................. 128 Table 14-2. Theta-JA (θJA) vs. Airflow...................................................................................................................... 128 5 of 130 DS32506/DS32508/DS32512 1. STANDARDS COMPLIANCE Table 1-1. Applicable Telecommunications Standards SPECIFICATION T1.102-1993 T1.231-2003 T1.404-2002 TR54014 EN 300 686 EN 300 687 EN 300 689 TBR 24 G.703 G.751 G.755 G.775 G.823 G.824 O.151 O.161 O.152 GR-253-CORE GR-499-CORE GR-820-CORE SPECIFICATION TITLE ANSI Digital Hierarchy—Electrical Interfaces Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring Network-to-Customer Installation—DS3 Metallic Interface Specification AT&T ACCUNET® T45 Service Description and Interface Specification, 05/92 ETSI Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U, D34S, D140U, and D140S); Network Interface Presentation, v1.2.1 February 2001 Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S); Connection Characteristics, v1.2.1 February 2001 Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal equipment interface, v1.2.1July 2001 Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines; Attachment Requirements for Terminal Equipment Interface, July 1997 ITU-T Physical/Electrical Characteristics of Hierarchical Digital Interfaces, November 2001 Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, November 1988 Digital Multiplex Equipment Operating at 139,264 kbit/s and Multiplexing Three Tributaries at 44,736 kbit/s, November 1988 Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria, November 1994 The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps Hierarchy, March, 2000 The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps Hierarchy, March, 2000 Error Performance Measuring Equipment Operating at the Primary Rate and Above, October 1992 In-Service Code Violation Monitors for Digital Systems, November 1988 Equipment To Perform In-Service Monitoring on 2048, 8448, 34,368 and 139,264 kbit/s Signals, October 1992 TELCORDIA SONET Transport Systems: Common Generic Criteria, Issue 3, September 2000 Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 2, December 1998 Generic Digital Transmission Surveillance, Issue 2, December 1997 6 of 130 DS32506/DS32508/DS32512 2. BLOCK DIAGRAM JTRST JTCLK JTMS JTDI JTD0 RBIN RLOSn RPD REFCLK CLKA CLKB CLKC CLKD CLADBYP RMONn Figure 2-1. Block Diagram CLAD JTAG Port n (1 of 12) RXPn RXNn Pre-Amp B3ZS/ HDB3 Decoder AGC, Equalizer, and CDR ARES TDMn Driver Monitor TXPn TXNn Line Driver ALB JA LLB RCLKn RPOSn / RDATn RNEGn / RLCVn Pattern Detector Pattern Generator DLB B3ZS/ HDB3 Encoder Waveshaping AIS Generator RCLKI TCLKI TCC TCLKn TPOSn / TDATn TNEGn TAISn AIST RST HW IFSEL[2:0] CS WR / R/W RD / DS ALE A[10:1] BSWAP / A[0] D[15:8] CPOL / D[7] CPHA / D[6] D[5:3] SCLK / D[2] SDI / D[1] SDO / D[0] INT RDY / ACK GPIOAn GPIOBn TEST HIZ TBIN LMn[1:0] LBn[1:0] LBS TPD JAS[1:0] JAD[1:0] TLBOn TOEn Parallel and SPI Bus Interfaces 7 of 130 Dallas Semiconductor DS325xx DS32506/DS32508/DS32512 3. APPLICATION EXAMPLE Figure 3-1. 12-Port Unchannelized DS3/E3 Card DS32512 12-PORT DS3/E3/STS-1 LIU DS31912 12-PORT DS3/E3/STS-1 MAPPER 8 of 130 77.76MHz TELECOM BUS DS32506/DS32508/DS32512 4. DETAILED DESCRIPTION The DS32506 (6 port), DS32508 (8 port), and DS32512 (12 port) LIUs perform the functions necessary for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs B3ZS/HDB3 decoding and outputs the recovered data in either binary (NRZ) or digital bipolar format. The transmitter accepts data in either binary (NRZ) or digital bipolar format, optionally performs B3ZS/HDB3 encoding, and drives standard pulse-shape waveforms onto 75Ω coaxial cable. Both transmitter and receiver are highimpedance when VDD is out of spec to enable hot-swappable 1:1 and 1+1 board redundancy without relays. The jitter attenuator can be mapped into the receiver data path, mapped into the transmitter data path, or disabled. An on-chip clock adapter generates all line-rate clocks from a single input clock. Control interface options include 8- or 16-bit parallel, SPI, and hardware mode. The DS325xx LIUs conform to the telecommunications standards listed in Table 1-1. The external components required for proper operation are shown in Figure 4-1 and Figure 4-2. Figure 4-1. External Connections, Internal Termination Enabled TXP TXP 1:1 TVDD 0.01μF 0.1μF 1μF RVDD 0.01μF 0.1μF 1μF TXN TXN JVDD 0.01μF 0.1μF 1μF RXP TVSS RVSS 1:1 RXN JVSS 9 of 130 1.8V POWER PLANE GROUND PLANE DS32506/DS32508/DS32512 Figure 4-2. External Connections, Internal Termination Disabled 42.2Ω (1%) 0.05μF 42.2Ω (1%) 1:1 38.3Ω (1%) 38.3Ω (1%) 1:1 TXP TXP TVDD 0.01μF 0.1μF 1μF RVDD 0.01μF 0.1μF 1μF TXN TXN JVDD 0.01μF 0.1μF 1μF RXP TVSS 0.05μF RVSS RXN 1.8V POWER PLANE GROUND PLANE JVSS Shorthand Notations. The notation “DS325xx” throughout this data sheet refers to either the DS32506, DS32508, or DS32512. This data sheet is the specification for all three devices. The LIUs on the DS325xx devices are identical. For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in place of the LIU port number. For example, on the DS32506, TCLKn is shorthand notation for pins TCLK1, TCLK2, TCLK3, TCLK4, TCLK5 and TCLK6 on LIU ports 1, 2, 3, 4, 5 and 6, respectively. This document also uses generic pin and register names such as TCLK (without a number suffix) when describing LIU operation. When working with a specific LIU on the DS325xx devices, generic names like TCLK should be converted to actual pin names, such as TCLK1. 10 of 130 DS32506/DS32508/DS32512 5. DETAILED FEATURES 5.1 Global Features Three interface modes: hardware, 8-/16-bit parallel bus, and SPI serial bus Independent per-port operation (e.g., line rate, jitter attenuator placement, or loopback type) Clock, data, and control signals can be inverted to allow a glueless interface to other devices Manual or automatic one-second update of performance monitoring counters Each port can be put into a low-power standby mode when not being used Requires only a single reference clock for all three LIU data rates using internal clock rate adapter Jitter attenuators can be used in either transmit or receive path Detection of loss-of-transmit clock Two programmable I/O pins per port Optional global write mode configures all LIUs at the same time Glueless interface to neighboring framer and mapper components 5.2 Receiver AGC/equalizer block handles from 0 to 22dB of cable loss Programmable internal termination resistor Loss-of-lock (LOL) PLL status indication Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp Digital and analog loss-of-signal (LOS) detectors (compliant with ANSI T1.231 and ITU G.775) Software programmable B3ZS/HDB3 or AMI decoding Detection and accumulation of bipolar violations (BPV), code violations (CV), and excessive zeros occurrences (EXZ) Detection of receipt of B3ZS/HDB3 codewords Binary or bipolar framer interface On-board programmable PRBS detector Per-channel power-down control 5.3 Transmitter Standards-compliant waveshaping Programmable waveshaping Programmable internal termination resistor Binary or bipolar framer interface Gapped clock capable up to 78MHz with jitter attenuator in transmit path Wide 50 ±20% transmit clock duty cycle Transmit common clock option Software programmable B3ZS/HDB3 or AMI decoding Programmable insertion of bipolar violations (BPV), code violations (CV), and excessive zeros (EXZ) AIS generator: unframed all ones, framed DS3 AIS, and STS-1 AIS-L Line build-out (LBO) control High-impedance line-driver output mode to support protection-switching applications Per-channel power-down control Output driver monitor 5.4 Jitter Attenuator One jitter attenuator per port Fully integrated, requires no external components Meets all applicable ANSI, ITU, ETSI, and Telcordia jitter transfer and output jitter requirements Can be placed in the transmit path, receive path or disabled Programmable FIFO depth: 16, 32, 64, or 128 bits Overflow and underflow status indications 11 of 130 DS32506/DS32508/DS32512 5.5 Bit Error-Rate Tester (BERT) Features One BERT per port Software programmable for insertion toward the transmit line interface or the receive system interface Generates and detects pseudo-random patterns of length 2n - 1 (n = 1 to 32) and repetitive patterns from 1 to 32 bits in length Large 24-bit error counter and 32-bit bit counter allows testing to proceed for long periods without host intervention Errors can be inserted in the generated BERT patterns for diagnostic purposes (single bit errors or specific biterror rates) Pattern synchronization even in the presence of 10-3 bit-error rate 5.6 Clock Adapter Creates DS3, E3, STS-1, and/or telecom bus clocks from single input reference clock Input reference clock can be DS3, E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz, or 77.76MHz Use of common system timing frequencies such as 19.44MHz eliminates the need for any local oscillators, reducing cost and board space Very small jitter gain and intrinsic jitter generation Derived clocks can be output for external system use Transmit signals using CLAD clocks meet Telcordia (DS3) and ITU (E3) jitter and wander requirements 5.7 Parallel Microprocessor Interface Features Multiplexed or nonmultiplexed 8- or 16-bit interface Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W) Ready (RDY/ACK) handshake output signal 5.8 SPI Serial Microprocessor Interface Features Operation up to 10Mbps Burst mode for multibyte read and write accesses Programmable clock polarity and phase Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count 5.9 Miscellaneous Features Global reset input pin Global interrupt output pin Two programmable I/O pins per port 5.10 Test Features Five pin JTAG port All functional pins are in-out pins in JTAG mode Standard JTAG instructions: SAMPLE/PRELOAD, BYPASS, EXTEST, CLAMP, HIGHZ, IDCODE HIZ pin to force all digital output and I/O pins into a high-impedance state TEST pin for manufacturing test modes 5.11 Loopback Features Analog local loopback—ALB (transmit line output to receive line input) Diagnostic local loopback—DLB (transmit framer interface to receive framer interface) Line loopback—LLB (receive clock and data recover to transmit waveshaping) Optional AIS generation on the line side of the loopback during diagnostic loopback 12 of 130 DS32506/DS32508/DS32512 6. CONTROL INTERFACE MODES The DS325xx devices can be controlled by hardware interface, by microprocessor interface, or by a combination of both interfaces at the same time. The hardware interface is configured (enabled or disabled) independently from the microprocessor interface (8-bit parallel, 16-bit parallel, SPI, or disabled). When the hardware interface is enabled (HW = 1), device configuration can be controlled by input pins, while device status can be sensed on output pins. When the hardware interface is disabled (HW = 0), all the pins in Table 7-5 are disabled (inputs are ignored; outputs are placed in a high-impedance state). The microprocessor interface provides access to features, configuration options, and device status information that the hardware interface does not support. The microprocessor interface is enabled and configured by the IFSEL pins. When IFSEL = 01X, the SPI serial interface is enabled. When IFSEL = 10X, the 8-bit parallel interface is enabled. When IFSEL = 11X, the 16-bit parallel interface is enabled. For both the 8- and 16-bit parallel interfaces, IFSEL[0] = 0 specifies an Intel-style bus (CS, RD, and WR control signals) while IFSEL[0] = 1 specifies a Motorolastyle bus (CS, R/W, and DS control signals). Through the microprocessor interface an external microprocessor can access a set of internal configuration and status registers inside the device. Pins that are not used by the selected microprocessor interface type but are used in other microprocessor interface modes are disabled (inputs are ignored and considered to be low and can be left floating or wired low or high; outputs are placed in a highimpedance state and can be left unconnected or wired low or high). When no microprocessor interface is selected (IFSEL = 000) all microprocessor interface inputs are ignored, and all microprocessor interface outputs are put in a high impedance state. When both the hardware interface and the microprocessor interface are enabled at the same time, many internal settings of the device can be configured by both a hardware interface pin and a microprocessor interface register bit with identical names and functions. In this situation the actual internal device setting is the logical OR of pin assertion and register bit assertion. For example, the transmitter output driver is enabled when the TOE pin is high OR the TOE register bit is high. When both the hardware interface and the microprocessor interface are enabled at the same time, the following hardware interface pins are ignored and replaced by equivalent configuration register fields: LMn[1:0], JAS[1:0], JAD[1:0], LBn[1:0], and LBS. 13 of 130 DS32506/DS32508/DS32512 7. PIN DESCRIPTIONS Note: All digital pins are I/O pins in JTAG mode. This feature is to increase the effectiveness of board-level ATPG patterns to isolate interconnect failures. 7.1 Short Pin Descriptions n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output, Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high impedance), P = power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied to approximately 2.2V DC. See Section 12 for pin assignments. Table 7-1. Short Pin Descriptions NAME TYPE TXPn TXNn RXPn RXNn Oa Oa Ia Ia TCLKn TPOSn/TDATn TNEGn RCLKn RPOSn/RDATn RNEGn/RLCVn I I I Oz Oz Oz IFSEL[2:0] HW TEST HIZ RST RESREF I Ipd I I Ipu Oa LMn[1:0] AIST TAISn TBIN TCC TCLKI TDMn TLBOn TOEn TPD Ipd Ipd Ipd Ipd Ipd Ipd O Ipd Ipd Ipd I Ipd Ipd O Ipd ITRE RBIN RCLKI RLOSn RMONn FUNCTION ANALOG LINE INTERFACE Transmit Positive Analog (Port n) Transmit Negative Analog (Port n) Receive Positive Analog (Port n) Receive Negative Analog (Port n) DIGITAL FRAMER INTERFACE Transmit Clock (Port n) Transmit Positive AMI/Transmit NRZ Data (Port n) Transmit Negative AMI (Port n) Receive Clock (Port n) Receive Positive AMI/Receive NRZ Data (Port n) Receive Negative AMI/Receive Line Code Violation (Port n) GLOBAL I/O Microprocessor Interface Select Hardware Interface Enable Factory Test Enable (Active Low) High-Impedance Test Enable (Active Low) Reset (Active Low) Reference Resistor HARDWARE INTERFACE LIU Mode Control (DS3, E3, or STS-1) (Port n) AIS Type Control (All Ports) Transmit AIS Control (Port n) Transmit Binary Interface Control (All Ports) Transmit Common Clock Control (All Ports) Transmit Clock Invert Control (All Ports) Transmit Driver Monitor Status (Port n) Transmit Line Build-Out Control (Port n) Transmit Output-Enable Control (Port n) Transmit Power-Down (All Ports) Internal Termination Resistance Enable (Tx and Rx) (All Ports) Receive Binary Interface Control (All Ports) Receive Clock Invert Control (All Ports) Receive Loss-of-Signal Status (Port n) Receive Monitor Preamp Control (Port n) 14 of 130 DS32506/DS32508/DS32512 NAME TYPE RPD JAD[1:0] JAS[1:0] LBn[1:0] LBS Ipd Ipd Ipd I Ipd CS RD/DS WR/R/W ALE A[10:1] A[0]/BSWAP D[15:0] RDY/ACK INT GPIOAn GPIOBn CS SCLK SDI SDO CPHA CPOL INT GPIOAn GPIOBn REFCLK CLKA CLKB CLKC CLKD CLADBYP JTCLK JTMS JTDI JTDO JTRST VDD18 VDD33 VSS JVDDn JVSSn RVDDn FUNCTION Receive Power-Down (All Ports) Jitter Attenuator Depth (All Ports) Jitter Attenuator Select (Tx, Rx, or Disabled) (Port n) Loopback Control (Port n) Loopback Select (all ports) 8-/16-BIT PARALLEL INTERFACE I Chip Select (Active Low) I Read Enable (Active Low)/Data Strobe (Active Low) I Write Enable (Active Low)/Read/Write Select I Address Latch Enable I Address Bus (Excluding LSB) I Address Bus LSB/Byte Swap I/O Data Bus [15:0] Oz Ready/Acknowledge (Active Low) Oz Interrupt (Active Low) I/Opd General-Purpose I/O A (Port n) I/Opd General-Purpose I/O B (Port n) SPI SERIAL INTERFACE I Chip Select (Active Low) I Serial Clock I Serial Data Input O Serial Data Output I Clock Phase I Clock Polarity Oz Interrupt Output (Active Low) I/Opd General-Purpose I/O A (Port n) I/Opd General-Purpose I/O B (Port n) CLAD I Reference Clock I/O Clock A—DS3 44.736MHz I/O Clock B—E3 34.368MHz I/O Clock C—STS-1 51.84MHz O Clock D—Telecom Bus 77.76MHz or 19.44MHz I CLAD Bypass JTAG I JTAG Clock IPU JTAG Mode Select IPU JTAG Data Input Oz JTAG Data Output IPU JTAG Reset (Active Low) POWER SUPPLY AND GROUND PINS P Digital Core 1.8V Power, 1.8V ±5% P I/O 3.3V Power, 3.3V ±5% P Ground for VDD18 and VDD33 P Jitter Attenuator 1.8V Power, 1.8V ±5% (Port n) P Jitter Attenuator Ground (Port n) P Receive 1.8V Power, 1.8V ±5% (Port n) 15 of 130 DS32506/DS32508/DS32512 NAME TYPE RVSSn TVDDn TVSSn CVDD CVSS P P P P P MT[10:0] Test FUNCTION Receive Ground (Port n) Transmit 1.8V Power, 1.8V ±5% (Port n) Transmit Ground (Port n) CLAD 1.8V ±5% CLAD Ground MANUFACTURING TEST Manufacturing Test Pins 16 of 130 DS32506/DS32508/DS32512 7.2 Detailed Pin Descriptions n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output, Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high impedance), P= power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied to 2.2V DC. Table 7-2. Analog Line Interface Pin Descriptions NAME TYPE FUNCTION TXPn, TXNn Oa Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75Ω coaxial cable through a 1:1 transformer (Figure 4-1). These outputs can be disabled (high impedance) using the TOEn pin or the TOE or TPD configuration bits. See Section 8.2.8. RXPn, RXNn Ia Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75Ω coaxial cable through a 1:1 transformer (Figure 4-1). See Section 8.3.1. Table 7-3. Digital Framer Interface Pin Descriptions NAME TCLKn TYPE FUNCTION I Transmit Clock. A DS3 (44.736MHz ±20ppm), E3 (34.368MHz ±20ppm), or STS-1 (51.840MHz ±20ppm) clock should be applied at this pin. Data to be transmitted is clocked into the device at TPOS/TDAT and TNEG either on the rising edge of TCLK (TCLKI = 0) or the falling edge of TCLK (TCLKI = 1). When pin TCC = 1, all ports are clocked by TCLK1, and TCLKx (x ≠ 1) are ignored. See Section 8.2.1 for additional details. Transmit Positive AMI/Transmit NRZ Data. This pin is sampled either on the rising edge of TCLK (TCLKI = 0) or on the falling edge of TCLK (TCLKI = 1). See Section 8.2.2. TPOSn/ TDATn I TPOSn: When the transmitter is configured to have a bipolar interface (TBIN = 0), a positive pulse is transmitted on the line when TPOS is high. TDATn: When the transmitter is configured to have a binary interface (TBIN = 1), the data on TDAT is transmitted after B3ZS or HDB3 encoding. TNEGn RCLKn I Oz Transmit Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN = 0), a negative pulse is transmitted on the line when TNEG is high. When the transmitter is configured to have a binary interface (TBIN = 1), TNEG is ignored and should be wired either high or low. TNEG is sampled either on the rising edge of TCLK (TCLKI = 0) or the falling edge of TCLK (TCLKI = 1). See Section 8.2.2. Receive Clock. The clock recovered from the receive signal is output on the RCLK pin. Recovered data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). During a loss-of-signal condition (RLOSn = 0), the RCLK output signal is derived from the LIU’s reference clock. See Section 8.3.6. Receive Positive AMI/Receive NRZ Data. This pin is updated either on the falling edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6. RPOSn/ RDATn Oz RPOSn: When the receiver is configured to have a bipolar interface (RBIN = 0), RPOS pulses high for each positive AMI pulse received. RDATn: When the receiver is configured to have a binary interface (RBIN = 1), RDAT outputs RNEGn/ RLCVn decoded binary data. Receive Negative AMI/Receive Line-Code Violation. This pin is updated either on the falling edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6 for further details on code violations. Oz RNEGn: When the receiver is configured to have a bipolar interface (RBIN = 0), RNEG pulses high for each negative AMI pulse received. RLCVn: When the receiver is configured to have a binary interface (RBIN = 1), RLCV pulses high to flag code violations. 17 of 130 DS32506/DS32508/DS32512 Table 7-4. Global Pin Descriptions NAME IFSEL[2:0] TYPE I FUNCTION Microprocessor Interface Select. When no microprocessor interface is selected, all microprocessor interface inputs are ignored and internally pulled low, and all microprocessor interface outputs are put in a high-impedance state. See Section 6 for details. 000 = no microprocessor interface (must set HW = 1 and use hardware interface) 001 = reserved 010 = SPI serial interface, address and data MSB first 011 = SPI serial interface, address and data LSB first 100 = 8-bit parallel interface, Intel style (CS, RD, WR control signals) 101 = 8-bit parallel interface, Motorola style (CS, R/W, DS control signals) 110 = 16-bit parallel interface, Intel style (CS, RD, WR control signals) 111 = 16- bit parallel interface, Motorola style (CS, R/W, DS control signals) Hardware Interface Enable. When the hardware interface pins are disabled, all hardware control inputs are ignored and internally pulled low, and all hardware status outputs are put in a high impedance state. See Section 6 for details. 0 = Hardware interface pins disabled 1 = Hardware interface pins enabled HW Ipd TEST I Factory Test Enable (Active Low). This pin enables the internal scan test mode when low. For normal operation tie high. This is an asynchronous input. HIZ I High-Impedance Test Enable (Active Low). This signal is used to enable testing. When this signal is low while JTRST is low, all the digital output and bidirectional pins are placed in the high-impedance state. For normal operation this signal is high. This is an asynchronous input. RST Ipu Reset (Active Low, Open Drain). When this global asynchronous reset is pulled low, all internal circuitry is reset and all internal registers are forced to their default values. The device is held in reset as long as RST is low. RST should be held low for at least two reference clock cycles. See Section 8.11. RESREF Oa Reference Resistor. This pin is tied to VSS through a 10kΩ ±1% resistor. This accurate resistor is used to calibrate on-chip resistor values including internal transmit and receive termination resistors. 18 of 130 DS32506/DS32508/DS32512 Table 7-5. Hardware Interface Pin Descriptions NAME TYPE FUNCTION LMn[1:0] Ipd LIU Mode Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and HW = 1), these pins set the LIU mode for port n. See Section 8.1. 00 = DS3 01 = E3 10 = STS-1 11 = reserved AIST Ipd AIS Type Control (All Ports). See Section 8.2.3. 0 = Unframed all ones 1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode) Ipd Transmit AIS Control (Port n). The type of AIS signal is specified by the LMn[1:0] and AIST pins. See Section 8.2.3. 0 = transmit normal data 1 = transmit AIS Ipd Transmit Binary Interface Control (All Ports). See Section 8.2.2. 0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins, and the B3ZS/HDB3 encoder is disabled. 1 = Transmitter framer interface is binary on the TDAT pin, and the B3ZS/HDB3 encoder is enabled. TCC Ipd Transmit Common Clock Control (All Ports). When this pin is high, the transmit paths of all ports are clocked by the TCLK1 pin, and pins TCLKx (x ≠ 1) are ignored. In designs where the transmit paths of all ports can be clocked synchronously with one another, this mode reduces wiring complexity between the LIU and the neighboring framer or mapper component. See Section 8.2.1. TCLKI Ipd Transmit Clock Invert control (All Ports). See Section 8.2.1. 0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. 1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. TAISn TBIN TDMn O TLBOn Ipd Transmit Driver Monitor Status (Port n). This pin reports the status of the transmit driver monitor. See Section 8.2.9 for more information. 0 = Transmit line driver is operating properly. 1 = Transmit line driver is faulty. Transmit Line Build-Out Control (Port n). This pin specifies cable length for waveform shaping in DS3 and STS-1 modes. In E3 mode it is ignored and should be wired high or low. See Section 8.2.6. 0 = Cable length ≥ 225ft 1 = Cable length < 225ft TOEn Ipd Transmitter Output-Enable Control (Port n). This pin enables and disables the transmitter outputs. The transmitter continues to operate internally when the outputs are disabled; only the line driver and driver monitor are disabled. See Section 8.2.7. 0 = TXPn/TXNn output drivers disabled (high impedance) 1 = TXPn/TXNn output drivers enabled TPD Ipd Transmit Power-Down (All Ports). See Section 8.2.10. 0 = Enable all transmitters 1 = Power down all transmitters (drivers become high impedance) 19 of 130 DS32506/DS32508/DS32512 NAME TYPE ITRE I RBIN Ipd RCLKI Ipd RLOSn O FUNCTION Internal Termination Resistance Enable (Tx and Rx) (All Ports). This bit indicates when the internal termination is enabled. See Section 8.2.8. 0 = Disabled. The transmitters and receivers are terminated externally. 1 = Enabled. The transmitters and receivers are terminated internally. Receive Binary Interface Control (All Ports). See Section 8.3.6. 0 = Receiver framer interface is bipolar on the RPOS and RNEG pins, and the B3ZS/HDB3 encoder is disabled. 1 = Receiver framer interface is binary on the RDAT pin, and the B3ZS/HDB3 encoder is enabled. Receive Clock Invert Control (All Ports). See Section 8.3.6.3. 0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK. 1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK. Receive Loss-of-Signal Status (Port n). This pin is asserted upon detection of 192 consecutive zeros in the receive data stream. It is deasserted when there are no excessive zero occurrences over a span of 192 clock periods. An excessive zero occurrence is defined as three or more consecutive zeros in DS3 and STS-1 modes or four or more zeros in E3 mode. See Section 8.3.5. Ipd Receive Monitor Preamp Control (Port n). This pin determines whether or not the receiver preamp is enabled in port n to provide flat gain to the incoming signal before the AGC/equalizer block processes it. This feature should be enabled when the device is being used to monitor signals that have been resistively attenuated by a monitor jack. See Section 8.3.2 for more information. 0 = Disable the monitor preamp 1 = Enable the monitor preamp Ipd Receive Power-Down (All Ports). See Section 8.3.7. 0 = Enable all receivers 1 = Power down all receivers (RXPn/RXNn high impedance. RCLKn, RPOSn/RDATn, and RNEGn/RLCVn high impedance.) Ipd Jitter Attenuator Depth (All Ports). These pins are ignored when a microprocessor interface is enabled (IFSEL ≠ 000). See Section 8.4. 00 = 16 bits 01 = 32 bits 10 = 64 bits 11 = 128 bits Ipd Jitter Attenuator Select (All Ports). These pins select the location of the jitter attenuator. These pins are ignored when a microprocessor interface is enabled (IFSEL ≠ 000). See Section 8.4. 00 = Disabled 01 = Receive path 1X = Transmit path LBn[1:0] Ipd Loopback Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and HW = 1), these pins set the loopback mode for port n. See Section 8.6. 00 = No loopback 01 = Diagnostic loopback (DLB) 10 = Line loopback (LLB) 11 = (LBS = 0) Line loopback (LLB) and diagnostic loopback (DLB) simultaneously 11 = (LBS = 1) Analog loopback (ALB) LBS Ipd Loopback Select (All Ports). This pin specifies how the device interprets the LBn[1:0] bits. This pin is ignored when a microprocessor interface is enabled (IFSEL ≠ 000). See Section 8.6. RMONn RPD JAD[1:0] JAS[1:0] 20 of 130 DS32506/DS32508/DS32512 Table 7-6. Parallel Interface Pin Descriptions NAME TYPE CS I FUNCTION Chip Select (Active Low). This pin must be asserted to read or write internal registers. See Section 8.8.3. Read Enable (Active Low)/Data Strobe (Active Low) RD/DS I RD: For the Intel-style bus (IFSEL = 1X0), RD is asserted to read internal registers. DS: For the Motorola-style bus (IFSEL = 1X1), DS is asserted to access internal registers while the R/W pin specifies whether the access is a read or a write. See Section 8.8.3. Write Enable (Active Low)/Read/Write Select WR: For the Intel-style bus (IFSEL = 1X0), WR is asserted to write internal registers. WR/R/W I ALE I Address Latch Enable. This pin controls a latch on the A[10:0] inputs. For a nonmultiplexed parallel bus, ALE is wired high to make the latch transparent. For a multiplexed parallel bus, the falling edge of ALE latches the address. See Section 8.8.3. A[10:1] I Address Bus (Excluding LSB). These inputs specify the address of the internal 16-bit register to be accessed. A10 is not present on the DS32506. See Section 8.8. R/W: For the Motorola-style bus (IFSEL = 1X1), R/W determines the type of bus transaction, with R/W = 1 indicating a read and R/W = 0 indicating a write. See Section 8.8.3. Address Bus LSB/Byte Swap. See Section 8.8.2. A[0] / BSWAP D[15:0] I A[0]: This pin is connected to the lower address bit in 8-bit bus modes (IFSEL = 10X). 0 = Output register bits 7:0 on D[7:0]; D[15:8] high impedance 1 = Output register bits 15:8 on D[7:0]; D[15:8] high impedance BSWAP: This pin is tied high or low in 16-bit bus modes (IFSEL = 11X). 0 = Output register bits 15:8 on D[15:8] and bits 7:0 on D[7:0] 1 = Output register bits 7:0 on D[15:8] and bits 15:8 on D[7:0] I/O Data Bus. A 8-bit or 16-bit bidirectional data bus. These pins are inputs during writes to internal registers and outputs during reads. D[15:8] are disabled (high impedance) in 8-bit bus modes (IFSEL = 10X). D[15:0] are disabled (high impedance) when CS = 1 or RST = 0. In 16-bit bus modes (IFSEL = 11X) the upper and lower bytes can be swapped by pulling the BSWAP pin high. See Section 8.8. Ready Handshake (Tri-State)/Acknowledge Handshake (Tri-State, Active Low). Tri-stated when CS = 1 or RST = 0. See Section 8.8. RDY/ACK Oz RDY: Intel Mode (IFSEL = 100 or 110): RDY goes high when the read or write cycle can progress. ACK: Motorola Mode (IFSEL = 101 or 111): ACK goes low when the read or write cycle can progress. INT Oz Interrupt Output (Active Low, Open Drain, or Push-Pull). This pin is driven low in response to one or more unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or masked. When GLOBAL.CR2:INTM = 0, INT is high impedance when inactive (default). When INTM = 1, INT is driven high when inactive. INT is high impedance when RST = 0. See Section 8.10. GPIOAn I/Opd General-Purpose I/O A. When a microprocessor interface is enabled (IFSEL ≠ 000), this pin is the “A” general-purpose I/O pin for port n. See Section 8.7.3. GPIOBn I/Opd General-Purpose I/O B. When a microprocessor interface is enabled (IFSEL ≠ 000), this pin is the “B” general-purpose I/O pin for port n. See Section 8.7.3. Note: GPIOB1, GPIOB2, and GPIOB3 can also be programmed as global control/status pins. 21 of 130 DS32506/DS32508/DS32512 Table 7-7. SPI Serial Interface Pin Descriptions NAME TYPE FUNCTION CS I Chip Select (Active Low). This pin must be asserted to read or write internal registers. See Section 8.9. SCLK I Serial Clock. SCLK is always driven by the SPI bus master. See Section 8.9. SDI I Serial Data Input. The SPI bus master transmits data to the device on this pin. See Section 8.9. SDO O Serial Data Output. The device transmits data to the SPI bus master on this pin. See Section 8.9. CPHA I Clock Phase. See Section 8.9. 0 = Data is latched on the leading edge of the SCLK pulse 1 = Data is latched on the trailing edge of the SCLK pulse CPOL I Clock Polarity. See Section 8.9. 0 = SCLK is normally low and pulses high during bus transactions 1 = SCLK is normally high and pulses low during bus transactions INT Oz GPIOAn I/Opd General-Purpose I/O A. See GPIOAn pin description in Table 7-6. GPIOBn I/Opd General-Purpose I/O B. See GPIOBn pin description in Table 7-6. Interrupt Output (Active Low, Open Drain). See INT pin description in Table 7-6. Table 7-8. CLAD Pin Descriptions NAME REFCLK CLKA TYPE I I/O FUNCTION Reference Clock. The signal on this pin is the input reference clock to the CLAD and must be transmission quality (±20ppm, low jitter). In hardware mode, REFCLK must be 19.44MHz. In bus interface modes, REFCLK can be any of several frequencies. See Section 8.7.1. Clock A—DS3 44.736MHz. When the CLAD is bypassed, a transmission-quality DS3 clock (44.736MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to operate in DS3 mode. When the CLAD is enabled this pin can be configured to output the DS3 clock synthesized by PLL-A. See Section 8.7.1. Clock B—E3 34.368MHz. When the CLAD is bypassed, a transmission-quality E3 clock (34.368MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to operate in E3 mode. When the CLAD is enabled, this pin can be configured to output the E3 clock synthesized by PLL-B. See Section 8.7.1. Clock C—STS-1 51.84MHz. When the CLAD is bypassed, a transmission-quality STS-1 clock (51.84MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to operate in STS-1 mode. When the CLAD is enabled, this pin can be configured to output the STS-1 clock synthesized by PLL-C. See Section 8.7.1. CLKB I/O CLKC I/O CLKD O Clock D—Telecom Bus 77.76MHz or 19.44MHz. When the CLAD is bypassed, this pin is driven low. When the CLAD is enabled this pin can output a 77.76MHz or 19.44MHz clock synthesized by PLL-D. See Section 8.7.1. I CLAD Bypass Control. This pin controls whether the CLAD is used or bypassed. When a microprocessor interface is enabled (IFSEL ≠ 000), CLADBYP should be wired low to allow use of the GLOBAL.CR2:CLAD[6:0] field to control the CLAD. See Section 8.7.1. 0 = Synthesize the DS3, E3, and STS-1 clocks from the clock on the REFCLK pin. 1 = Source the DS3, E3, and STS-1 clocks from the CLKA, CLKB and CLKC pins. CLADBYP 22 of 130 DS32506/DS32508/DS32512 Table 7-9. JTAG Pin Descriptions NAME TYPE JTCLK I JTAG Clock. This pin shifts data into JTDI on the rising edge and out of JTDO on the falling edge. JTCLK is typically a low frequency (less than 10MHz) 50% duty cycle clock signal. If boundary scan is not used, JTCLK should be pulled high. See Section 10. JTMS Ipu JTAG Mode Select. This pin is used to control the JTAG controller state machine. JTMS is sampled on the rising edge of JTCLK. If boundary scan is not used, JTMS should be left unconnected or pulled high. See Section 10. JTDI Ipu JTAG Data Input. This pin is used to input data into the register that is enabled by the JTAG controller state machine. JTDI is sampled on the rising edge of JTCLK. If boundary scan is not used, JTDI should be left unconnected or pulled high. See Section 10. Oz JTAG Data Output. This pin is the output of an internal scan shift register enabled by the JTAG controller state machine. JTDO is updated on the falling edge of JTCLK. JTDO is in high-impedance mode when a register is not selected or when the JTRST pin is low. JTDO goes into and out of high-impedance mode after the falling edge of JTCLK. See Section 10. Ipu JTAG Reset (Active Low). When active, this pin forces the JTAG controller logic into the reset state and forces the JTDO pin into high-impedance mode. The JTAG controller is also reset when power is first applied via a power-on reset circuit. JTRST can be driven high or low for normal operation, but must be high for JTAG operation. See Section 10. JTDO JTRST FUNCTION Table 7-10. Power-Supply Pin Descriptions NAME TYPE VDD18 VDD33 VSS JVDDn JVSSn RVDDn RVSSn TVDDn TVSSn CVDD CVSS P P P P P P P P P P P FUNCTION Digital Core 1.8V Power, 1.8V ±5% I/O 3.3V Power, 3.3V ±5% Ground for VDD18 and VDD33 Jitter Attenuator 1.8V Power, 1.8V ±5% Jitter Attenuator Ground Receive 1.8V Power, 1.8V ±5% Receive Ground Transmit 1.8V Power, 1.8V ±5% Transmit Ground CLAD 1.8V ±5% CLAD Ground Table 7-11. Manufacturing Test Pin Descriptions NAME TYPE MT[10:0] Test FUNCTION Manufacturing Test Pins 10 to 0. MT[0] and MT[2:10] must not be connected. MT[1] must be connected to digital ground (same as VSS pins). 23 of 130 DS32506/DS32508/DS32512 8. FUNCTIONAL DESCRIPTION 8.1 LIU Mode Each port is independently configurable for DS3, E3 or STS-1 operation. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the LMn[1:0] pins specify the LIU mode. When a microprocessor interface is enabled (IFSEL ≠ 000) the PORT.CR2:LM[1:0] control bits specify the LIU mode. 8.2 Transmitter 8.2.1 Transmit Clock If the jitter attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be transmission quality (i.e., ±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the transmit path, the signal on TCLK can be jittery and/or periodically gapped, but must still have an average frequency within ±20ppm of the nominal line rate. When enabled in the transmit path, the jitter attenuator generates the transmit line clock. See Section 8.4 for more information about the jitter attenuator. The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components. Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample these pins on the falling edge of TCLK, pull the TCLKI pin high or set the PORT.INV:TCLKI configuration bit. 8.2.1.1 Transmit Common Clock Mode When the TCC pin is high, the transmit paths of all ports are clocked from TCLK1 and pins TCLKx (x ≠ 1) are ignored. When the TCC pin is low, the PORT.CR2:TCC register bit specifies whether the transmit clock for port n comes from TCLKn or TCLK1. In designs where the transmit paths of all ports can be clocked synchronously with one another, common transmit clocking reduces wiring complexity between the LIU and the neighboring framer or mapper component. 8.2.2 Framer Interface Format and the B3ZS/HDB3 Encoder Data to be transmitted can be input in either bipolar or binary format. 8.2.2.1 Bipolar Interface Format To select the bipolar interface format, pull the TBIN pin low and clear the PORT.CR2:TBIN configuration bit. In bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled on the TPOS and TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses are indicated by TNEG = 1. If TPOS and TNEG are high at the same time the transmitter generates an AMI pulse that is the opposite state of the pulse previously transmitted. 8.2.2.2 Binary Interface Format To select the binary interface format, pull the TBIN pin high (all ports) or set the PORT.CR2:TBIN configuration bit (per port). In binary format, the B3ZS/HBD3 encoder is enabled, and the NRZ data to be transmitted is sampled on the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired low. In DS3 and STS-1 modes, B3ZS encoding is performed. In these modes, whenever three consecutive zeros are found in the transmit data stream they are replaced with a B3ZS codeword. In E3 mode HDB3 encoding is performed. In this mode, whenever four consecutive zeros are found in the transmit data stream they are replaced with an HDB3 codeword. In all three modes, the B3ZS or HDB3 codeword is constructed such that the last bit is a BPV with the opposite polarity of the most recently transmitted BPV. 8.2.3 Error Insertion Bipolar violation (BPV) errors and excessive zeros (EXZ) errors can be inserted into the transmit data stream using the transmit manual error insert (TMEI) logic (see Section 8.7.5). Configuration bit LINE.TCR:BPVI enables the insertion of bipolar violations, while LINE.TCR:EXZI enables the insertion of excessive zero events. Note: BPV errors and EXZ errors can only be inserted in the binary interface format. If the transmitter is configured for binary interface format (Section 8.2.2.2) and BPVI = 1 then when the configured manual error insert control goes from zero to one, the transmitter waits for the next occurrence of two consecutive 24 of 130 DS32506/DS32508/DS32512 1s where the polarity of the first 1 is opposite the polarity of the BPV in the last B3ZS/HDB3 codeword. The first 1 is transmitted according to the normal AMI rule, but the second 1 is transmitted with the same polarity as the first 1, thus making the second 1 a bipolar violation. If the transmitter is configured for binary interface format (Section 8.2.2.2) and EXZI = 1, then when the configured manual error insert control goes from zero to one, the transmitter waits for the next occurrence of three (four) consecutive zeros in the transmit data stream and inhibits the replacement of those zeros with a B3ZS (HDB3) codeword. The transmitter ensures that there is at least one intervening 1 between consecutive BPV or EXZ errors. If a second error insertion request of a given type (BPV or EXZ) is initiated before a previous request has been completed, the second request is ignored. 8.2.4 AIS Generation The transmitter can be configured to transmit an AIS signal by asserting the TAIS pin or the PORT.CR3:TAIS configuration bit. The type of AIS signal to be generated is specified by the LIU mode (LMn[1:0] pins or PORT.CR2:LM[1:0] configuration bits) and the AIS type (AIST pin or PORT.CR3:AIST configuration bit). When AIST = 0, the AIS signal is unframed all ones for DS3, E3 and STS-1 modes. When AIST = 1, the AIS signal is the framed DS3 AIS signal in DS3 mode, unframed all ones in E3 mode, and the AIS-L signal in STS-1 mode. The AIS-L signal is normally scrambled, but scrambling can be disabled by setting PORT.CR3:SCRD = 1. 8.2.5 8.2.5.1 Waveshaping Standards-Compliant Waveshaping Waveshaping converts the transmit clock, positive data, and negative data signals into a single analog AMI signal with the waveshape required for interfacing to DS3/E3/STS-1 lines. Figure 8-1 and Table 8-2 show the DS3 waveform equations and template. Figure 8-2 and Table 8-4 show the STS-1 waveform equations and template. Figure 8-3 shows the E3 waveform template. 8.2.5.2 Programmable Waveshaping The transmit waveshape can be adjusted with the TWSC[19:0] bits in the LIU.TWSCR1 and LIU.TWSCR2 registers. These signals control the amplitude, slew rates and various other aspects of the waveform template. See the register descriptions for further details. 8.2.6 Line Build-Out Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length from 0 to 450 feet, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225 feet or greater, both the TLBO pin and the LIU.CR1:TLBO configuration bit should be low to disable the LBO circuitry. When the LBO circuitry is disabled, output pulses are driven onto the coaxial cable without any preattenuation. For cable lengths less than 225 feet, either the TLBO pin or the LIU.CR1:TLBO configuration bit should be high to enable the LBO circuitry. When the LBO circuitry is enabled, pulses are preattenuated by the LBO circuitry before being driven onto the coaxial cable to provide attenuation that mimics the attenuation of 225 feet of coaxial cable. 8.2.7 Line Driver The transmit line driver can be disabled (TXP and TXN outputs high impedance) by deasserting the TOE pin and deasserting the LIU.CR1:TOE configuration bit. Powering down the transmitter through the TPD pin or the PORT.CR1:TPD configuration bit also disables the transmit line driver. 8.2.8 Interfacing to the Line The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75Ω) through a 1:1 isolation transformer connected to the TXP and TXN pins. The transmit line termination can be internal to the device, external to the device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when the internal termination is enabled (LIU.CR1:TTRE = 1) and no external termination resistors are used. Figure 4-2 shows the arrangement of the transformer and external termination resistors when the internal termination is disabled (LIU.CR1:TTRE = 0). The internal termination resistor value for the transmitter is specified in LIU.CR1:TRESADJ. Table 8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended transformers. 25 of 130 DS32506/DS32508/DS32512 8.2.9 Driver Monitor and Output Failure Detection The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 MCLK cycles, then the monitor activates the TDM output pin (if the hardware interface is enabled) and sets the LIU.SR:TDM status bit. The setting of LIU.SR:TDM can cause an interrupt if enabled by LIU.SRIE:TDMIE. When the transmitter is disabled, the transmit driver monitor is also disabled. The transmit driver monitor is clocked by the LIU’s reference clock. Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short circuit at a distance less than a few inches (~11 inches for FR-4 material) can introduce inverted reflections that reduce the outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM pin and/or the TDM status bit. Similarly an open circuit a similar distance away can introduce noninverted reflections that increase the outgoing amplitude above the VTXMAX threshold and thereby activate the TDM pin and/or the TDM status bit. Shorts and opens at larger distances away from TXP/TXN can also activate the TDM pin and/or the TDM status bit, but this effect is data-pattern dependent. If either TXP or TXN is not connected (open), shorted to VDD, or shorted to VSS, then a transmit failure alarm is declared by setting the LIU.SR:TFAIL status bit. A change of state of the TFAIL status bit can cause an interrupt if enabled by LIU.SRIE:TFAILIE. TFAIL is cleared when activity is detected on both TXP and TXN. 8.2.10 Power-Down To minimize power consumption when the transmitter is not being used, the TPD pin (all ports) or the PORT.CR1:TPD configuration bit (per port) can be asserted. When the transmitter is powered down, the TXP and TXN pins are put in a high-impedance state and the transmit drivers are powered down. 8.2.11 Jitter Generation (Intrinsic) The transmitter meets the jitter generation requirements of all applicable standards in Table 8-1, with or without the jitter attenuator enabled. Generated jitter is measured with a jitter-free, 0ppm input clock. Table 8-1. Jitter Generation SIGNAL DS3 DS3 DS3 E3 STS-1 STS-1 STANDARD REQUIREMENT GR-499 T1.404 T1.404 G.751 GR-253 GR-253 0.3 UIRMS 0.5 UIP-P 0.05 UIP-P 0.05 UIP-P 0.01 UIRMS 0.10 UIP-P BANDWIDTH 10Hz to 400kHz 10Hz to 400kHz 30kHz to 400kHz 100Hz to 800kHz 12kHz to 400kHz 12kHz to 400kHz DS325xx JITTER WITHOUT CLAD WITH CLAD TYP MAX TYP MAX 0.01 0.02 0.01 0.02 0.02 0.03 0.05 0.06 0.015 0.025 0.04 0.05 0.02 0.03 0.04 0.05 0.005 0.008 0.007 0.01 0.04 0.06 0.06 0.08 UNITS UIRMS UIP-P UIP-P UIP-P UIRMS UIP-P 8.2.12 Jitter Transfer Without the jitter attenuator on the transmit side, the transmitter passes jitter through unchanged. With the jitter attenuator enabled on the transmit side, the transmitter meets the jitter transfer requirements of all applicable telecommunication standards in Table 1-1. See Figure 8-7. 26 of 130 DS32506/DS32508/DS32512 Figure 8-1. DS3 Waveform Template 2nd Rise 1st Fall DS325xx waveshape segments. See the LIU.TWSCR register descriptions. 1.2 1st Rise 2nd Fall 1.0 Normalized Amplitude 0.8 0.6 0.4 0.2 0 -0.2 -1.0 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.0 1.25 1.5 Time (UI) Table 8-2. DS3 Waveform Equations TIME (IN UNIT INTERVALS) -0.85 ≤ T ≤ -0.68 -0.68 ≤ T ≤ +0.36 0.36 ≤ T ≤ 1.4 -0.85 ≤ T ≤ -0.36 -0.36 ≤ T ≤ +0.36 0.36 ≤ T ≤ 1.4 NORMALIZED AMPLITUDE EQUATION UPPER CURVE 0.03 0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03 0.08 + 0.407e-1.84(T - 0.36) LOWER CURVE -0.03 0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03 -0.03 Table 8-3. DS3 Waveform Test Parameters and Limits PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Unframed All-Ones Power Level at 22.368MHz Unframed All-Ones Power Level at 44.736MHz Pulse Imbalance of Isolated Pulses SPECIFICATION 44.736Mbps (±20ppm) B3ZS Coaxial cable (AT&T 734A or equivalent) At the end of 0 to 450ft of coaxial cable 75Ω (±1%) resistive Between 0.36V and 0.85V An isolated pulse (preceded by two zeros and followed by one zero) falls within the curves listed in Table 8-2. Between -1.8dBm and +5.7dBm At least 20dB less than the power at 22.368MHz Ratio of positive and negative pulses must be between 0.90 and 1.10 27 of 130 DS32506/DS32508/DS32512 Figure 8-2. STS-1 Waveform Template 2nd Rise 1st Fall DS325xx waveshape segments. See the LIU.TWSCR register descriptions. 1.2 1st Rise 2nd Fall 1.0 Normalized Amplitude 0.8 0.6 0.4 0.2 0 -0.2 -1.0 -0.75 -0.5 -0.25 0 0.5 0.25 0.75 1.0 1.25 1.5 Time (UI) Table 8-4. STS-1 Waveform Equations TIME (IN UNIT INTERVALS) -0.85 ≤ T ≤ -0.68 -0.68 ≤ T ≤ +0.26 0.26 ≤ T ≤ 1.4 -0.85 ≤ T ≤ -0.36 -0.36 ≤ T ≤ +0.36 0.36 ≤ T ≤ 1.4 NORMALIZED AMPLITUDE EQUATIONS UPPER CURVE 0.03 0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03 0.1 + 0.61e-2.4(T - 0.26) LOWER CURVE -0.03 0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03 -0.03 Table 8-5. STS-1 Waveform Test Parameters and Limits PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Unframed All-Ones Power Level at 25.92MHz Unframed All-Ones Power Level at 51.84MHz SPECIFICATION 51.840Mbps (±20ppm) B3ZS Coaxial cable (AT&T 734A or equivalent) At the end of 0 to 450ft of coaxial cable 75Ω (±1%) resistive 0.800V nominal (not covered in specs) An isolated pulse (preceded by two zeros and followed by one zero) falls within the curved listed in Table 8-4. Between -1.8dBm and +5.7dBm At least 20dB less than the power at 25.92MHz 28 of 130 DS32506/DS32508/DS32512 Figure 8-3. E3 Waveform Template Zero Level Overshoot One Level Undershoot Zero Level 17.0 (14.55 + 2.45) 1.2 1.1 1.0 0.9 0.8 Normalized Amplitude 8.65 (14.55 - 5.90) Nominal Pulse 0.6 0.5 12.1 (14.55 - 2.45) 0.4 14.55 0.2 24.5 (14.55 + 9.95) 0.1 0 -0.1 29.1 (14.55 + 14.55) -0.2 -15 -10 -5 0 5 10 15 Time (ns) Table 8-6. E3 Waveform Test Parameters and Limits PARAMETER Rate Line Code Transmission Medium Test Measurement Point Test Termination Pulse Amplitude Pulse Shape Ratio of the Amplitudes of Positive and Negative Pulses at the Center of the Pulse Interval Ratio of the Widths of Positive and Negative Pulses at the Nominal Half Amplitude SPECIFICATION 34.368Mbps (±20ppm) HDB3 Coaxial cable (AT&T 734A or equivalent) At the transmitter 75Ω (±1%) resistive 1.0V (nominal) An isolated pulse (preceded by two zeros and followed by one or more zeros) falls within the template shown in Figure 8-3. 0.95 to 1.05 0.95 to 1.05 29 of 130 DS325xx waveshape segments. See the LIU.TWSCR register descriptions. DS32506/DS32508/DS32512 8.3 8.3.1 Receiver Interfacing to the Line The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the incoming coaxial cable (75Ω) through a 1:1 isolation transformer. The receive line termination can be internal to the device, external to the device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when the internal termination is enabled (LIU.CR2:RTRE = 1) and no external termination resistors are used. Figure 4-2 shows the arrangement of the transformer and external termination resistors when the internal termination is disabled (LIU.CR2:RTRE = 0). The internal termination resistor value is specified in LIU.CR2:RRESADJ[3:0]. Table 8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended transformers. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format. Table 8-7. Transformer Characteristics PARAMETER Turns Ratio Bandwidth 75Ω Primary Inductance Leakage Inductance Interwinding Capacitance Isolation Voltage VALUE 1:1 ±2% 0.200MHz to 340MHz (typ) 40μH (min) 0.12μH (max) 10pF (max) 1500VRMS (min) Table 8-8. Recommended Transformers MANUFACTURER PART TEMP RANGE Pulse Engineering Pulse Engineering Pulse Engineering Pulse Engineering Pulse Engineering Pulse Engineering Pulse Engineering Halo Electronics Halo Electronics Halo Electronics Halo Electronics PE-65967 PE-65966 T3001 TX3025 TX3036 TX3047 TX3051 TG01-0406NS TD01-0406NS TG01-0456NS TD01-0456NE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C PINPACKAGE/ SCHEMATIC 6 SMT LS-1/E 6 THT LC-1/E 6 SMT LS-2/E 16 SMT BH/3 24 SMT 32 SMT YB/1 48 SMT 6 SMT SMD/A 6 DIP DIP/A 6 SMT SMD/A 6 DIP DIP/A OCL PRIMARY (μH) (min) 40 40 40 100 100 100 60 40 40 45 45 LL (μH) (max) 0.10 0.10 0.11 0.120 0.110 0.150 0.120 0.10 0.10 0.12 0.12 BANDWIDTH 75Ω (MHz) 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 Note: Table subject to change. Multiport transformers are also available. Contact the manufacturers for details at www.pulseeng.com and www.haloelectronics.com. 8.3.2 Optional Preamp The receiver can be used in monitoring applications that typically have series resistors with a resistive loss of approximately 20dB. When the RMON pin is high or the LIU.CR2:RMON configuration bit is set, the receiver can compensate for this resistive loss by applying 14dB of additional flat gain to the incoming signal before sending the signal to the AGC/equalizer block (an additional 6dB of flat gain is applied in the AGC circuitry for a total gain of 20dB). When the preamp is enabled the receiver automatically determines whether or not to make use of the preamp’s additional gain. Status bit LIU.SR:RPAS indicates whether or not the preamp is in use. A change of state of LIU.SR:RPAS can cause an interrupt if enabled by LIU.SRIE:RPASIE. 8.3.3 Automatic Gain Control (AGC) and Adaptive Equalizer The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in the transmission channel and variations in transmission power. Since the incoming signal also experiences frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically adapts to coaxial cable losses from 0 to 22dB, which translates into 0 to 457 meters (1500 feet) of coaxial cable 30 of 130 DS32506/DS32508/DS32512 (AT&T 734A or equivalent). The AGC and the equalizer work simultaneously but independently to supply a signal of nominal amplitude and pulse shape to the clock and data recovery block. The AGC/equalizer block automatically handles direct (0 meters) monitoring of the transmitter output signal. The real-time receiver gain level can be read from the LIU.RGLR register. Note: When the receiver preamp is on (LIU.SR:RPAS = 1), the actual receiver gain level is the level read from the LIU.RGLR register plus 14dB. 8.3.4 Clock and Data Recovery (CDR) The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock, positive data, and negative data signals. The CDR operates from the LIU’s reference clock. See Section 8.7.1 for more information about reference clocks and clock selection. The receiver locks onto the incoming signal using a clock recovery PLL. The PLL lock status is indicated in the LIU.SR:RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and reference clock frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state of the RLOL status bit can cause an interrupt if enabled by LIU.SRIE:RLOLIE. Note that if the reference clock is not present, RLOL is not set. 8.3.5 Loss-of-Signal (LOS) Detector The receiver contains analog and digital LOS detectors. The analog LOS (ALOS) detector resides in the AGC/equalizer block. At approximately 23dB below nominal pulse amplitude ALOS is declared by setting the LIU.SR:ALOS status bit. A change of state of the ALOS status bit can cause an interrupt if enabled by LIU.SRIE:ALOSIE. When ALOS is declared the CDR block forces all zeros out of the data recovery circuit, causing digital LOS (DLOS), which is indicated by the RLOS pin and the LINE.RSR:LOS status bit. During ALOS the RCLK pin follows the LIU’s reference clock, since no clock information is being received on RXP/RXN. ALOS is cleared at approximately 22dB below nominal pulse amplitude. When the preamp is enabled (Section 8.3.2) ALOS is declared at approximately 37dB below nominal and cleared at approximately 36dB below nominal. The digital LOS detector declares DLOS when it detects 192 consecutive zeros in the recovered data stream. When DLOS occurs, the receiver asserts the RLOS pin (if the hardware interface is enabled) and the LINE.RSR:LOS status bit. DLOS is cleared when there are no EXZ occurrences over a span of 192 clock periods. An EXZ occurrence is defined as three or more consecutive zeros in DS3 and STS-1 modes and four or more consecutive zeros in E3 mode. The RLOS pin and the LOS status bit are deasserted when the DLOS condition is cleared. A change of state of the LINE.RSR:LOS status bit can cause an interrupt if enabled by LINE.RSRIE:LOSIE. DLOS is only declared when B3ZS/HDB3 decoding is enabled (LINE.RCR:RZSD = 0). When B3ZS/HDB3 decoding is disabled in the LIU, decoding should be enabled in the neighboring DS3/E3 framer, and DLOS should be detected and report by the framer. The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which asserts RLOS when it counts 192 consecutive zeros coming out of the CDR block and clears RLOS when it counts 192 consecutive pulse intervals without excessive zero occurrences. The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the DLOS detector, as follows: For E3 RLOS Assertion: 1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal level approximately 23dB below nominal, and mutes the data coming out of the clock and data recovery block. (23dB below nominal is in the “tolerance range” of G.775, where LOS may or may not be declared.) 2) The DLOS detector counts 192 consecutive zeros coming out of the CDR block and asserts RLOS. (192 meets the 10 ≤ N ≤ 255 pulse-interval duration requirement of G.775.) For E3 RLOS Clear: 1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a signal level approximately 22dB below nominal, and enables data to come out of the CDR block. (22dB is in the “tolerance range” of G.775, where LOS may or may not be declared.) 2) The DLOS detector counts 192 consecutive pulse intervals without EXZ occurrences and deasserts RLOS. (192 meets the 10 ≤ N ≤ 255 pulse-interval duration requirement of G.775.) 31 of 130 DS32506/DS32508/DS32512 The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At the STS-1 rate, the time required for the DLOS detector to count 192 consecutive zeros falls in the range of 2.3 ≤ T ≤ 100μs required by ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 192 consecutive pulse intervals with no excessive zeros is less than the 125μs to 250μs period required by ANSI T1.231 for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software. During LOS, the RCLK output pin is derived from the LIU’s reference clock. The ALOS detector has a longer time constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first (asserting the RLOS pin and LOS status bit), followed by the ALOS detector. When a signal is restored, the DLOS detector does not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the signal rise above a signal level approximately 22dB below nominal. 8.3.6 Framer Interface Format and the B3ZS/HDB3 Decoder The recovered data can be output in either bipolar or binary format. Reception of a B3ZS or HDB3 codeword is flagged by the LINE.RSRL:ZSCDL latched status bit. 8.3.6.1 Bipolar Interface Format To select the bipolar interface format, pull the RBIN pin low and clear the PORT.CR2:RBIN configuration bit. In bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is buffered and output on the RPOS and RNEG outputs for subsequent decoding by a downstream framer or mapper. Received positive-polarity pulses are indicated by RPOS = 1, while negative-polarity pulses are indicated by RNEG = 1. In DS3 and STS-1 modes an excessive zeros error (EXZ) is declared whenever there is an occurrence of 3 or more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an occurrence of 4 or more zeros. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits and accumulated in the LINE.REXZCR register. In all three modes (DS3, E3, and STS-1) a bipolar violation is declared if two positive pulses are received without an intervening negative pulse or if two negative pulses are received without an intervening positive pulse. Bipolar violations (BPVs) are flagged by the LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the LINE.RBPVCR register. 8.3.6.2 Binary Interface Format To select the binary interface format, pull the RBIN pin high (all ports) or set the PORT.CR2:RBIN configuration bit (per port). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and output as a binary (NRZ) value on the RDAT pin, while bipolar violations, code violations, and excessive zero errors are detected and flagged on the RLCV pin. In DS3 and STS-1 modes, B3ZS decoding is performed. In these modes, whenever a B3ZS codeword is found in the receive data stream it is replaced with three zeros. In E3 mode HDB3 decoding is performed. In this mode, whenever an HDB3 codeword is found in the receive data stream it is replaced with four zeros. The decoding search criteria for a B3ZS/HDB3 codeword is programmable using the LINE.RCR:RDZSF control bit. An excessive zeros error (EXZ) is declared in DS3 and STS-1 modes whenever there is an occurrence of 3 or more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an occurrence of 4 or more zeros in a row. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits and accumulated in the LINE.REXZCR register. A bipolar violation error (BPV error) is declared in DS3 and STS-1 modes if a BPV is detected that is not part of a valid B3ZS codeword. In E3 mode, a bipolar violation error is declared whenever a BPV is detected that is not part of a valid HDB3 codeword. In E3 mode if LINE.RCR:E3CVE = 1, code violations are detected rather than bipolar violation errors. A code violation is declared whenever consecutive BPVs (not BPV errors) have the same polarity (ITU O.161 definition). The error detection search criteria for a B3ZS/HDB3 codeword is programmable using the LINE.RCR:REZSF control bit. Bipolar violations (or code violations if LINE.RCR:E3CVE = 1) are flagged by the LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the LINE.RBPVCR register. In the discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates the AMI rule is denoted as V. In DS3 and STS-1 modes, B3ZS decoding is performed, and RLCV is asserted during any RCLK cycle where the data RDAT causes ones of the following code violations: 32 of 130 DS32506/DS32508/DS32512 When LINE.RCR:E3CVE = 0: – A BPV immediately preceded by a valid pulse (B, V). – A BPV with the same polarity as the last BPV. – The third zero in an EXZ. 8 When LINE.RCR:E3CVE = 1: – A BPV immediately preceded by a valid pulse (B, V). – A BPV with the same polarity as the last BPV. In E3 mode, HDB3 decoding is performed, and RLCV is asserted during any RCLK cycle where the data on RDAT causes one of the following code violations: 8 When LINE.RCR:E3CVE = 0: – A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V). – A BPV with the same polarity as the last BPV. – The fourth zero in an EXZ. 18 When LINE.RCR:E3CVE = 1: – A BPV with the same polarity as the last BPV. In any cycle where RLCV is asserted to flag a BPV, the RDAT pin outputs a one. In any cycle where RLCV is asserted to flag an EXZ, the RDAT pin outputs a zero. The state bit that tracks the polarity of the last BPV is toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not. 18 8.3.6.3 RCLK Inversion The polarity of RCLK can be inverted to support a glueless interface to a variety of neighboring components. Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on these pins on the rising edge of RCLK, pull the RCLKI pin high or set the PORT.INV:RCLKI configuration bit. 8.3.6.4 Receiver Output Disable The RCLK, RPOS/RDAT and RNEG/RLCV pins can be disabled (put in a high-impedance state) to support protection switching and redundant-LIU applications. This capability supports system configurations where two or more LIUs are wire-ORed together and a system processor selects one to be active. To disable these pins, set the PORT.CR2:ROD configuration bit. 8.3.7 Power-Down To minimize power consumption when the receiver is not being used, assert the RPD pin (all ports) or the PORT.CR1:RPD configuration bit (per port). When the receiver is powered down, the RCLK, RPOS/RDAT, and RNEG/RLCV pins are disabled (high impedance). In addition, the RXP and RXN pins become high impedance. 8.3.8 Input Failure Detection The LIU receiver can detect opens and shorts on the RXP and RXN differential inputs. By default, the receiver detects the following problems, collectively labeled type 1 failures: open RXP connection, open RXN connection, common-mode RXP/RXN short to VDD, and common-mode RXP/RXN short to VSS. Type 1 failures are reported on LIU.SR:RFAIL1. RFAIL1 is cleared when activity is detected on both RXP and RXN. If LIU.CR2:RFL2E = 1, the receiver also detects a type 2 failure, which is an open or high-impedance path between RXP and RXN. In a board with the external components shown in Figure 4-1 or Figure 4-2, the receive transformer normally presents a low-impedance path between RXP and RXN. To detect a type 2 failure, the receiver connects an 40μA DC current source to RXP and measures the impedance between RXP and RXN. When this impedance is greater than about 5kΩ the receiver declares a type 2 failure on LIU.SR:RFAIL2. When the type 2 failure detection circuitry is enabled, internal termination must be disabled (LIU.CR2:RTRE = 0) and external termination must not be present or a type 2 failure will not be detected because the impedance of the termination is below the type 2 failure threshold. 33 of 130 DS32506/DS32508/DS32512 8.3.9 Jitter and Wander Tolerance The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in Table 1-1. See Figure 8-4 for STS-1 and E3 jitter tolerance characteristics. See Figure 8-5 for DS3 jitter tolerance characteristics. See Figure 8-6 for DS3 and E3 wander tolerance characteristics. Note: Only G.823 and G.824 have wander tolerance requirements. Figure 8-4. STS-1 and E3 Jitter Tolerance 100 GR-253 (STS-1) 34.4 G.823 (E3) 15 Jitter Tolerance (UIp-p) 10 DS325xx Jitter Tolerance 1.5 1.0 0.15 0.1 1.675 1 30 4.4 10 300 100 2k 1k 800k 1M 20k 10k 100k Frequency (Hz) Figure 8-5. DS3 Jitter Tolerance 100 G.824 (DS3) 67 GR-499 Cat I (DS3) GR-499 Cat II (DS3) Jitter Tolerance (UIp-p) 10 5 DS325xx Jitter Tolerance 1.0 0.3 0.1 1.675 1 21.9 10 100 600 669 1k 2.3k Frequency (Hz) 34 of 130 22.3k30k 10k 60k 100k 300k 400k 1M DS32506/DS32508/DS32512 Figure 8-6. DS3 and E3 Wander Tolerance Wander Tolerance (UIp-p) 1000 805 DS325xx Wander Tolerance G.824 (DS3) 137.5 G.823 (E3) 100 67 34.4 10 1.2 10-5 0.032 6.12 10-4 10-3 10-2 0.13 10-1 1.675 1 4.4 10 Frequency (Hz) 8.3.10 Jitter Transfer Without the jitter attenuator on the receive side, the receiver attenuates jitter at frequencies above its corner frequency (approximately 300kHz) and passes jitter at lower frequencies. With the jitter attenuator enabled on the receive side, the receiver meets the jitter transfer requirements of all applicable telecommunication standards in Table 1-1. See Figure 8-7. 8.4 Jitter Attenuator Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can be disabled. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the JAS[1:0] and JAD[1:0] pins specify the specify the JA location and buffer depth for all ports. When a microprocessor interface is enabled (IFSEL ≠ 000), the JAS[1:0] and JAD[1:0] pins are ignored, and the LIU.CR1:JAS[1:0] and JAD[1:0] configuration bits specify the JA location and buffer depth for each port individually. The JA buffer depth can be set to 16, 32, 64 or 128 bits. Figure 8-7 shows the minimum jitter attenuation for the device when the jitter attenuator is enabled. Figure 8-7 also shows the receive jitter transfer when the jitter attenuator is disabled. The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter amplitudes. The JA has a loop bandwidth of reference_clock ÷ 2,058,874 (see corner frequencies in Figure 8-7). The JA attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower frequencies to pass through relatively unaffected. The jitter attenuator requires a transmission-quality reference clock (i.e., ±20ppm frequency accuracy and low jitter). See Section 8.7.1 for more information about reference clocks and clock selection. When the microprocessor interface is enabled, the jitter attenuator indicates the fill status of its FIFO buffer in the LIU.SRL:JAFL (JA full) and LIU.SRL:JAEL (JA empty) status bits. When the buffer becomes full, the JA momentarily increases the frequency of the read clock by 6250ppm to avoid buffer overflow and consequent data errors. When the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by 6250ppm to avoid buffer underflow and consequent data errors. During these momentary frequency adjustments, jitter is passed through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is large enough to cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to indicate that data errors have occurred. JAFL and JAEL can cause an interrupt if enabled by the corresponding enable bits in the LIU.SRIE register. As shown in Figure 8-7, the jitter attenuator meets the jitter transfer requirements of all applicable standards listed in Table 1-1. 35 of 130 DS32506/DS32508/DS32512 Figure 8-7. Jitter Attenuation/Jitter Transfer 21.7 Hz (DS3) 16.7 Hz (E3) 25.2 Hz (STS -1) 27Hz 40Hz 1k 40k 59.6k >150k 0 DS3 [GR - 499 (1995)] CATEGORY I DS3 [GR - 253 (1999)] CATEGORY I DS325xx TYPICAL RECEIVER JITTER TRANSFER WITH JITTER ATTENUATOR DISABLED JITTER A TTENUATION (dB) STS- 1 [GR - 253 (1999)] CATEGORY II -10 -20 E3 [TBR24 (1997)] DS325xx DS3/E3/STS-1 MINIMUM JITTER ATTENUATION WITH JITTER ATTENUATOR ENABLED DS3 [GR - 499 (1999)] CATEGORY II -30 10 100 1k 10k 100k 1M FREQUENCY (Hz) 8.5 BERT Each LIU port has a built-in bit error-rate tester (BERT). The BERT is a software-programmable test-pattern generator and monitor capable of meeting most error performance requirements for digital transmission equipment. It can generate and synchronize to pseudo-random patterns with a generation polynomial of the form xn + xy + 1, (where n and y can take on values from 1 to 32 with y < n) and to repetitive patterns of any length up to 32 bits. The pattern generator generates the programmable test pattern, and inserts the test pattern into the data stream. The pattern detector extracts the test pattern from the receive data stream and monitors it. Figure 2-1 shows the location of the BERT Block within the DS325xx devices. 8.5.1 Configuration and Monitoring The pattern detector is always enabled. The pattern generator is enabled by setting the PORT.CR3:BERTE configuration bit. When the BERT is enabled and PORT.CR3:BERTD=0, the pattern is transmitted and received in the line direction, i.e. the pattern generator is the data source for the transmitter, and the receiver is the data source for the pattern detector. When the BERT is enabled and PORT.CR3:BERTD=1, the pattern is transmitted and received in the system direction, i.e. the pattern generator is the data source for the RPOS/RDAT and RNEG/RLCV pins, and the TPOS/TDAT and TNEG pins are the data source for the pattern detector. See Figure 2-1. The I/O of the BERT are binary (NRZ) format. Thus while the BERT is enabled, both PORT.CR2:RBIN and PORT.CR2:TBIN must be set to 1 for proper operation. In addition, while transmitting/receiving BERT patterns in the system direction (PORT.CR3:BERTD = 1), the neighboring framer or mapper component must also be configured for binary interface mode to match the LIU. If the LIU interface is normally bipolar, the interface can be changed back to bipolar mode when the system is done using the BERT function (PORT.CR3:BERTE = 0). The following tables show how to configure the BERT to send and receive common patterns. 36 of 130 DS32506/DS32508/DS32512 Table 8-9. Pseudorandom Pattern Generation PATTERN TYPE 29-1 O.153 (511 type) 211-1 O.152 and O.153 (2047 type) 215-1 O.151 BERT.PCR REGISTER PTF[4:0] PLF[4:0] PTS QRSS (hex) (hex) 04 08 0 0 BERT.SPR2 BERT.SPR1 0xFFFF 0xFFFF BERT.CR TPIC, RPIC 0 08 0A 0 0 0xFFFF 0xFFFF 0 0D 0E 0 0 0xFFFF 0xFFFF 1 20 10 13 0 0 0xFFFF 0xFFFF 0 20 02 13 0 1 0xFFFF 0xFFFF 0 23 11 16 0 0 0xFFFF 0xFFFF 1 BERT.SPR2 BERT.SPR1 0xFFFF 0xFFFF 2 -1 O.153 2 -1 O.151 QRSS 2 -1 O.151 Table 8-10. Repetitive Pattern Generation PATTERN TYPE All 1s BERT.PCR REGISTER PTF[4:0] PLF[4:0] PTS QRSS (hex) (hex) NA 00 1 0 All 0s NA 00 1 0 0xFFFF 0xFFFE Alternating 1s and 0s NA 01 1 0 0xFFFF 0xFFFE 11001100... NA 03 1 0 0xFFFF 0xFFFC 3 in 24 NA 17 1 0 0xFF20 0x0022 1 in 16 NA 0F 1 0 0xFFFF 0x0001 1 in 8 NA 07 1 0 0xFFFF 0xFF01 1 in 4 NA 03 1 0 0xFFFF 0xFFF1 After configuring these bits, the pattern must be loaded into the BERT. This is accomplished via a zero-to-one transition on BERT.CR.TNPL for the pattern generator and BERT.CR.RNPL for the pattern detector. The BERT must be enabled (PORT.CR3:BERTE = 1) before the pattern is loaded for the pattern load operation to take effect. Monitoring the BERT requires reading the BERT.SR register, which contains the Bit-Error Count (BEC) bit and the Out of Synchronization (OOS) bit. The BEC bit is set to one when the bit error counter is one or more. The OOS bit is set to one when the pattern detector is not synchronized to the incoming pattern, which occurs when it receives 6 or more bit errors within a 64-bit window. The Receive BERT Bit Count Register (BERT.RBCR) and the Receive BERT Bit Error-Count Register (BERT.RBECR) are updated upon the reception of a Performance Monitor Update signal (e.g., BERT.CR.LPMU). This signal updates the registers with the bit and bit-error counts since the last update and then resets the counters. See Section 8.7.4 for more details about performance monitor updates. 8.5.2 Receive Pattern Detection The pattern detector synchronizes the receive pattern generator to the incoming pattern. The receive pattern generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and y are individually programmable (1 to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the receive pattern generator is the feedback. If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be an XOR of bits 17 and 20, and the output is forced to one if the next 14 bits are all zeros. For PRBS and QRSS patterns, the feedback is forced to one if bits 1 through 31 are all zeros. Depending on the type of pattern programmed, pattern detection performs either PRBS synchronization or repetitive pattern synchronization. 37 of 130 DS32506/DS32508/DS32512 8.5.2.1 Receive PRBS Synchronization PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern resynchronization is initiated. Automatic pattern resynchronization can be disabled by setting BERT.CR:APRD = 1. Pattern resynchronization can also be initiated manually by a zero-to-one transition of the Manual Pattern Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted before comparison with the receive pattern generator by setting BERT.CR:RPIC. See Figure 8-8 for the PRBS synchronization diagram. Figure 8-8. PRBS Synchronization State Diagram Sync s 32 r rro bit s wit ho ut he wit its 4b err ors f6 6o 1 bit error Verify Load 32 bits loaded 8.5.2.2 Receive Repetitive Pattern Synchronization Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern. The receive pattern generator is synchronized by searching each incoming data stream bit position for the repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS pattern generator, automatic pattern resynchronization is initiated. Automatic pattern re-synchronization can be disabled by setting BERT.CR:APRD = 1. Pattern resynchronization can also be initiated manually by a zero-to-one transition of the Manual Pattern Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted before comparison with the receive pattern generator by setting BERT.CR:RPIC. See Figure 8-9 for the repetitive pattern synchronization state diagram. 38 of 130 DS32506/DS32508/DS32512 Figure 8-9. Repetitive Pattern Synchronization State Diagram Sync its 4b w it ho ut err ors f6 6o 32 bit s rs rro he w it 1 bit error Verify Match Pattern Matches 8.5.2.3 Receive Pattern Monitoring Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts the incoming bits. An Out Of Synchronization (BERT.SR:OOS = 1) condition is declared when the synchronization state machine is not in the “Sync” state. An OOS condition is terminated when the synchronization state machine is in the “Sync” state. A change of state of the OOS status bit sets the BERT.SRL:OOSL latched status bit and can cause an interrupt if enabled by BERT.SRIE:OOSIE. Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If the two bits do not match, a bit error is declared (BERT.SRL:BEL = 1), and the bit error and bit counts are incremented (BERT.RBECR and BERT.RBCR, respectively). If the two bits do match, only the bit count is incremented. The bit count and bit error count are not incremented when an OOS condition exists. The setting of the BEL status bit can cause an interrupt if enabled by BERT.SRIE:BEIE. 8.5.3 Transmit Pattern Generation The pattern generator generates the outgoing test pattern. The transmit pattern generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and y are individually programmable (1 to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the receive pattern generator is the feedback. If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be an XOR of bits 17 and 20, and the output is forced to one if the next 14 bits are all zeros. For PRBS and QRSS patterns, the feedback is forced to one if bits 1 through 31 are all zeros. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value before pattern generation starts. The seed/pattern value is programmable (0 - 2n - 1) in the BERT.SPR registers. The generated pattern can be inverted by setting BERT.CR:TPIC. 39 of 130 DS32506/DS32508/DS32512 8.5.3.1 Transmit Error Insertion Errors can be inserted into the generated pattern one at a time or at a rate of one out of every 10n bits. The value of n is programmable (1 to 7 or off) in the BERT.TEICR:TEIR[2:0] configuration field. Single bit error insertion is enabled by setting BERT.TEICR:BEI and can be initiated from the microprocessor interface or by the manual error insertion pin (GPIOB2). See Section 8.7.5 for more information about manual error insertion. 8.6 Loopbacks Each LIU has three internal loopbacks. See Figure 2-1. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), loopbacks are controlled by the LBn[1:0] and LBS pins. When a microprocessor interface is enabled (IFSEL ≠ 000), loopbacks are controlled by the LB[1:0] and LBS fields in the PORT.CR3 register. Analog loopback (ALB) connects the outgoing transmit signal back to the receiver’s analog front end. During ALB the transmit signal is output normally on TXP/TXN, but the received signal on RXP/RXN is ignored. Line loopback (LLB) connects the output of the receiver to the input of the transmitter. The LLB path does not include the B3ZS/HDB3 decoder and encoder so that the signal looped back is exactly the same as the signal received, including bipolar violations and code violations. During LLB, recovered clock and data are output on RCLK, RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored. Diagnostic loopback (DLB) connects the TCLK, TPOS/TDAT and TNEG pins to the RCLK, RPOS/RDAT, and RNEG/RLCV pins. During DLB (with LLB disabled), the signal on TXP/TXN can be the normal transmit signal or an AIS signal from the AIS generator. DLB and LLB can be enabled simultaneously to provide simultaneous remote and local loopbacks. 8.7 8.7.1 Global Resources Clock Rate Adapter (CLAD) The CLAD is used to create multiple transmission-quality reference clocks from a single transmission-quality (±20ppm, low jitter) clock input on the REFCLK pin. The LIUs in the device need up to three different reference clocks (DS3, E3, and STS-1) for use by the CDRs and jitter attenuators. Given one of these clock rates or any of several other clock frequencies on the REFCLK pin, the CLAD can generate all three LIU reference clocks. The internally generated reference clock signals can optionally be driven out on pins CLKA, CLKB, and CLKC for external use. In addition a fourth frequency, either 77.76MHz or 19.44MHz, can be generated and driven out on the CLKD pin for use in Telecom Bus applications. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the CLAD is controlled by the CLADBYP pin, and the REFCLK frequency is fixed at 19.44MHz. When the CLADBYP pin is high all PLLs in the CLAD are bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins. Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the LIUs. When CLADBYP is low, all four PLLs in the CLAD are enabled, and the generated DS3, E3, STS-1, and 77.76MHz clocks are always output on CLKA, CLKB, CLKC and CLKD, respectively. When a microprocessor interface is enabled (IFSEL ≠ 000), the CLAD clock mode and the REFCLK frequency are set by the GLOBAL.CR2:CLAD[6:4] bits, as shown in Table 8-11. When CLAD[6:4] = 000, all PLLs in the CLAD are bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins. Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the LIUs. CLAD[6:4] = 000 is equivalent to pulling the CLADBYP pin high. When CLAD[6:4] ≠ 000, the PLL circuits are enabled as needed to generate the required clocks, as determined by the CLAD[6:0] bits and the LIU mode bits (PORT.CR2:LM[1:0]). If a clock rate is not required as a reference clock, then the PLL used to generate that clock is automatically disabled and powered down. The CLAD[3:0] bits are output enable controls for CLKA, CLKB, CLKC and CLKD, respectively. Configuration bit GLOBAL.CR2:CLKD19 specifies the frequency to be output on the CLKD pin (77.76MHz or 19.44MHz). Status register GLOBAL.SRL provides activity status for the REFCLK, CLKA, CLKB and CLKC pins and lock status for the CLAD. Each LIU block indicates the absence of the reference clock it requires by setting its LIU.SR:LOMC bit. 40 of 130 DS32506/DS32508/DS32512 Table 8-11. CLAD Clock Source Settings CLAD[6:4] 000 001 010 011 100 101 110 111 REFCLK Don't Care DS3 input E3 input STS-1 input 77.76MHz input 19.44MHz input 38.88MHz input 12.80MHz input CLKA DS3 input DS3 output DS3 output DS3 output DS3 output DS3 output DS3 output DS3 output CLKB E3 input E3 output E3 output E3 output E3 output E3 output E3 output E3 output CLKC STS-1 input STS-1 output STS-1 output STS-1 output STS-1 output STS-1 output STS-1 output STS-1 output CLKD Low output 77.76 or 19.44MHz output 77.76 or 19.44MHz output 77.76 or 19.44MHz output 77.76 or 19.44MHz output 77.76 or 19.44MHz output 77.76 or 19.44MHz output 77.76 or 19.44MHz output Table 8-12. CLAD Clock Pin Output Settings CLAD[3:0]* XXX0 XXX1 XX0X XX1X X0XX X1XX 0XXX 1XXX CLKA PIN Low output PLL-A output — — — — — — CLKB PIN — —Low output PLL-B output — — — — CLKC PIN — — — — Low output PLL-C output — — CLKD PIN — — — — — — Low output PLL-D output *When CLAD[6:4] = 000, CLKA, CLKB, and CLKC are inputs and CLKD is held low. 8.7.2 One-Second Reference Generator The one-second reference signal can be used to update performance monitoring registers on a precise onesecond interval. The generated internal signal is a 50% duty cycle signal that is divided down from the indicated reference signal. The low to high edge on this signal sets the GLOBAL.SRL:1SREFL latched one-second bit, which can generate an interrupt if enabled. The low to high edge is used to initiate a performance monitor register update when GLOBAL.CR1:GPM[1:0] = 1X. The internal one-second reference can be output on the GPIOB3 pin by setting GLOBAL.CR1:G1SROE. The source for the one second reference is set by GLOBAL.CR1:G1SRS[3:0]. The DS3, E3, and STS-1 reference clocks are sourced from the CLAD, if the CLAD is configured to generate them, or from the CLKA, CLKB ,and CLKC pins, respectively. Table 8-13. Global One-Second Reference Source G1SRS[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 SOURCE Disabled DS3 reference clock E3 reference clock STS-1 reference clock Port 1 TCLK Port 2 TCLK Port 3 TCLK Port 4 TCLK Port 5 TCLK Port 6 TCLK Port 7 TCLK Port 8 TCLK Port 9 TCLK Port 10 TCLK Port 11 TCLK Port 12 TCLK 41 of 130 DS32506/DS32508/DS32512 8.7.3 General-Purpose I/O Pins When a microprocessor interface is enabled (IFSEL ≠ 000), there are two general-purpose I/O (GPIO) pins available per port, each of which can be used as a general-purpose input, general-purpose output, or loss-of-signal output. In addition, GPIOB1, GPIOB2, and GPIOB3 can be used as a global I/O signal. The GPIO pins are independently configurable using the GPIOynS fields of the GLOBAL.GIOACR and GLOBAL.GIOBCR registers (see Table 8-15). When a GPIO pin is configured as an input, its value can be read from the GLOBAL.GIOARR or GLOBAL.GIOBRR registers. When a GPIO pins is configured as a loss-of-signal status output, its state mimics the state of the LINE.RSR:LOS status bit. When a port is powered down and a GPIO pin has been programmed as an associated loss-of-signal output, the pin is held low. Programming a GPIO pin as a global signal overrides the I/O settings specified by the GPIOynS field for that pin and configures the pin as an input or an output as shown in Table 8-14. Table 8-14. GPIO Pin Global Signal Assignments PIN GPIOAn GPIOB1 GPIOB2 GPIOB3 GPIOBk GLOBAL SIGNAL FUNCTION CONTROL BIT None — Global PMU input GLOBAL.CR1.GPM[1:0] Global TMEI input GLOBAL.CR1.MEIMS 1SREF output GLOBAL.CR1.G1SROE None — Note: n = 1 to 12, k = 4 to 12. Table 8-15. GPIO Pin Control GPIOynS[1:0] 00 01 10 11 FUNCTION Input Output LOS status for port n Output logic 0 Output logic 1 Note: n = 1 to 12, y = A or B. 8.7.4 Performance Monitor Register Update Each performance monitor counter can count at least one second of events before saturating at the maximum count. Each counter has an associated status bit that is set when the counter value is not zero, a latched status bit that is set when the counter value changes from zero to one, and a latched status bit that is set each time the counter is incremented. There is a holding register for each performance monitor counter that is updated when a performance monitoring update is performed. A performance monitoring update causes the counter value to be loaded into the holding register and the counter to be cleared. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. The performance monitor update (PMU) signal initiates a performance monitoring update. The PMU signal can be sourced from a general-purpose I/O pin (GPIOB1), the internal one-second reference, a global register bit (GLOBAL.CR1:GPMU), or a port register bit (PORT.CR1:PMU). Note: The BERT PMU can be sourced from a block level register bit (BERT.CR:LPMU). To use GPIOB1, GLOBAL.CR1.GPM[1:0] is set to 01, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the internal onesecond reference, GLOBAL.CR1:GPM[1:0] is set to 1X, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the global PMU register bit, GLOBAL.CR1:GPM[1:0] is set to 00, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the port PMU register bit, the associated PORT.CR1:PMUM bit is set to 0, and the appropriate BERT.CR:PMUM bits are set to 1. To use the BERT.CR:LPMU register bit, the appropriate BERT.CR:PMUM bit is set to 0. When using the global or port PMU register bits, the PMU bit should be set to initiate the process and cleared when the associated PMS status bit (GLOBAL.SR:GPMS or PORT.SR:PMS) is set. When using the GPIO pin or internal one-second reference, the PMS bit is set shortly after the signal goes high, and cleared shortly after the signal 42 of 130 DS32506/DS32508/DS32512 goes low. The PMS has an associated latched status bit that can generate an interrupt if enabled. The port PMS signal does not go high until an update of all the appropriately configured block-level performance monitoring counters in the port has been completed. The global PMS signal does not go high until an update of all the appropriately configured port-level performance monitoring counters in the entire chip has been completed. 8.7.5 Transmit Manual Error Insertion Various types of errors can be inserted in the transmit data stream using the Transmit Manual Error Insertion (TMEI) signal, which can be sourced from a block-level register bit, a port register bit (PORT.CR1:TMEI), a global register bit (GLOBAL.CR1:TMEI), or a general-purpose I/O pin (GPIOB2). To use GPIOB2 as the TMEI signal, GLOBAL.CR1.MEIMS is set to 1, the appropriate PORT.CR1.MEIMS bits are set to 1, and the appropriate blocklevel MEIMS bits are set to 1. To use the global TMEI register bit, GLOBAL.CR1.MEIMS is set to 0, the appropriate PORT.CR1.MEIMS bits are set to 1, and the appropriate block-level MEIMS bits are set to 1. To use the port TMEI register bit, the associated PORT.CR1.MEIMS is set to 0 and the appropriate block-level MEIMS bits are set to 1. To use the block-level TSEI register bit, the associated block-level MEIMS bit is set to 0. In order for an error of a particular type to be inserted, the error type must be enabled by setting the associated error insertion enable bit in the associated block's error insertion register. Once enabled, a single error is inserted at the next opportunity when the TMEI signal transitions from zero to one. Note: If the TMEI signal has multiple zero-to-one transitions between error insertion opportunities, only a single error is inserted. 8.8 8-/16-Bit Parallel Microprocessor Interface See Table 11-8 and Figure 11-3 to Figure 11-10 for parallel interface timing diagrams and parameters. 8.8.1 8-Bit and 16-Bit Bus Widths When the IFSEL pins are set to 1XX, the device presents a parallel microprocessor interface. In 8-bit modes (IFSEL = 10X), the address is composed of all the address bits including A[0], the lower 8 data lines D[7:0] are used, and the upper 8 data lines D[15:8] are disabled (high impedance). In 16-bit modes (IFSEL = 11X), the address does not include A[0], and all 16 data lines D[15:0] are used. 8.8.2 Byte Swap Mode In 16-bit modes (IFSEL = 11X), the microprocessor interface can operate in byte swap mode. The BSWAP pin is used to determine whether byte swapping is enabled. This pin should be static and not change during operation. When the BSWAP pin is low the upper register bits REG[15:8] are mapped to the upper external data bus lines D[15:8], and the lower register bits REG[7:0] are mapped to the lower external data bus lines D[7:0]. When the BSWAP pin is high the upper register bits REG[15:8] are mapped to the lower external data bus lines D[7:0], and the lower register bits REG[7:0] are mapped to the upper external data bus lines D[15:8]. 8.8.3 Read-Write And Data Strobe Modes The processor interface can operate in either read-write strobe mode (also known as "Intel" mode) or data strobe mode (also known as "Motorola" mode). When IFSEL = 1X0 the read-write strobe mode is enabled. In this mode a negative pulse on RD performs a read cycle, and a negative pulse on WR performs a write cycle. When IFSEL = 1X1 the data strobe mode is enabled. In this mode, a negative pulse on DS when R/W is high performs a read cycle, and a negative pulse on DS when R/W is low performs a write cycle. 8.8.4 Multiplexed and Nonmultiplexed Operation In all parallel interface modes the interface supports both multiplexed and nonmultiplexed operation. For multiplexed operation in 8-bit modes, wire A[10:8] to the processor’s A[10:8] pins, wire A[7:0] to D[7:0] and to the processor’s multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the processor. For nonmultiplexed 8-bit operation, wire ALE high and wire A[10:0] and D[7:0] to the appropriate pins on the processor. For multiplexed operation in 16-bit modes, wire A[10:0] to D[10:0], wire D[15:0] to the CPU’s multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the processor. For nonmultiplexed 16-bit operation, wire ALE high and wire A[10:0] and D[15:0] to the appropriate pins on the processor. 43 of 130 DS32506/DS32508/DS32512 8.8.5 Clear-On-Read And Clear-On-Write Modes The latched status register bits can be programmed to clear on a read access or clear on a write access. The global control register bit GLOBAL.CR2.LSBCRE specifies the method used to clear all of the latched status registers. When LSBCRE = 0, latched status register bits are cleared when written with a 1. When LSBCRE = 1, latched status register bits are cleared when read. The clear-on-write mode expects the user to use the following method: read the latched status register then write a 1 to the register bits to be cleared. This method is useful when multiple software tasks use the same latched status register. Each task can clear the bits it uses without affecting any of the latched status bits used by other tasks. The clear-on-read mode clears all latched status bits in a register automatically when the latched status register is read. This method works well when no more than one software task uses any single latched status register. An event that occurs while the associated latched status register is being read results in the associated latched status bit being set after the read is completed. 8.8.6 Global Write Mode When GLOBAL.CR2:GWRM = 1, a write to a register of any port causes the data to be written to the same register in all the ports on the device. In this mode register reads are not supported and result in undefined data. 8.9 SPI Serial Microprocessor Interface When the IFSEL pins are set to 01X the device presents an SPI interface on the CS, SCLK, SDI, and SDO pins. SPI is a widely-used master/slave bus protocol that allows a master device and one or more slave devices to communicate over a serial bus. The DS325xx is always a slave device. Masters are typically microprocessors, ASICs or FPGAs. Data transfers are always initiated by the master device, which also generates the SCLK signal. The DS325xx receives serial data on the SDI pin and transmits serial data on the SDO pin. SDO is high-impedance except when the DS325xx is transmitting data to the bus master. Note that the ALE pin must be wired high for proper operation of the SPI interface. Bit Order. When IFSEL[2:0] = 010 the register address and all data bytes are transmitted MSB first on both SDI and SDO. When IFSEL[2:0] = 011, the register address and all data bytes are transmitted LSB first on both SDI and SDO. The Motorola SPI convention is MSB first. Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus transactions. The CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge. See Figure 8-10. Device Selection. Each SPI device has its own chip-select line. To select the DS325xx, pull its CS pin low. Control Word. After CS is pulled low, the bus master transmits the control word during the first 16 SCLK cycles. In MSB-first mode, the control word has the form: R/W A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 BURST where A[13:0] is the register address, R/W is the data direction bit (1 = read, 0 = write), and BURST is the burst bit (1 = burst access, 0 = single-byte access). In LSB-first mode, the order of the 14 address bits is reversed. In the discussion that follows, a control word with R/W = 1 is a read control word, while a control word with R/W = 0 is a write control word. Note: The address range of the DS32512 is 000h–7FFh, so A[13:11] are ignored. Single-Byte Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS high. Single-Byte Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with BURST = 0. The DS325xx then responds with the requested data byte. The bus master then terminates the transaction by pulling CS high. Burst Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with BURST = 1 followed by the first data byte to be written. The DS325xx receives the first data byte on SDI, writes it to the specified register, increments its internal address register, and prepares to receive the next data byte. If the master 44 of 130 DS32506/DS32508/DS32512 continues to transmit, the DS325xx continues to write the data received and increment its address counter. After the address counter reaches 7FFh it rolls over to address 000h and continues to increment. Burst Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with BURST = 1. The DS325xx then responds with the requested data byte on SDO, increments its address counter, and prefetches the next data byte. If the bus master continues to demand data, the DS325xx continues to provide the data on SDO, increment its address counter, and prefetch the following byte. After the address counter reaches 7FFh it rolls over to address 000h and continues to increment. Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by pulling CS high. In response to early terminations, the DS325xx resets its SPI interface logic and waits for the start of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data byte, the current data byte is not written. Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the DS325xx is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support this option, the bus master must not drive the SDI/SDO line when the DS325xx is transmitting. AC Timing. See Table 11-9 and Figure 11-11 for AC timing specifications for the SPI interface. Figure 8-10. SPI Clock Polarity and Phase Options CS SCK CPOL = 0, CPHA = 0 SCK CPOL = 0, CPHA = 1 SCK CPOL = 1, CPHA = 0 SCK CPOL = 1, CPHA = 1 SDI/SDO MSB 6 5 4 3 2 1 CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES) 45 of 130 LSB DS32506/DS32508/DS32512 Figure 8-11. SPI Bus Transactions Single-Byte Write CS SDI R/W Register Address Burst 0 (Write) Data Byte 0 (single-byte) SDO Single-Byte Read CS SDI R/W Register Address Burst 1 (Read) 0 (single-byte) SDO Data Byte Burst Write CS SDI R/W Register Address Burst Data Byte 1 0 (Write) Data Byte N 1 (burst) SDO Burst Read CS SDI R/W Register Address Burst 1 (Read) SDO 1 (burst) Data Byte 1 Data Byte N 8.10 Interrupt Structure The interrupt structure is designed to efficiently guide the user to the source of an interrupt. The status bits in the global interrupt status register (GLOBAL.ISR) are read to determine if the interrupt source comes from a global event, such as a one-second timer interrupt, or one of the ports. If the interrupt source is a global event, the global status register is read (GLOBAL.SRL) to determine the source. If the interrupt source is a port, the port interrupt status register (PORT.ISR) is read to determine if the interrupt source comes from a port event, such as a performance monitor update interrupt, or one of the functional blocks inside the port. If the interrupt source is a port event, the port status register is read (PORT.SRL) to determine the source. If the interrupt source is from a functional block inside the port, the associated block's status register is read to determine the source. The source of an interrupt can be determined by reading no more than three 16-bit registers. Once the interrupt source has been determined, the interrupt can be cleared by either reading or writing the latched status register (see Section 8.8.5). An alternate method for clearing an interrupt is to disable the interrupt at the bit, block, port, or global level by writing a zero to the associated interrupt enable bit. Note: Disabling the interrupt at the block, port, or global level disables all interrupts sources at or below that level. 46 of 130 DS32506/DS32508/DS32512 Figure 8-12. Interrupt Signal Flow PORT LATCHED STATUS REGISTER AND INTERRUPT ENABLE REGISTER GLOBAL LATCHED STATUS REGISTER AND INTERRUPT ENABLE REGISTER PORT.SRL bit GLOBAL.SRL bit PORT.SRIE bit GLOBAL.SRIE bit PORT.SRL bit GLOBAL.SRL bit PORT.SRIE bit GLOBAL.SRIE bit GLOBAL INTERRUPT STATUS REGISTER AND INTERRUPT ENABLE REGISTER GLOBAL.ISR bit GLOBAL.ISRIE bit GLOBAL.ISRIE bit PORT.ISR bit block SRL bit block SRIE bit GLOBAL.ISR bit INT* PORT.ISRIE bit PORT.ISRIE bit block SRL bit PORT.ISR bit block SRIE bit BLOCK LATCHED STATUS REGISTER AND INTERRUPT ENABLE REGISTER PORT INTERRUPT STATUS REGISTER AND INTERRUPT ENABLE REGISTER 8.11 Reset and Power-Down When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the device is can be reset via the RST pin. The transmitters of all ports can be powered down using the TPD pin, while the receivers of all ports can be powered down using the RPD pin. When a microprocessor interface is enabled (IFSEL ≠ 000), the device presents a number of reset and power down options. The device can be reset at a global level via the GLOBAL.CR1:RST bit or the RST pin, and at the port level via the PORT.CR1:RST bit. Each port can be powered down via the PORT.CR1:TPD and RPD bits. The JTAG logic is reset by the JTRST pin. The external RST pin and the global reset bit (GLOBAL.CR1:RST) are combined to create an internal global reset signal. The global reset signal resets all the status and control registers on the chip (except the GLOBAL.CR1:RST bit), to their default values. It also resets all flip-flops in the global logic (including the CLAD block) and port logic to their reset values. The GLOBAL.CR1:RST bit stays set after a one is written to it. It is reset to zero when a zero is written to it or when the external RST pin is active. At the port level, the global reset signal combines with the port reset bit (PORT.CR1:RST) to create a port reset signal. The port reset signal resets all the status and control registers in the port (except PORT.CR1:RST bit) to their default values. It also resets all flip-flops in the port logic to their reset values. The port reset bit (PORT.CR1:RST) stays set after a one is written to it. It is reset to zero when a zero is written to it or when the global reset signal is active. The data path reset (RSTDP) resets all of the same registers and flip-flops as the “general” reset (RST), except for the control registers. This allows the device to be programmed while the data path logic is in reset. It is recommended that a port be placed in data path reset during configuration changes. The global data path reset bit (GLOBAL.CR1:RSTDP) is set to one when the global reset signal is active. This bit is cleared when a zero is written to it while the global reset signal is inactive. The global data path reset resets all of the data path registers and flip-flops on the chip. The port data path reset bit (PORT.CR1:RSTDP) is set to one when the port reset signal is active. It is cleared when a zero is written to it while the port reset signal is inactive. The port data path reset resets all of the port logic data path registers and flip-flops. 47 of 130 DS32506/DS32508/DS32512 Table 8-16. Reset and Power-Down Sources PIN RST 0 1 1 1 1 1 1 1 1 REGISTER BITS GLOBAL.CR1 PORT.CR1 INTERNAL SIGNALS RST RSTDP RST TPD RPD RSTDP F0 1 0 0 0 0 0 0 0 F1 F1 1 0 0 0 0 0 0 F0 F0 0 1 0 0 0 0 0 F1 F1 0 F1 1 1 0 0 0 F1 F1 0 F1 1 0 1 0 0 F1 F1 0 F1 0 0 0 1 0 Global Global Port Data Path Reset Reset Reset 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tx Port PowerDown 1 1 0 1 1 1 0 0 0 Rx Port PowerDown 1 1 0 1 1 0 1 0 0 Port Data Path Reset 1 1 1 1 1 0 0 1 0 Register bit states: F0 = forced to 0, F1 = forced to 1, 0 = set to 0, 1 = set to 1 The reset signals in the device are asserted asynchronously and do not require a clock to put the logic into the reset state. The control registers do not require a clock to come out of the reset state, but all other logic does require a clock to come out of the reset state. The port transmit power-down function (PORT.CR1:TPD) disables all the transmit clocks and powers down the transmit LIU to minimize power consumption. The port receive power-down function (PORT.CR1:RPD) disables all of the receive clocks and powers down the receive LIU to minimize power consumption. The one-second timer circuit can be powered down by disabling its reference clock. The CLAD can be powered down by disabling it (setting GLOBAL.CR2:CLAD[6:0] = 0). The global logic cannot be powered down. After a global reset, all of the control and status registers in all ports are set to their default values and all the other flip-flops are reset to their reset values. The global data path reset (GLOBAL.CR1:RSTDP), all the port data path resets (PORT.CR1:RSTDP), and all the port power-down (PORT.CR1:TPD and RPD) bits are set after the global reset. A valid initialization sequence is to clear the port power-down bits in the ports that are to be active, write to all of the configuration registers to set them in the desired modes, then clear the GLOBAL.CR1:RSTDP and PORT.CR1:RSTDP bits. This causes all the logic to start up in a predictable manner. The device can also be initialized by clearing the GLOBAL.CR1:RSTDP, PORT.CR1:RSTDP, and PORT.CR1:TPD and RPD bits, then writing to all of the configuration registers to set them in the desired modes, and then clearing all of the latched status bits. This second initialization scheme can cause the device to operate unpredictably for a brief period of time. Some of the I/O pins are put into a known state at reset. At the global level, the microprocessor interface output and I/O pins (D[15:0]) are forced into the high impedance state when the RST pin is active, but not when the GLOBAL.CR1:RST bit is active. The CLAD clock pins CLKA, CLKB, and CLKC are forced to be the LIU reference clock inputs. The general-purpose I/O pins (GPIOAn and GPIOBn) are forced to be inputs until after the RST pin is deasserted. At the port level, the LIU transmitter outputs TXP and TXN are forced into a high-impedance state. Note: Setting any of the reset (RST), data path reset (RSTDP), or power-down (TPD, RPD) bits for less than 100 ns may result in the associated circuits coming up in a random state. When a power-down bit is cleared, it takes approximately 1ms for all of the associated circuits to power-up. 48 of 130 DS32506/DS32508/DS32512 9. REGISTER MAPS AND DESCRIPTIONS 9.1 Overview When a microprocessor interface is enabled (IFSEL[2:0] ≠ 000), the registers described in this section are accessible. The overall memory map is shown in Table 9-1. The DS32512 register map covers the address range of 000 to 7FFh. On the DS32508, writes in the address space for LIUs 9 through 12 are ignored, and reads from these addresses return 00h. On the DS32506, address line A[10] is not present, and writes into the address space for LIU 7 are ignored, and reads from these addresses return 00h. The address LSB A[0] is used to address the upper and lower bytes of a register in 8-bit mode, and to swap the upper and lower bytes in 16-bit mode. In each register, bit 15 is the MSB and bit 0 is the LSB. Register addresses not listed and bits marked “—“ are reserved and must be written with 0 and ignored when read. Writing other values to these registers may put the device in a factory test mode resulting in undefined operation. Bits labeled “0” or “1” must be written with that value for proper operation. Register fields with underlined names are read-only fields; writes to these fields have no effect. All other fields are read-write. Register fields are described in detail in the register descriptions in Sections 9.3 to 9.8. 9.1.1 Status Bits The device has two types of status bits. Real-time status bits are read-only and indicate the state of a signal at the time it is read. Latched status bit are set when the associated event occurs and remain set until cleared. Once cleared, a latched status bit is not set again until the associated event recurs (goes away and comes back). A latched-on-change bit is a latched status bit that is set when the event occurs and when it goes away. A latched status bit can be cleared using either a clear-on-read or clear-on-write method (see Section 8.8.5). For clear-onread, all latched status bits in a latched status register are cleared when the register is read. In 16-bit mode, all 16 latched status bits are cleared. In 8-bit mode, only the eight bits read are cleared. For clear-on-write, a latched bit in a latched status register is cleared when a logic 1 is written to that bit. For example, writing FFFFh to a 16-bit latched status register clears all latched status bits in the register, whereas writing 0001h only clears bit 0 of the register. When set, some latched status bits can cause an interrupt request if enabled to do so by corresponding interrupt enable bits. 9.1.2 Configuration Fields Configuration fields are read-write. During reset, each configuration field reverts to the default value shown in the register definition. Configuration register bits marked “—“ are reserved and must be written with 0. Configuration registers and bits can be written to and read from during a data path reset, however, all changes to these bits are ignored during the data path reset. As a result, all bits requiring a zero-to-one transition to initiate an action must have the transition occur after the data path reset has been removed. See Section 8.11 for more information about resets and data path resets. 9.1.3 Counters All counters stop counting at their maximum count. A counter register is updated by asserting (low to high transition) the performance monitoring update signal (PMU). During a counter register update, the performance monitoring status signal (PMS) is deasserted. A counter register update consists of loading the counter register with the current count, resetting the counter, resetting the zero count status indication, and then asserting PMS. No events are missed during an update. See Section 8.7.4 for more information about performance monitor register updates. 49 of 130 DS32506/DS32508/DS32512 9.2 Overall Register Map Table 9-1. Overall Register Map BASE ADDRESS 000h 080h 100h 180h 200h 280h 300h 380h 400h 480h 500h 580h 600h 680h BLOCK Global Registers Port Registers for Port 1 Port Registers for Port 2 Port Registers for Port 3 Port Registers for Port 4 Port Registers for Port 5 Port Registers for Port 6 Port Registers for Port 7 Port Registers for Port 8 Port Registers for Port 9 Port Registers for Port 10 Port Registers for Port 11 Port Registers for Port 12 Unused Table 9-2. Port Registers ADDRESS OFFSET 00h–1Fh 20h–2Fh 30h–3Fh 40h–4Fh 50h–6Fh 70h–7Fh DESCRIPTION BLOCK Port Common Registers LIU Registers B3ZS/HDB3 Encoder Registers B3ZS/HDB3 Decoder Registers BERT Registers Unused PORT LIU LINE Tx LINE Rx BERT — Note: The address offsets given in this table are offsets from port base addresses shown in Table 9-1. 50 of 130 DS32506/DS32508/DS32512 9.3 Global Registers Table 9-3. Global Register Map ADDRESS OFFSET 000h 002h 004h 006h–00Eh 010h 012h 014h 016h 018h–01Eh 020h 022h 024h–026h 028h 02Ah 02Ch 02Eh–036h 038h 03Ah 03Ch–07Eh REGISTER REGISTER DESCRIPTION GLOBAL.IDR GLOBAL.CR1 GLOBAL.CR2 — GLOBAL.GIOACR1 GLOBAL.GIOACR2 GLOBAL.GIOBCR1 GLOBAL.GIOBCR2 — GLOBAL.ISR GLOBAL.ISRIE — GLOBAL.SR GLOBAL.SRL GLOBAL.SRIE — GLOBAL.GIOARR GLOBAL.GIOBRR — Register Name: Register Description: Register Address: ID Register Global Control Register 1 Global Control Register 2 Unused General-Purpose I/O A Control Register 1 General-Purpose I/O A Control Register 2 General-Purpose I/O B Control Register 1 General-Purpose I/O B Control Register 2 Unused Global Interrupt Status Register Global Interrupt Enable Register Unused Global Status Register Global Status Register Latched Global Status Register Interrupt Enable Unused General-Purpose I/O A Read Register General-Purpose I/O B Read Register Unused GLOBAL.IDR ID Register 000h Bit # Name 15 ID15 14 ID14 13 ID13 12 ID12 11 ID11 10 ID10 9 ID9 8 ID8 Bit # Name 7 ID7 6 ID6 5 ID5 4 ID4 3 ID3 2 ID2 1 ID1 0 ID0 Bits 15 to 12: Device REV ID (ID[15:12]). These bits of the device ID register have the same information as the four bits of the JTAG REV ID portion of the JTAG ID register, JTAG ID[31:28]. See Section 10. Bits 11 to 0: Device CODE ID (ID[11:0]). These bits of the device ID register have the same information as the 12 bits of the JTAG CODE ID portion of the JTAG ID register, JTAG ID[23:12]. See Section 10. 51 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.CR1 Global Control Register #1 002h Bit # Name Default 15 — — 14 — 0 13 — 0 Bit # Name Default 7 TMEI 0 6 MEIMS 0 5 12 0 4 GPM[1:0] 0 0 11 10 G1SRS[3:0] 0 0 3 GPMU 0 2 — 0 9 0 8 G1SROE 0 1 RSTDP 1 0 RST 0 Bits 12 to 9: Global One-Second Reference Source (G1SRS[3:0]). These bits determine the source for the internally generated one second reference. The source is selected from one of the CLAD clocks or from one of the port transmit clocks. See Section 8.7.2. 0000 = Disabled 0001 = DS3 reference clock 0010 = E3 reference clock 0011 = STS-1 reference clock 0100 = Port 1 TCLK 0101 = Port 2 TCLK 0110 = Port 3 TCLK 0111 = Port 4 TCLK 1000 = Port 5 TCLK 1001 = Port 6 TCLK 1010 = Port 7 TCLK 1011 = Port 8 TCLK 1100 = Port 9 TCLK 1101 = Port 10 TCLK 1110 = Port 11 TCLK 1111 = Port 12 TCLK Bit 8: Global One-Second Reference Output Enable (G1SROE). This bit determines whether the GPIOB3 pin is used to output the global one second reference signal. See Section 8.7.2. 0 = GPIOB3 pin mode selected by GLOBAL.GIOBCR1:GIOB3S[1:0]. 1 = GPIOB3 outputs the global one second reference signal specified by GLOBAL.CR1:G1SRS[3:0] Bit 7: Transmit Manual Error Insert (TMEI). When GLOBAL.CR1:MEIMS = 0, this bit is used to insert errors in all blocks in all ports where block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. Error(s) are inserted at the next opportunity after this bit transitions from low to high. See Section 8.7.5. Note: This bit should be set low immediately after each error insertion. Bit 6: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the manual error insertion signal for all block-level error generators that have block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. See Section 8.7.5. 0 = Global error insertion using GLOBAL.CR1:TMEI bit 1 = Global error insertion using the GPIOB2 pin Bits 5 and 4: Global Performance Monitor Update Mode (GPM[1:0]). These bits specify the source of the performance monitoring update signal for all blocks that have block-level PMUM = 1 and PORT.CR1:PMUM = 1. See Section 8.7.4. 00 = Global PM update using the GLOBAL.CR1:GPMU bit 01 = Global PM update using the GPIOB1 pin 1X = One-second PM update using the internal one-second counter (see Section 8.7.2) 52 of 130 DS32506/DS32508/DS32512 Bit 3: Global Performance Monitor Register Update (GPMU). When GLOBAL.CR1:GPM[1:0] = 00, this bit is used to update all of the performance monitor registers where block-level PMUM = 1 and PORT.CR1:PMUM = 1. When this bit transitions from low to high, all configured performance monitoring registers are updated with the latest counter value, and all associated counters are reset. This bit should remain high until the performance monitor update status bit (GLOBAL.SR:GPMS) goes high, and then it should be brought back low, which clears the GPMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. See Section 8.7.4. Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the internal data path and status registers in all ports to their default state. This bit must be set high for a minimum of 100ns. See Section 8.11. 0 = Normal operation 1 = Force all data path registers to their default values Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this RST bit), on all of the ports, are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is logically ORed with the inverted hardware signal RST. See Section 8.11. 0 = Normal operation 1 = Force all internal registers to their default values 53 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.CR2 Global Control Register #2 004h Bit # Name Default 15 — — 14 13 12 10 9 8 0 11 CLAD[6:0] 0 0 0 0 0 0 Bit # Name Default 7 — 0 6 — 0 5 CLKD19 0 4 INTM 0 3 RAS 0 2 RAD 0 1 LSBCRE 0 0 GWRM 0 Bits 14 to 8: CLAD I/O Mode (CLAD[6:0]). These bits control the CLAD clock I/O pins REFCLK, CLKA, CLKB, CLKC and CLKD. See Table 8-11 and Table 8-12 in Section 8.7.1. Bit 5: CLKD Frequency is 19.44MHz (CLKD19). This bit specifies the frequency to be output on CLKD when the CLAD[3] configuration bit is high. 0 = 77.76MHz 1 = 19.44MHz Bit 4: INT Pin Mode (INTM). This bit determines the inactive mode of the INT pin. The INT pin always drives low when an enabled interrupt source is active. See Section 8.10. 0 = Pin is high impedance when no enabled interrupts are active 1 = Pin drives high when no enabled interrupts are active Bit 3: RDY/ACK Select (RAS). This bit controls the microprocessor interface output pin RDY/ACK in Intel mode (IFSEL = 100 or 110) and Motorola mode (IFSEL = 101 or 111). 0 = Normal operation: RDY in Intel mode and ACK in Motorola mode 1 = Reverse operation: ACK in Intel mode and RDY in Motorola mode Bit 2: RDY/ACK Disable (RAD). This bit disables the microprocessor interface output pin RDY/ACK. 0 = Enable, normal operation 1 = Disable, tri-state Bit 1: Latched Status Bit Clear-on-Read Enable (LSBCRE). This bit determines when the latched status register bits are cleared. See Section 8.8.5. 0 = Latched status register bits are cleared on a write 1 = Latched status register bits are cleared on a read Bit 0: Global Write Mode (GWRM). This bit enables the global write mode. When this bit is set, a write to a register of any port causes a write to the same register in all the ports. In this mode register reads are not supported and result in undefined data. See Section 8.8.6. 0 = Normal write mode 1 = Global write mode 54 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.GIOACR1 General-Purpose I/O A Control Register #1 010h Bit # Name Default 15 14 GIOA8S[1:0] 0 0 13 12 GIOA7S[1:0] 0 0 11 10 GIOA6S[1:0] 0 0 9 8 GIOA5S[1:0] 0 0 Bit # Name Default 7 6 GIOA4S[1:0] 0 0 5 4 GIOA3S[1:0] 0 0 3 2 GIOA2S[1:0] 0 0 1 0 GIOA1S[1:0] 0 0 Note: See Section 8.7.3 for more information. Bits 15, 14: General-Purpose I/O A 8 Select (GIOA8S[1:0]). These bits specify the function of the GPIOA8 pin. 00 = Input 01 = Output LOS status for port 8 10 = Output logic 0 11 = Output logic 1 Bits 13, 12: General-Purpose I/O A 7 Select (GIOA7S[1:0]). These bits specify the function of the GPIOA7 pin. 00 = Input 01 = Output LOS status for port 7 10 = Output logic 0 11 = Output logic 1 Bits 11, 10: General-Purpose I/O A 6 Select (GIOA6S[1:0]). These bits specify the function of the GPIOA6 pin. 00 = Input 01 = Output LOS status for port 6 10 = Output logic 0 11 = Output logic 1 Bits 9, 8: General-Purpose I/O A 5 Select (GIOA5S[1:0]). These bits specify the function of the GPIOA5 pin. 00 = Input 01 = Output LOS status for port 5 10 = Output logic 0 11 = Output logic 1 Bits 7, 6: General-Purpose I/O A 4 Select (GIOA4S[1:0]). These bits specify the function of the GPIOA4 pin. 00 = Input 01 = Output LOS status for port 4 10 = Output logic 0 11 = Output logic 1 Bits 5, 4: General-Purpose I/O A 3 Select (GIOA3S[1:0]). These bits specify the function of the GPIOA3 pin 00 = Input 01 = Output LOS status for port 3 10 = Output logic 0 11 = Output logic 1 Bits 3, 2: General-Purpose I/O A 2 Select (GIOA2S[1:0]). These bits specify the function of the GPIOA2 pin. 00 = Input 01 = Output LOS status for port 2 10 = Output logic 0 11 = Output logic 1 Bits 1, 0: General-Purpose I/O A 1 Select (GIOA1S[1:0]). These bits specify the function of the GPIOA1 pin. 00 = Input 01 = Output LOS status for port 1 10 = Output logic 0 11 = Output logic 1 55 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.GIOACR2 General-Purpose I/O A Control Register #2 012h Bit # Name Default 15 — 0 14 — 0 Bit # Name Default 7 6 GIOA12S[1:0] 0 0 13 — 0 12 — 0 5 4 GIOA11S[1:0] 0 0 11 — 0 10 — 0 3 2 GIOA10S[1:0] 0 0 9 — 0 8 — 0 1 0 GIOA9S[1:0] 0 0 Note: See Section 8.7.3 for more information. Bits 7, 6: General-Purpose I/O A 12 Select (GIOA12S[1:0]). These bits specify the function of the GPIOA12 pin. 00 = Input 01 = Output LOS status for port 12 10 = Output logic 0 11 = Output logic 1 Bits 5, 4: General-Purpose I/O A 11 Select (GIOA11S[1:0]). These bits specify the function of the GPIOA11 pin 00 = Input 01 = Output LOS status for port 11 10 = Output logic 0 11 = Output logic 1 Bits 3, 2: General-Purpose I/O A 10 Select (GIOA10S[1:0]). These bits specify the function of the GPIOA10 pin. 00 = Input 01 = Output LOS status for port 10 10 = Output logic 0 11 = Output logic 1 Bits 1, 0: General-Purpose I/O A 9 Select (GIOA9S[1:0]). These bits specify the function of the GPIOA9 pin. 00 = Input 01 = Output LOS status for port 9 10 = Output logic 0 11 = Output logic 1 56 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.GIOBCR1 General-Purpose I/O B Control Register #1 014h Bit # Name Default 15 14 GIOB8S[1:0] 0 0 13 12 GIOB7S[1:0] 0 0 11 10 GIOB6S[1:0] 0 0 9 8 GIOB5S[1:0] 0 0 Bit # Name Default 7 6 GIOB4S[1:0] 0 0 5 4 GIOB3S[1:0] 0 0 3 2 GIOB2S[1:0] 0 0 1 0 GIOB1S[1:0] 0 0 Note: See Section 8.7.3 for more information. Bits 15, 14: General-Purpose I/O B 8 Select (GIOB8S[1:0]). These bits specify the function of the GPIOB8 pin. 00 = Input 01 = Output LOS status for port 8 10 = Output logic 0 11 = Output logic 1 Bits 13, 12: General-Purpose I/O B 7 Select (GIOB7S[1:0]). These bits specify the function of the GPIOB7 pin. 00 = Input 01 = Output LOS status for port 7 10 = Output logic 0 11 = Output logic 1 Bits 11, 10: General-Purpose I/O B 6 Select (GIOB6S[1:0]). These bits specify the function of the GPIOB6 pin. 00 = Input 01 = Output LOS status for port 6 10 = Output logic 0 11 = Output logic 1 Bits 9, 8: General-Purpose I/O B 5 Select (GIOB5S[1:0]). These bits specify the function of the GPIOB5 pin. 00 = Input 01 = Output LOS status for port 5 10 = Output logic 0 11 = Output logic 1 Bits 7, 6: General-Purpose I/O B 4 Select (GIOB4S[1:0]). These bits specify the function of the GPIOB4 pin. 00 = Input 01 = Output LOS status for port 4 10 = Output logic 0 11 = Output logic 1 Bits 5, 4: General-Purpose I/O B 3 Select (GIOB3S[1:0]). These bits specify the function of the GPIOB3 pin. Note: If GLOBAL.CR1:G1SROE is set to 1, GPIOB3 is the global one second reference output signal. 00 = Input 01 = Output LOS status for port 3 10 = Output logic 0 11 = Output logic 1 Bits 3, 2: General-Purpose I/O B 2 Select (GIOB2S[1:0]). These bits specify the function of the GPIOB2 pin. Note: If GLOBAL.CR1:MEIMS is set to 1, GPIOB2 is the global transmit manual error insertion (TMEI) input signal. 00 = Input 01 = Output LOS status for port 2 10 = Output logic 0 11 = Output logic 1 57 of 130 DS32506/DS32508/DS32512 Bits 1, 0: General-Purpose I/O B 1 Select (GIOB1S[1:0]). These bits specify the function of the GPIOB1 pin. Note: If GLOBAL.CR1:GPM[1:0] is set to 01, GPIOB1 is the global performance monitoring update input signal. 00 = Input 01 = Output LOS status for port 1 10 = Output logic 0 11 = Output logic 1 Register Name: Register Description: Register Address: GLOBAL.GIOBCR2 General-Purpose I/O B Control Register #2 016h Bit # Name Default 15 — 0 14 — 0 Bit # Name Default 7 6 GIOB12S[1:0] 0 0 13 — 0 12 — 0 5 4 GIOB11S[1:0] 0 0 11 — 0 10 — 0 3 2 GIOB10S[1:0] 0 0 9 — 0 8 — 0 1 0 GIOB9S[1:0] 0 0 Note: See Section 8.7.3 for more information. Bits 7, 6: General-Purpose I/O 12 Select (GIOB12S[1:0]). These bits specify the function of the GPIOB12 pin. 00 = Input 01 = Output LOS status for port 12 10 = Output logic 0 11 = Output logic 1 Bits 5, 4: General-Purpose I/O 11 Select (GIOB11S[1:0]). These bits specify the function of the GPIOB11 pin 00 = Input 01 = Output LOS status for port 11 10 = Output logic 0 11 = Output logic 1 Bits 3, 2: General-Purpose I/O 10 Select (GIOB10S[1:0]). These bits specify the function of the GPIOB10 pin. 00 = Input 01 = Output LOS status for port 10 10 = Output logic 0 11 = Output logic 1 Bits 1, 0: General-Purpose I/O 9 Select (GIOB9S[1:0]). These bits specify the function of the GPIOB9 pin. 00 = Input 01 = Output LOS status for port 9 10 = Output logic 0 11 = Output logic 1 58 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.ISR Global Interrupt Status Register 020h Bit # Name 15 — 14 — 13 — 12 P12ISR 11 P11ISR 10 P10ISR 9 P9ISR 8 P8ISR Bit # Name 7 P7ISR 6 P6ISR 5 P5ISR 4 P4ISR 3 P3ISR 2 P2ISR 1 P1ISR 0 GSR Bits 12 to 1: Port n Interrupt Status Register (PnISR). This bit is set when any of the bits in the port n interrupt status register (PORT.ISR) are set and enabled for interrupt. When set, this bit causes an interrupt if GLOBAL.ISRIE:PnISRIE is set. See Section 8.10. Bit 0: Global Status Register (GSR). This bit is set when any of the latched status register bits in the global latched status register (GLOBAL.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if GLOBAL.ISRIE:GSRIE is set. See Section 8.10. Register Name: Register Description: Register Address: GLOBAL.ISRIE Global Interrupt Status Register Interrupt Enable 022h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 P12ISRIE 0 11 P11ISRIE 0 10 P10ISRIE 0 9 P9ISRIE 0 8 P8ISRIE 0 Bit # Name Default 7 P7ISRIE 0 6 P6ISRIE 0 5 P5ISRIE 0 4 P4ISRIE 0 3 P3ISRIE 0 2 P2ISRIE 0 1 P1ISRIE 0 0 GSRIE 0 Bits 12 to 1: Port n Interrupt Status Register Interrupt Enable (PnISRIE). This bit is the interrupt enable for the GLOBAL.ISR:PnISR status bit. See Section 8.10. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Global Status Register Interrupt Enable (GSRIE). This bit is the interrupt enable for the GLOBAL.ISR:GSR status bit. See Section 8.10. 0 = mask the interrupt 1 = enable the interrupt 59 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.SR Global Status Register 028h Bit # Name Default 15 — — 14 — — 13 — — 12 — — 11 — — 10 — — 9 — — 8 — — Bit # Name Default 7 — — 6 — — 5 — — 4 — — 3 — — 2 CLOL 0 1 — — 0 GPMS 0 Bit 2: CLAD Loss of Lock (CLOL). This bit is set when the CLAD is not locked to the reference frequency. Bit 0: Global Performance Monitoring Update Status (GPMS). This bit is set when the PORT.SR:PMS status bits are set in all of the ports that are enabled for global update control (i.e., all ports that have PORT.CR1:PMUM = 1). Ports that have PORT.CR1:PMUM = 0 have no effect on this bit. In global software update mode, the global update request bit (GLOBAL.CR1:GPMU) should be held high until this status bit goes high. See Section 8.7.4. 0 = The associated update request signal is low or not all register updates are completed. 1 = The requested performance register updates are all completed. Register Name: Register Description: Register Address: GLOBAL.SRL Global Status Register Latched 02Ah Bit # Name 15 — 14 — 13 — 12 — 11 — 10 — 9 — 8 — Bit # Name 7 — 6 CLKCL 5 CLKBL 4 CLKAL 3 CLADL 2 CLOLL 1 G1SREFL 0 GPMSL Bit 6: CLAD C Clock Activity Latched (CLKCL). This bit is set when the signal on the CLKC pin is active. Note: This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1. Bit 5: CLAD B Clock Activity Latched (CLKBL). This bit is set when the signal on the CLKB pin is active. Note: This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1. Bit 4: CLAD A Clock Activity Latched (CLKAL). This bit is set when the signal on the CLKA pin is active. Note: This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1. Bit 3: CLAD Reference Clock Activity Status Latched (CLADL). This bit is set when the CLAD PLL reference clock signal on the REFCLK pin is active. Note: When GLOBAL.CR2:CLAD[6:4] = 000, the REFCLK pin is unused. See Section 8.7.1. Bit 2: CLAD Loss of Lock Latched (CLOLL). This bit is set when the GLOBAL.SR:CLOL status bit transitions from low to high. Bit 1: Global One-Second Status Latched (G1SREFL). This bit is set once each second when the internal global one-second timer signal transitions low to high. When set, this bit causes an interrupt if interrupt enables GLOBAL.SRIE:G1SREFIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1. Bit 0: Global Performance Monitoring Update Status Latched (GPMSL). This bit is set when the GLOBAL.SR:GPMS status bit changes from low to high. When set, this bit causes an interrupt if interrupt enables GLOBAL.SRIE:GPMSIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1. 60 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: GLOBAL.SRIE Global Status Register Interrupt Enable 02Ch Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 — 0 2 CLOLIE 0 1 G1SREFIE 0 0 GPMSIE 0 Bit 2: CLAD Loss of Lock Interrupt Enable (CLOLIE). This bit is the interrupt enable for the GLOBAL.SRL:CLOLL bit. 0 = mask the interrupt 1 = enable the interrupt Bit 1: Global One-Second Interrupt Enable (G1SREFIE). This bit is the interrupt enable for the GLOBAL.SRL:G1SREFL bit. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Global Performance Monitoring Update Status Interrupt Enable (GPMSIE). This bit is the interrupt enable for the GLOBAL.SRL: GPMSL bit. 0 = mask the interrupt 1 = enable the interrupt Register Name: Register Description: Register Address: GLOBAL.GIOARR General-Purpose I/O A Read Register 038h Bit # Name 15 — 14 — 13 — 12 — 11 GPIOA12 10 GPIOA11 9 GPIOA10 8 GPIOA9 Bit # Name 7 GPIOA8 6 GPIOA7 5 GPIOA6 4 GPIOA5 3 GPIOA4 2 GPIOA3 1 GPIOA2 0 GPIOA1 Bits 11 to 0: General-Purpose I/O A n Status (GPIOAn). Bit n indicates the status of general-purpose I/O A pin n (GPIOAn). See Section 8.7.3. Register Name: Register Description: Register Address: GLOBAL.GIOBRR General-Purpose I/O B Read Register 03Ah Bit # Name 15 — 14 — 13 — 12 — 11 GPIOB12 10 GPIOB11 9 GPIOB10 8 GPIOB9 Bit # Name 7 GPIOB8 6 GPIOB7 5 GPIOB6 4 GPIOB5 3 GPIOB4 2 GPIOB3 1 GPIOB2 0 GPIOB1 Bits 11 to 0: General-Purpose I/O B n Status (GPIOBn). Bit n indicates the status of general-purpose I/O B pin n (GPIOBn). See Section 8.7.3. 61 of 130 DS32506/DS32508/DS32512 9.4 Port Common Registers Table 9-4. Port Common Register Map ADDRESS OFFSET 00h 02h 04h 06h 08h 0Ah 0Ch 0Eh 10h 12h 14h 16h 18h 1Ah 1Ch 1Eh REGISTER REGISTER DESCRIPTION PORT.CR1 PORT.CR2 PORT.CR3 — — PORT.INV — — PORT.ISR — PORT.ISRIE — PORT.SR PORT.SRL PORT.SRIE — Port Control Register 1 Port Control Register 2 Port Control Register 3 Unused Unused Port I/O Invert Control Register Unused Unused Port Interrupt Status Register Unused Port Interrupt Status Register Interrupt Enable Unused Port Status Register Port Status Register Latched Port Status Register Interrupt Enable Unused Register Name: Register Description: Register Address: PORT.CR1 Port Control Register 1 n * 80h + 00h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 TMEI 0 6 MEIMS 0 5 PMUM 0 4 PMU 0 3 TPD 1 2 RPD 1 1 RSTDP 1 0 RST 0 Bit 7: Transmit Manual Error Insert (TMEI). When PORT.CR1:MEIMS = 0, this bit is used to insert errors in all blocks where block-level MEIMS = 1. Error(s) are inserted at the next opportunity after this bit transitions from low to high. See Section 8.7.5. Note: This bit should be set low immediately after each error insertion. Bit 6: Transmit Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for all block-level error generators that have block-level MEIMS = 1. See Section 8.7.5. 0 = Port-level error insertion via PORT.CR1:TMEI 1 = Global error insertion as specified by GLOBAL.CR1:MEIMS Bit 5: Port Performance Monitor Update Mode (PMUM). This bit specifies the source of the performance monitoring update signal for all blocks that have block-level PMUM = 1. See Section 8.7.4. 0 = Port-level PM update via PORT.CR1:PMU 1 = Global PM update as specified by GLOBAL.CR1:GPM[1:0] Bit 4: Port Performance Monitor Register Update (PMU). When PORT.CR1:PMUM = 0, this bit is used to update all of the performance monitor registers where block-level PMUM = 1. When this bit transitions from low to high, all configured performance monitoring registers are updated with the latest counter values, and all associated counters are reset. This bit should remain high until the performance monitor update status bit (PORT.SR:PMS) goes high, and then it should be brought back low, which clears the PMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is nonzero” latched status bit is set. See Section 8.7.4. 62 of 130 DS32506/DS32508/DS32512 Bit 3: Transmit Power-Down (TPD). When this bit is set, the transmit path of the port is powered down and considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11. 0 = Normal operation 1 = Power down the port transmit path (TXP and TXN become high impedance) Bit 2: Receive Power-Down (RPD). When this bit is set, the receive path of the port is powered down and considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11. 0 = Normal operation 1 = Power down the port receive path (RPOS/RDAT, RNEG/RLCV, and RCLK become high impedance) Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the port’s internal data path and status registers to their default state. This bit must be set high for a minimum of 100ns and then set back low. See Section 8.11. 0 = Normal operation 1 = Force all data path registers to their default values Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this RST bit) of this port are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is logically ORed with the inverted hardware signal RST and the GLOBAL.CR1:RST bit. See Section 8.11. 0 = Normal operation 1 = Force all internal registers to their default values 63 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: Bit # Name Default 15 — 0 Bit # Name Default 7 PORT.CR2 Port Control Register 2 n * 80h + 02h 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 6 5 — 0 4 ROD 0 3 TBIN 0 2 RBIN 0 1 TCC 0 0 — 0 LM[1:0] 0 0 Bits 7 and 6: LIU Mode (LM[1:0]). These bits select the operating mode of the port. See Section 8.1. 00 = DS3 01 = E3 10 = STS-1 11 = reserved Bit 4: Receive Output Disable (ROD). See Section 8.3.6.4. 0 = enable the receiver outputs 1 = disable the receiver outputs (RCLK, RPOS/RDAT, and RNEG/RLCV) Bit 3: Transmit Binary Interface Enable (TBIN). See Section 8.2.2. 0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is disabled. 1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled. Bit 2: Receive Binary Interface Enable (RBIN). See Section 8.3.6. 0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is disabled. 1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations. The B3ZS/HDB3 encoder is enabled. Bit 1: Transmit Common Clock Mode (TCC). See Section 8.2.1.1. 0 = Source transmit clock for port n from TCLKn 1 = Source transmit clock for port n from TCLK1 64 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: PORT.CR3 Port Control Register 3 n * 80h + 04h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 BERTE 0 8 BERTD 0 Bit # Name Default 7 SCRD 0 6 — 0 5 — 0 4 AIST 0 3 TAIS 0 2 LBS 0 1 0 LB[1:0] 0 0 Bit 9: BERT Enable (BERTE). See Section 8.5. 0 = disable the BERT pattern generator (the pattern detector is always enabled) 1 = enable the BERT pattern generator (the pattern detector is always enabled) Bit 8: BERT Direction (BERTD). See Section 8.5. 0 = line direction (transmit to receive) 1 = system direction (receive to transmit) Bit 7: STS-1 Scrambling Disable (SCRD). This bit controls STS-1 scrambling when AIS-L is generated in STS-1 mode. See Section 8.2.3. 0 = Perform scrambling 1 = Do not perform scrambling Bit 4: AIS Type (AIST). See Section 8.2.4. 0 = Unframed all ones 1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode) Bit 3: Transmit AIS (TAIS). The type of AIS signal depends on the LIU mode (DS3, E3, or STS-1) and the configured AIS type. See Section 8.2.4. 0 = transmit normal data 1 = transmit AIS signal Bit 2: Loopback Select (LBS). This bit affects the function of the loopback mode (LBM[1:0]) bits. Bits 1 and 0: Loopback Mode (LB[1:0]). These bits enable loopbacks. The effect of the LB = 11 decode is controlled by the LBS configuration bit. See Section 8.6. 00 = No loopback 01 = Diagnostic loopback (DLB) 10 = Line loopback (LLB) 11 (LBS = 0) = Line loopback (LLB) and diagnostic loopback (DLB) simultaneously 11 (LBS = 1) = Analog loopback (ALB) 65 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: PORT.INV Port I/O Invert Control Register n * 80h + 0Ah Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 TNEGI 0 5 TPOSI 0 4 TCLKI 0 3 — 0 2 RNEGI 0 1 RPOSI 0 0 RCLKI 0 Bit 6: TNEG Invert (TNEGI). This bit inverts the TNEG input pin when set. 0 = Noninverted 1 = Inverted Bit 5: TPOS/TDAT Invert (TPOSI). This bit inverts the TPOS/TDAT input pin when set. 0 = Noninverted 1 = Inverted Bit 4: TCLK Invert (TCLKI). This bit inverts the TCLK pin input pin when set. See Section 8.2.1. 0 = Noninverted; TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. 1 = Inverted; TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. Bit 2: RNEG/RLCV Invert (RNEGI). This bit inverts the RNEG/RLCV output pin when set. 0 = Noninverted 1 = Inverted Bit 1: RPOS/RDAT Invert (RPOSI). This bit inverts the RPOS/RDAT output pin when set. 0 = Noninverted 1 = Inverted Bit 0: RCLK Invert (RCLKI). This bit inverts the RCLKn output pin when set. See Section 8.3.6.3. 0 = Noninverted; RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. 1 = Inverted; RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK. 66 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: PORT.ISR Port Interrupt Status Register n * 80h + 10h Bit # Name 15 — 14 — 13 — 12 — 11 — 10 — 9 — 8 — Bit # Name 7 — 6 — 5 — 4 — 3 LDSR 2 LIUSR 1 BSR 0 PSR Bit 3: Line Decoder Status Register Interrupt Status (LDSR). This bit is set when any of the latched status register bits in the B3ZS/HDB3 Line Decoder block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are both set. See Section 8.10. Bit 2: LIU Status Register Interrupt Status (LIUSR). This bit is set when any of the latched status register bits in the LIU block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:LIUSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10. Bit 1: BERT Status Register Interrupt Status (BSR). This bit is set when any of the latched status register bits in the BERT block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:BSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10. Bit 0: Port Status Register Interrupt Status (PSR). This bit is set when any of the latched status register bits in the port latched status register (PORT.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:PSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10. Register Name: Register Description: Register Address: PORT.ISRIE Port Interrupt Status Register Interrupt Enable n * 80h + 14h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 LDSRIE 0 2 LIUSRIE 0 1 BSRIE 0 0 PSRIE 0 Bit 3: Line Decoder Status Register Interrupt Enable (LDSRIE). This bit is the interrupt enable for the PORT.ISR:LDSR status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 2: LIU Status Register Interrupt Enable (LIUSRIE). This bit is the interrupt enable for the PORT.ISR:LIUSR status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 1: BERT Status Register Interrupt Enable (BSRIE). This bit is the interrupt enable for the PORT.ISR:BSR status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Port Status Register Interrupt Enable (PSRIE). This bit is the interrupt enable for the PORT.ISR:PSR status bit. 0 = mask the interrupt 1 = enable the interrupt 67 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: PORT.SR Port Status Register n * 80h + 18h Bit # Name Default 15 — — 14 — — 13 — — 12 — — 11 — — 10 — — 9 — — 8 — — Bit # Name Default 7 — — 6 — — 5 — — 4 — — 3 — — 2 — — 1 — — 0 PMS 0 Bit 0: Performance Monitoring Update Status (PMS). This bit is set when the PMS bits are set in all of the port functional blocks that are configured for port-level update control (i.e., all blocks that have PMUM = 1). Blocks that have PMUM = 0 have no effect on this bit. In port-level software update mode, the port update request bit (PORT.CR1:PMU) should be held high until this status bit goes high. See Section 8.7.4. 0 = The associated update request signal is low or not all register updates are completed. 1 = The requested performance register updates are all completed. Register Name: Register Description: Register Address: PORT.SRL Port Status Register Latched n * 80h + 1Ah Bit # Name 15 — 14 — 13 — 12 — 11 — 10 — 9 — 8 TCLKL Bit # Name 7 — 6 — 5 — 4 — 3 — 2 — 1 — 0 PMSL Bit 8: Transmit Clock Activity Status Latched (TCLKL). This bit is set when the signal on the TCLK pin used by this port (TCLKn when TCC = 0, TCLK1 when TCC = 1) is active. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:TCLKIE, PORT.ISRIE:PSRIE, and GLOBAL.ISRIE: PnISRIE are all set. Bit 0: Performance Monitoring Update Status Latched (PMSL). This bit is set when the PORT.SR:PMS status bit changes from low to high. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:PMSIE, PORT.ISRIE:PSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.7.4. 68 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: PORT.SRIE Port Status Register Interrupt Enable n * 80h + 1Ch Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 TCLKIE 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 — 0 2 — 0 1 — 0 0 PMSIE 0 Bit 8: Transmit Clock Activity Latched Status Interrupt Enable (TCLKIE). This bit is the interrupt enable for the PORT.SRL:TCLKL bit. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Performance Monitoring Update Latched Status Interrupt Enable (PMSIE). This bit is the interrupt enable for the PORT.SRL:PMSL bit. 0 = mask the interrupt 1 = enable the interrupt 69 of 130 DS32506/DS32508/DS32512 9.5 LIU Registers ADDRESS OFFSET 20h 22h 24h 26h 28h 2Ah 2Ch 2Eh REGISTER REGISTER DESCRIPTION LIU.CR1 LIU.CR2 LIU.TWSCR1 LIU.TWSCR2 LIU.SR LIU.SRL LIU.SRIE LIU.RGLR Control Register 1 Control Register 2 Transmit Waveshaping Control Register 1 Transmit Waveshaping Control Register 2 Status Register Status Register Latched Status Register Interrupt Enable Receive Gain Level Register Register Name: Register Description: Register Address: LIU.CR1 LIU Control Register 1 n * 80h + 20h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 10 9 0 0 0 0 Bit # Name Default 7 — 0 6 — 0 5 TLBO 0 4 TOE 0 3 TTRE 0 2 1 TRESADJ[2:0] 0 0 JAD[1:0] 8 JAS[1:0] 0 0 Bits 11, 10: Jitter Attenuator Depth (JAD[1:0]). These bits select the jitter attenuator buffer depth. See Section 8.4. 00 = 16 bits 01 = 32 bits 10 = 64 bits 11 = 128 bits Bit 9, 8: Jitter Attenuator Select (JAS[1:0]). These bits select the location of the jitter attenuator. See Section 8.4. 00 = Disabled 01 = Receive Path 10 = Transmit Path 11 = Transmit Path Bit 5: Transmit LIU LBO (TLBO). This bit is used to enable the transmit LBO circuit which causes the transmit signal to be preattenuated to mimic the attenuation of approximately approximates about 225 feet of cable. This is used to reduce near-end crosstalk when the cable lengths are short. This signal is only valid in DS3 and STS-1 modes. See Section 8.2.6. 0 = Disabled 1 = Enabled Bit 4: Transmit Output Enable (TOE). This bit enables the transmitter outputs (TXP and TXN). The transmitter continues to operate internally when the transmitter is tri-stated. Only the line driver and driver monitor are disabled. See Section 8.2.7. Note: This bit is ORed with the associated TOE input pin. 0 = TXP and TXN are high impedance 1 = TXP and TXN are driven Bit 3: Transmit Termination Resistor Enable (TTRE). This bit indicates when the transmitter internal termination is enabled. See Section 8.2.8. 0 = Disabled, the transmitter is terminated externally 1 = Enabled, the transmitter is terminated internally 70 of 130 DS32506/DS32508/DS32512 Bits 2, 0: Transmit Resistor Adjustment (TRESADJ[2:0]). These bits are used to adjust the internal termination resistance of the transmitter. See Section 8.2.8. 000 = 75Ω 001 = 82Ω 010 = 90Ω 011 = 100Ω 100 = 68Ω 101 = 62Ω 110 = 56Ω 111 = 50Ω Register Name: Register Description: Register Address: LIU.CR2 LIU Control Register 2 n * 80h + 22h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 RFL2E 0 4 RMON 0 3 RTRE 0 2 1 RRESADJ[2:0] 0 0 0 0 Bit 5: Receive Fail 2 Enable (RFL2E). This bit is used to enable the receive failure type 2 detection. See Section 8.3.8. 0 = Disable receive failure type 2 detection 1 = Enable receive failure type 2 detection Bit 4: Receive LIU Monitor Mode (RMON). This bit is used to enable the receive LIU monitor mode preamplifier. Enabling the preamplifier adds about 14dB of linear amplification for use in monitor applications where the signal has been reduced 20dB using resistive attenuator circuits. Note: When enabled, the preamp is turned on or off automatically depending upon the input signal level. See Section 8.3.2. 0 = Disable the preamp 1 = Enable the preamp Bit 3: Receive Termination Resistor Enable (RTRE). This bit indicates when the receiver internal termination is enabled. See Section 8.3.1. 0 = Disabled, the receiver is terminated externally 1 = Enabled, the receiver is terminated internally Bits 2 to 0: Receive Resistor Adjustment (RRESADJ[2:0]). These bits are used to adjust the internal termination resistance of the receiver. See Section 8.3.1. 000 = 75Ω 001 = 82Ω 010 = 90Ω 011 = 100Ω 100 = 68Ω 101 = 62Ω 110 = 56Ω 111 = 50Ω 71 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LIU.TWSCR1 LIU Transmit Waveshaping Control Register 1 n * 80h + 24h Bit # Name Default 15 14 13 10 9 8 0 12 11 TWSC[15:8] 0 0 0 0 0 0 0 Bit # Name Default 7 6 5 4 3 2 1 0 0 0 0 0 TWSC[7:0] 0 0 0 0 See Figure 8-1, Figure 8-2, and Figure 8-3 for illustrations of the first and second rise/fall time segments of the DS3 and STS-1 waveforms and the overshoot, one level, undershoot, and zero level segments for the E3 waveform. Bits 15, 14: Transmit Waveshaping Control (TWSC[15:14]). In DS3 and STS-1 modes, this field adjusts the width of the first of two rising-edge segments. In E3 mode this field adjusts the width of the leading edge overshoot. E3 Behavior DS3/STS-1 Behavior 00 - normal first rise time normal overshoot width 01 - increase first rise time by 0.1ns increase overshoot width 10 - decrease first rise time by 0.1ns decrease overshoot width 11 - decrease first rise time by 0.2ns decrease overshoot width Bits 13, 12: Transmit Waveshaping Control (TWSC[13:12]). In DS3 and STS-1 modes, this field adjusts the width of the second of two rising-edge segments. In E3 mode this field adjusts the width of the pulse plateau. E3 Behavior DS3/STS-1 Behavior 00 - normal second rise time normal “one level” time 01 - increase second rise time by 0.1ns increase “one level” time by 0.15ns 10 - decrease second rise time by 0.1ns decrease “one level” time by 0.15ns 11 - decrease second rise time by 0.1ns decrease “one level” time by 0.3ns Bits 11, 10: Transmit Waveshaping Control (TWSC[11:10]). In DS3 and STS-1 modes, this field adjusts the width of the first of two falling-edge segments. In E3 mode this field adjusts the width of the trailing edge undershoot. E3 Behavior DS3/STS-1 Behavior 00 - normal first fall time normal undershoot width 01 - increase first fall time by 0.1ns increase undershoot width by 0.15ns 10 - decrease first fall time by 0.1ns decrease undershoot width by 0.15ns 11 - decrease first fall time by 0.1ns decrease undershoot width by 0.3ns Bits 9, 8: Transmit Waveshaping Control (TWSC[9:8]). In DS3 and STS-1 modes, this field adjusts the width of the second of two falling-edge segments. In E3 mode this field adjusts the width of the zero after the trailing edge. E3 Behavior DS3/STS-1 Behavior 00 - normal second fall time normal “zero level” width 01 - increase second fall time by 0.1ns increase “zero level” width by 0.15ns 10 - decrease second fall time by 0.1ns decrease “zero level” width by 0.15ns 11 - decrease second fall time by 0.2ns decrease “zero level” width by 0.3ns Bits 7, 6: Transmit Waveshaping Control (TWSC[7:6]). In DS3 and STS-1 modes, this field adjusts the amplitude of the first of two rising-edge segments. In E3 mode this field adjusts the amplitude of the leading edge overshoot. The 11 value is a special case in which the entire pulse is made narrower. E3 Behavior DS3/STS-1 Behavior 00 - normal first rise amplitude normal overshoot 01 - decrease first rise amplitude 15% decrease overshoot amplitude 2% 10 - increase first rise amplitude 15% increase overshoot amplitude 2% 11 - decrease pulse width by 0.15ns decrease pulse width by 0.15ns 72 of 130 DS32506/DS32508/DS32512 Bits 5, 4: Transmit Waveshaping Control (TWSC[5:4]). In DS3 and STS-1 modes, this field adjusts the amplitude of the second of two rising-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a special case in which the entire pulse is made wider. E3 Behavior DS3/STS-1 Behavior 00 - normal rise amplitude normal pulse 01 - decrease second rise amplitude 15% normal pulse 10 - increase second rise amplitude 15% normal pulse 11 - increase pulse width by 0.15ns increase pulse width by 0.15ns Bits 3, 2: Transmit Waveshaping Control (TWSC[3:2]). In DS3 and STS-1 modes, this field adjusts the amplitude of the first of two falling-edge segments. In E3 mode this field adjusts the amplitude of the trailing edge overshoot. The 11 value is a special case in which the entire pulse is made wider. E3 Behavior DS3/STS-1 Behavior 00 - normal first fall time normal undershoot 01 - decrease first fall time amplitude 15% decrease undershoot 2% 10 - increase first fall time amplitude 15% increase undershoot 2% 11 - increase pulse width by 0.15ns increase pulse width by 0.15ns Bits 1, 0: Transmit Waveshaping Control (TWSC[1:0]). In DS3 and STS-1 modes, this field adjusts the fall time of the second of two falling-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a special case in which the entire pulse is made narrower. E3 Behavior DS3/STS-1 Behavior 00 - normal second fall time normal pulse 01 - decrease second fall time amplitude 15% normal pulse 10 - increase second fall time amplitude 15% normal pulse 11 - decrease pulse width by 0.15ns decrease pulse width by 0.15ns 73 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LIU.TWSCR2 LIU Transmit Waveshaping Control Register 2 n * 80h + 26h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 2 1 TWSC[19:16] 0 0 0 0 0 Bits 3 to 0: Transmit Waveshaping Control (TWSC[19:16]). This field adjusts overall amplitude of the transmit output pulse. 0000 - nominal amplitude (see Table 11-6 and Table 11-7) 0001 - increase amplitude by 3.75% 0010 - increase amplitude by 7.5% 0011 - increase amplitude by 11.25% 0100 - increase amplitude by 15% 0101 - increase amplitude by 20% 0110 - increase amplitude by 25% 0111 - increase amplitude by 30% 1000 - decrease amplitude by 12.5% 1001 - decrease amplitude by 9.375% 1010 - decrease amplitude by 6.25% 1011 - decrease amplitude by 3.125% 110X - increase amplitude to internal current limit 111X - increase amplitude to maximum, current limiting disabled 74 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LIU.SR LIU Status Register n * 80h + 28h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 TDM 0 9 TFAIL 0 8 LOMC 0 Bit # Name Default 7 — 1 6 — 1 5 — 0 4 RPAS 0 3 RFAIL1 0 2 RFAIL2 0 1 RLOL 0 0 ALOS 0 Bit 10: Transmit Driver Monitor (TDM). This bit indicates when the transmit driver is faulty. See Section 8.2.9. 0 = the transmit line driver is operating properly 1 = the transmit line driver is faulty Bit 9: Transmit Output Failure (TFAIL). This bit indicates when there is a failure on the transmit differential outputs (TXP/TXN). See Section 8.2.9. 0 = an open or short has not been detected on TXP or TXN 1 = an open or short has been detected on TXP or TXN Bit 8: Loss of Master Clock (LOMC). This bit indicates whether or not the master reference clock (DS3, E3, or STS-1, depending on PORT.CR2:LM[1:0] setting) is available from the CLAD block. See Section 8.7.1. 0 = the master reference clock is present 1 = that master reference clock is not present Bit 4: Receive Preamp Status (RPAS). See Section 8.3.2. 0 = the receiver preamp is off 1 = the receiver preamp is on Bit 3: Receive Failure Type 1 (RFAIL1). See Section 8.3.8. 0 = a receive failure type 1 has not been detected on RXP or RXN 1 = a receive failure type 1 has been detected on RXP or RXN. Bit 2: Receive Failure Type 2 (RFAIL2). See Section 8.3.8. 0 = a receive failure type 2 has not been detected on RXP or RXN 1 = a receive failure type 2 has been detected on RXP or RXN. Bit 1: Receive Loss of Lock (RLOL). See Section 8.3.4. 0 = the incoming clock frequency on RXP/RXN is within ±7700ppm of the master reference clock 1 = the incoming clock frequency on RXP/RXN is more than ±7900ppm away from the master reference clock Bit 0: Analog Loss of Signal (ALOS). See Section 8.3.5. 0 = an analog LOS (ALOS) condition has not been detected 1 = an ALOS condition has been detected 75 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LIU.SRL LIU Status Register Latched n * 80h + 2Ah Bit # Name Default 15 — 0 14 — 0 13 — 0 12 JAFL 0 11 JAEL 0 10 TDML 0 9 TFAILL 0 8 LOMCL 0 Bit # Name Default 7 — 0 6 — 0 5 RGLCL 0 4 RPASL 0 3 RFAIL1L 0 2 RFAIL2L 0 1 RLOLL 0 0 ALOSL 0 Bit 12: Jitter Attenuator Full Latched (JAFL). This bit is set when the jitter attenuator buffer is full, or when data has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:JAFIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4. Bit 11: Jitter Attenuator Empty Latched (JAEL). This bit is set when the jitter attenuator buffer is empty, or when data has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:JAEIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4. Bit 10: Transmit Driver Monitor Change Latched (TDML). This bit is set when the LIU.SR:TDM bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TDMIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 9: Transmit Output Failure Change Latched (TFAILL). This bit is set when the LIU.SR:TFAIL bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TFAILIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 8: Loss of Master Clock Latched (LOMCL). This bit is set when the LIU.SR:LOMC bit is set. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:LOMCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 5: Receive Gain Level Change Latched (RGLCL). This bit is set when the receive gain level (LIU.RGLR: RGL[7:0]) changes. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RGLCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 4: Receive Preamp Status Change Latched (RPASL). This bit is set when the LIU.SR:RPAS bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RPASIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 3: Receive Failure Type 1 Change Latched (RFAIL1L). This bit is set when the LIU.SR:RFAIL1 bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL1IE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 2: Receive Failure Type 2 Change Latched (RFAIL2L). This bit is set when the LIU.SR:RFAIL2 bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL2IE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 1: Receive Loss of Lock Change Latched (RLOLL). This bit is set when the LIU.SR:RLOL bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RLOLIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 0: Analog Loss of Signal Change Latched (ALOSL). This bit is set when the LIU.SR:ALOS bit changes state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:ALOSIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. 76 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LIU.SRIE LIU Status Register Interrupt Enable n * 80h + 2Ch Bit # Name Default 15 — 0 14 — 0 13 — 0 12 JAFIE 0 11 JAEIE 0 10 TDMIE 0 9 TFAILIE 0 8 LOMCIE 0 Bit # Name Default 7 — 0 6 — 0 5 RGLCIE 0 4 RPASIE 0 3 RFAIL1IE 0 2 RFAIL2IE 0 1 RLOLIE 0 0 ALOSIE 0 Bit 12: Jitter Attenuator Full Interrupt Enable (JAFIE). This bit is the interrupt enable for the LIU.SRL:JAFL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 11: Jitter Attenuator Empty Interrupt Enable (JAEIE). This bit is the interrupt enable for the LIU.SRL:JAEL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 10: Transmit Driver Monitor Interrupt Enable (TDMIE). This bit is the interrupt enable for the LIU.SRL:TDML bit. 0 = interrupt disabled 1 = interrupt enabled Bit 9: Transmit Output Failure Interrupt Enable (TFAILIE). This bit is the interrupt enable for the LIU.SRL:TFAILL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 8: Loss of Master Clock Interrupt Enable (LOMCIE). This bit is the interrupt enable for the LIU.SRL:LOMCL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 5: Receive Gain Level Change Interrupt Enable (RGLCIE). This bit is the interrupt enable for the LIU.SRL:RGLCL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 4: Receive Preamp Status Interrupt Enable (RPASIE). This bit is the interrupt enable for the LIU.SRL:RPASL bit. 0 = interrupt disabled 1 = interrupt enabled Bit 3: Receive Failure Type 1 Interrupt Enable (RFAIL1IE). This bit is the interrupt enable for the LIU.SRL:RFAIL1L bit. 0 = interrupt disabled 1 = interrupt enabled Bit 2: Receive Failure Type 2 Interrupt Enable (RFAIL2IE). This bit is the interrupt enable for the LIU.SRL:RFAIL2L bit. 0 = interrupt disabled 1 = interrupt enabled Bit 1: Receive Loss of Lock Interrupt Enable (RLOLIE). This bit is the interrupt enable for the LIU.SRL:RLOLL bit. 0 = interrupt disabled 1 = interrupt enabled 77 of 130 DS32506/DS32508/DS32512 Bit 0: Analog Loss Of Signal Interrupt Enable (ALOSIE). This bit is the interrupt enable for the LIU.SRL:ALOSL bit. 0 = interrupt disabled 1 = interrupt enabled Register Name: Register Description: Register Address: LIU.RGLR LIU Receive Gain Level Register n * 80h + 2Eh Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 RGL7 0 6 RGL6 0 5 RGL5 0 4 RGL4 0 3 RGL3 0 2 RGL2 0 1 RGL1 0 0 RGL0 0 Bits 7 to 0: Receive Gain Level (RGL[7:0]). This field reports the real-time receiver gain level in 0.25 dB increments. Values of 00–60h indicate receiver gain of 0dB to +24dB in 0.25dB increments. Values of F4–Fifth indicate receiver gain of -3dB to -0.25dB in 0.25dB increments. See Section 8.3.3. 78 of 130 DS32506/DS32508/DS32512 9.6 B3ZS/HDB3 Encoder Registers ADDRESS OFFSET 30h 32h–3Eh REGISTER REGISTER DESCRIPTION LINE.TCR — B3ZS/HDB3 Transmit Control Register Unused Register Name: Register Description: Register Address: LINE.TCR B3ZS/HDB3 Transmit Control Register n * 80h + 30h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 TZSD 0 3 EXZI 0 2 BPVI 0 1 TSEI 0 0 MEIMS 0 Bit 4: Transmit Zero Suppression Encoding Disable (TZSD) 0 = zero suppression (B3ZS or HDB3) encoding is enabled 1 = zero suppression (B3ZS or HDB3) encoding is disabled, and only AMI encoding is performed Bit 3: Excessive Zero Insert Enable (EXZI). See Section 8.2.3. 0 = excessive zero event (EXZ) insertion is disabled 1 = excessive zero event insertion is enabled Bit 2: Bipolar Violation Insert Enable (BPVI). See Section 8.2.3. 0 = bipolar violation (BPV) insertion is disabled 1 = bipolar violation insertion is enabled. Bit 1: Transmit Single Error Insert (TSEI). When LINE.TCR:MEIMS = 0, this bit is used to insert errors of the type(s) specified by EXZI and BPVI in the transmit data stream. A zero-to-one transition causes a single error to be inserted. For a second error to be inserted, this bit must be set to 0, and then back to 1. Note: If LINE.TCR:MEIMS is low, and this bit transitions more than once between error insertion opportunities, only one error is inserted. See Section 8.7.5. Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the transmit encoder/decoder block. Note: If the TMEI pin or TSEI bit is one, changing the state of this bit may cause an error to be inserted. See Section 8.7.5. 0 = Block-level error insertion using the LINE.TCR:TSEI control bit 1 = Port-level or global-level error insertion as specified by PORT.CR1:MEIMS 79 of 130 DS32506/DS32508/DS32512 9.7 B3ZS/HDB3 Decoder Registers ADDRESS OFFSET 40h 42h 44h 46h 48h 4Ah 4Ch 4Eh REGISTER REGISTER DESCRIPTION LINE.RCR — LINE.RSR LINE.RSRL LINE.RSRIE — LINE.RBPVCR LINE.REXZCR B3ZS/HDB3 Receive Control Register Unused B3ZS/HDB3 Receive Status Register B3ZS/HDB3 Receive Status Register Latched B3ZS/HDB3 Receive Status Register Interrupt Enable Unused B3ZS/HDB3 Receive Bipolar Violation Count Register B3ZS/HDB3 Receive Excessive Zero Count Register Register Name: Register Description: Register Address: LINE.RCR B3ZS/HDB3 Receive Control Register n * 80h + 40h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 E3CVE 0 2 REZSF 0 1 RDZSF 0 0 RZSD 0 Bit 3: E3 Code Violation Enable (E3CVE). In E3 mode (PORT.CR2:LM[1:0] = 01), this bit specifies whether the LINE.RBPVCR register counts bipolar violations or E3 coding violations. Note: E3 line coding violations are defined in ITU O.161 as consecutive bipolar violations of the same polarity. This bit is ignored in B3ZS mode. See Section 8.3.6.2. 0 = bipolar violations. 1 = E3 line coding violations Bit 2: Receive BPV Error Detection Zero Suppression Code Format (REZSF). When REZSF = 0, BPV error detection detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature if two zeros are followed by a BPV. When REZSF = 1, BPV error detection detects a B3ZS signature if a zero is followed by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if two zeros are followed by a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note: Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero followed by a BPV, and the first HDB3 signature is defined as two zeros followed by a BPV. All subsequent B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting (REZSF = 0) conforms to ITU O.162. The default setting may falsely ignore actual BPVs that are not codewords. It is recommended that REZSF be set to one for most applications. This setting is more robust to accurately detect codewords. See Section 8.3.6.2. Bit 1: Receive Zero Suppression Decoding Zero Suppression Code Format (RDZSF). When RDZSF = 0, zero suppression decoding detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature if two zeros are followed by a BPV. When RDZSF = 1, zero suppression decoding detects a B3ZS signature if a zero is followed by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if two zeros are followed by a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note: Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero followed by a BPV, and the first HDB3 signature is defined as two zeros followed by a BPV. All subsequent B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting (RDZSF = 0) may falsely decode actual BPVs that are not codewords. It is recommended that RDZSF be set to one for most applications. This setting is more robust to accurately detect codewords. See Section 8.3.6.2. Bit 0: Receive Zero Suppression Decoding Disable (RZSD) 0 = zero suppression (B3ZS or HDB3) decoding is enabled 1 = zero suppression (B3ZS or HDB3) decoding is disabled, and only AMI decoding is performed 80 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LINE.RSR B3ZS/HDB3 Receive Status Register n * 80h + 44h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 EXZC 0 2 — 0 1 BPVC 0 0 LOS 0 Bit 3: Excessive Zero Count (EXZC). See Section 8.3.6. 0 = the Receive Excessive Zero Count Register (LINE.REXZCR) is zero 1 = the Receive Excessive Zero Count Register (LINE.REXZCR) is one or more Bit 1: Bipolar Violation Count (BPVC). See Section 8.3.6. 0 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is zero 1 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is one or more Bit 0: Loss of Signal (LOS). See Section 8.3.5. 0 = receive line interface is not in a LOS condition 1 = receive line interface is in an LOS condition Register Name: Register Description: Register Address: LINE.RSRL B3ZS/HDB3 Receive Status Register Latched n * 80h + 46h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 ZSCDL 0 4 EXZL 0 3 EXZCL 0 2 BPVL 0 1 BPVCL 0 0 LOSL 0 Bit 5: Zero Suppression Code Detect Latched (ZSCDL). This bit is set when a B3ZS or HDB3 signature is detected. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:ZSCDIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6. Bit 4: Excessive Zero Latched (EXZL). This bit is set when an excessive zero event is detected on the incoming bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6. Bit 3: Excessive Zero Count Latched (EXZCL). This bit is set when LINE.RSR:EXZC transitions from zero to one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6. Bit 2: Bipolar Violation Latched (BPVL). This bit is set when a bipolar violation (or E3 LCV if enabled) is detected on the incoming bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6. Bit 1: Bipolar Violation Count Latched (BPVCL). This bit is set when LINE.RSR:BPVC transitions from zero to one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6. Bit 0: Loss of Signal Change Latched (LOSL). This bit is set when LINE.RSR:LOS changes state. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:LOSIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.5. 81 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LINE.RSRIE B3ZS/HDB3 Receive Status Register Interrupt Enable n * 80h + 48h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 ZSCDIE 0 4 EXZIE 0 3 EXZCIE 0 2 BPVIE 0 1 BPVCIE 0 0 LOSIE 0 Bit 5: Zero Suppression Code Detect Interrupt Enable (ZSCDIE). This bit is the interrupt enable for the LINE.RSRL:ZSCDL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 4: Excessive Zero Interrupt Enable (EXZIE). This bit is the interrupt enable for the LINE.RSRL:EXZL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 3: Excessive Zero Count Interrupt Enable (EXZCIE). This bit is the interrupt enable for the LINE.RSRL:EXZCL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 2: Bipolar Violation Interrupt Enable (BPVIE). This bit is the interrupt enable for the LINE.RSRL:BPVL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 1: Bipolar Violation Count Interrupt Enable (BPVCIE). This bit is the interrupt enable for the LINE.RSRL:BPVCL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Loss-of-Signal Interrupt Enable (LOSIE). This bit is the interrupt enable for the LINE.RSRL:LOSL status bit. 0 = mask the interrupt 1 = enable the interrupt 82 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: LINE.RBPVCR B3ZS/HDB3 Receive Bipolar Violation Count Register n * 80h + 4Ch Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 BPV[15:8] BPV[7:0] 0 0 0 0 Bits 15 to 0: Bipolar Violation Count (BPV[15:0]). These 16 bits indicate the number of bipolar violations detected on the incoming bipolar data stream. See Section 8.3.6. Register Name: Register Description: Register Address: LINE.REXZCR B3ZS/HDB3 Receive Excessive Zero Count Register n * 80h + 4Eh Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 EXZ[15:8] EXZ[7:0] 0 0 0 0 Bit 15 to 0: Excessive Zero Count (EXZ[15:0]). These 16 bits indicate the number of excessive zero conditions detected on the incoming bipolar data stream. See Section 8.3.6. 83 of 130 DS32506/DS32508/DS32512 9.8 BERT Registers ADDRESS OFFSET 50h 52h 54h 56h 58h 5Ah 5Ch 5Eh 60h 62h 64h 66h 68h 6Ah 6Ch 6Eh REGISTER REGISTER DESCRIPTION BERT.CR BERT.PCR BERT.SPR1 BERT.SPR2 BERT.TEICR — BERT.SR BERT.SRL BERT.SRIE — BERT.RBECR1 BERT.RBECR2 BERT.RBCR1 BERT.RBCR2 — — BERT Control Register BERT Pattern Configuration Register BERT Seed/Pattern Register 1 BERT Seed/Pattern Register 2 Transmit Error Insertion Control Register Unused BERT Status Register BERT Status Register Latched BERT Status Register Interrupt Enable Unused Receive Bit Error Count Register 1 Receive Bit Error Count Register 2 Receive Bit Count Register 1 Receive Bit Count Register 2 Unused Unused Register Name: Register Description: Register Address: BERT.CR BERT Control Register n * 80h + 50h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 PMUM 0 6 LPMU 0 5 RNPL 0 4 RPIC 0 3 MPR 0 2 APRD 0 1 TNPL 0 0 TPIC 0 Bit 7: Performance Monitoring Update Mode (PMUM). This bit specifies the source of the performance monitoring update signal for the BERT block. See Section 8.7.4. Note: If RPMU or LPMU is one, changing the state of this bit may cause a performance monitoring update to occur. 0 = Block-level update via BERT.CR:LPMU 1 = Port-level or global update as specified by PORT.CR1:PMUM Bit 6: Local Performance Monitoring Update (LPMU). When BERT.CR:PMUM = 0, this bit updates the performance monitoring registers in the BERT block. When this bit transitions from low to high, the BERT.RBECR and BERT.RBCR registers are updated with the latest counter values and the counters are reset. This bit should remain high until the performance monitor update status bit (BERT.SR:PMS) goes high, and then it should be brought back low, which clears the PMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. See Section 8.7.4. Bit 5: Receive New Pattern Load (RNPL). A zero-to-one transition of this bit causes the programmed test pattern (QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be loaded into the receive pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded. Loading a new pattern forces the receive pattern generator out of the “Sync” state which causes a resynchronization to be initiated. Note: The test pattern fields mentioned above must not change for four RCLK cycles after this bit transitions from zero to one. See Section 8.5.1. 84 of 130 DS32506/DS32508/DS32512 Bit 4: Receive Pattern Inversion Control (RPIC). See Section 8.5.1. 0 = do not invert the incoming data stream 1 = invert the incoming data stream Bit 3: Manual Pattern Resynchronization (MPR). A zero-to-one transition of this bit causes the receive pattern generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another resynchronization to be initiated. Note: A manual resynchronization forces the pattern detector out of the “Sync” state. See Section 8.5.2. Bit 2: Automatic Pattern Resynchronization Disable (APRD). When APRD = 0, the receive pattern generator automatically resynchronizes to the incoming pattern if six or more times during the current 64-bit window the incoming data stream bit and the receive pattern generator output bit did not match. When APRD = 1, the receive pattern generator does not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is prevented by not allowing the receive pattern generator to automatically exit the “Sync” state. See Section 8.5.2. Bit 1: Transmit New Pattern Load (TNPL). A zero-to-one transition of this bit causes the programmed test pattern (QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be loaded into the transmit pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded. Note: The test pattern fields mentioned above must not change for four TCLK cycles after this bit transitions from zero to one. See Section 8.5.1. Bit 0: Transmit Pattern Inversion Control (TPIC). See Section 8.5.1. 0 = do not invert the outgoing data stream 1 = invert the outgoing data stream Register Name: Register Description: Register Address: BERT.PCR BERT Pattern Configuration Register n * 80h + 52h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 11 0 0 Bit # Name Default 7 — 0 6 QRSS 0 5 PTS 0 4 3 0 0 10 PTF[4:0] 0 2 PLF[4:0] 0 9 8 0 0 1 0 0 0 Bits 12 to 8: Pattern Tap Feedback (PTF[4:0]). These five bits control the PRBS “tap” feedback of the pattern generator. The “tap” feedback is from bit y of the pattern generator (y = PTF[4:0] + 1). These bits are ignored when the BERT block is programmed for a repetitive pattern (PTS = 1). For a PRBS signal, the feedback is an XOR of bit n and bit y. See Section 8.5.1. Bit 6: QRSS Enable (QRSS). See Section 8.5.1. 0 = Disabled: the pattern generator configuration is controlled by PTS, PLF[4:0], PTF[4:0], and BSP[31:0] 1 = Enabled: the pattern generator configuration is forced to a PRBS pattern with a generating polynomial of x20 + x17 + 1, and the output of the pattern generator is forced to one if the next 14 output bits are all zero. Bit 5: Pattern Type Select (PTS). See Section 8.5.1. 0 = PRBS pattern 1 = repetitive pattern. Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). This field controls the “length” feedback of the pattern generator. The “length” feedback is from bit n of the pattern generator (n = PLF[4:0] + 1). For a PRBS signal, the feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n. See Section 8.5.1. 85 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: BERT.SPR1 BERT Seed/Pattern Register #1 n * 80h + 54h Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 10 9 8 0 0 0 3 2 1 0 0 0 0 0 BSP[15:8] BSP[7:0] 0 0 0 0 Bits 15 to 0: BERT Seed/Pattern (BSP[15:0]) Register Name: Register Description: Register Address: BERT.SPR2 BERT Seed/Pattern Register #2 n * 80h + 56h Bit # Name Default 15 14 13 0 0 0 12 11 BSP[31:24] 0 0 Bit # Name Default 7 6 5 4 BSP[23:16] 0 0 0 0 Bits 15 to 0: BERT Seed/Pattern (BSP[31:16]) BERT Seed/Pattern (BSP[31:0]). This 32-bit field is the programmable seed for a transmit PRBS pattern, or the programmable pattern for a transmit or receive repetitive pattern. BSP[31] is the first bit output on the transmit side for a 32-bit repetitive pattern or 32-bit PRBS. BSP[31] is the first bit input on the receive side for a 32-bit repetitive pattern. See Section 8.5.1. 86 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: BERT.TEICR BERT Transmit Error Insertion Control Register n * 80h + 58h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 4 TEIR[2:0] 0 3 2 BEI 0 1 TSEI 0 0 MEIMS 0 0 0 Bits 5 to 3: Transmit Error Insertion Rate (TEIR[2:0]). This field indicates the rate at which errors are automatically inserted in the output data stream. One out of every 10n bits is inverted, where n = TEIR[2:0]. A value of 0 disables error insertion. A value of 1 results in every 10th bit being inverted. A value of 2 result in every 100th bit being inverted. Error insertion starts when this field is written with a non-zero value. If this field is written during an error insertion, the new error rate is used after the next error is inserted. See Section 8.5.3.1. Bit 2: Bit Error Insertion Enable (BEI). See Section 8.5.3.1. 0 = single-bit error insertion is disabled 1 = single-bit error insertion is enabled Bit 1: Transmit Single Error Insert (TSEI). When BERT.TEICR:MEIMS = 0 and BEI = 1, this bit is used to insert single-bit errors in the outgoing BERT data stream. A zero-to-one transition causes a single bit error to be inserted. For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If MEIMS is low, and this bit transitions more than once between error insertion opportunities, only one error is inserted. See Section 8.7.5. Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the BERT block. Note: If TMEI or TSEI is one, changing the state of this bit may cause a bit error to be inserted. See Section 8.7.5. 0 = error insertion is initiated by the BERT.TEICR:TSEI register bit 1 = error insertion is initiated by the transmit manual error insertion signal (TMEI) specified by the PORT.CR1:MEIMS register bit. 87 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: BERT.SR BERT Status Register n * 80h + 5Ch Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 PMS 1 2 — 0 1 BEC 0 0 OOS 0 Bit 3: Performance Monitoring Update Status (PMS). This bit is set when the performance monitoring registers (BERT.RBCR and BERT.RBECR) have been updated. PMS is asynchronously forced low when the BERT.CR:LPMU bit (BERT.CR:PMUM = 0) or RPMU signal (BERT.CR:PMUM = 1) goes low. See Section 8.7.4. 0 = The associated update request signal is low or not all register updates are completed 1 = The requested performance register updates are all completed Bit 1: Bit Error Count (BEC). See Section 8.5.1. 0 = the bit error count is zero 1 = the bit error count is one or more Bit 0: Out of Synchronization (OOS). See Section 8.5.1. 0 = the receive pattern generator is synchronized to the incoming pattern 1 = the receive pattern generator is not synchronized to the incoming pattern Register Name: Register Description: Register Address: BERT.SRL BERT Status Register Latched n * 80h + 5Eh Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 PMSL 0 2 BEL 0 1 BECL 0 0 OOSL 0 Bit 3: Performance Monitoring Update Status Latched (PMSL). This bit is set when the BERT.SR:PMS bit transitions from zero to one. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:PMSIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected in the received pattern. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:BEIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 1: Bit Error Count Latched (BECL). This bit is set when the BERT.SR:BEC bit transitions from zero to one. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:BECIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set. Bit 0: Out of Synchronization Latched (OOSL). This bit is set when the BERT.SR:OOS bit changes state. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:OOSIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set. 88 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: BERT.SRIE BERT Status Register Interrupt Enable n * 80h + 60h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 — 0 6 — 0 5 — 0 4 — 0 3 PMSIE 0 2 BEIE 0 1 BECIE 0 0 OOSIE 0 Bit 3: Performance Monitoring Update Status Interrupt Enable (PMSIE). This bit is the interrupt enable for the BERT.SRL:PMSL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 2: Bit Error Interrupt Enable (BEIE). This bit is the interrupt enable for the BERT.SRL:BEL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 1: Bit Error Count Interrupt Enable (BECIE). This bit is the interrupt enable for the BERT.SRL:BECL status bit. 0 = mask the interrupt 1 = enable the interrupt Bit 0: Out of Synchronization Interrupt Enable (OOSIE). This bit is the interrupt enable for the BERT.SRL:OOSL status bit. 0 = mask the interrupt 1 = enable the interrupt Register Name: Register Description: Register Address: BERT.RBECR1 BERT Receive Bit Error Count Register #1 n * 80h + 64h Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 BEC[15:8] BEC[7:0] 0 0 0 0 Bits 15 to 0: Bit Error Count (BEC[15:0]) 89 of 130 DS32506/DS32508/DS32512 Register Name: Register Description: Register Address: BERT.RBECR2 BERT Receive Bit Error Count Register #2 n * 80h + 66h Bit # Name Default 15 — 0 14 — 0 13 — 0 12 — 0 11 — 0 10 — 0 9 — 0 8 — 0 Bit # Name Default 7 6 5 4 3 2 1 0 0 0 0 0 BEC[23:16] 0 0 0 0 Bits 7 to 0: Bit Error Count (BEC[23:16]) Bit Error Count (BEC[23:0]). This field is the holding register for an internal BERT bit error counter that tracks the number of bit errors detected in the incoming data stream since the last performance monitoring update. The internal counter stops incrementing when it reaches a count of FF FFFFh and does not increment when an OOS condition exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4. The source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit. Register Name: Register Description: Register Address: BERT.RBCR1 BERT Receive Bit Count Register #1 n * 80h + 68h Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 11 10 9 8 0 0 0 0 3 2 1 0 0 0 0 0 BC[15:8] BC[7:0] 0 0 0 0 Bits 15 to 0: Bit Count (BC[15:0]) Register Name: Register Description: Register Address: BERT.RBCR2 BERT Receive Bit Count Register #2 n * 80h + 6Ah Bit # Name Default 15 14 13 12 0 0 0 0 Bit # Name Default 7 6 5 4 BC[31:24] BC[23:16] 0 0 0 0 Bits 15 to 0: Bit Count (BC[31:16]) Bit Count (BC[31:0]). This field is the holding register for an internal BERT bit counter that tracks the total number of bit received in the incoming data stream since the last performance monitoring update. The internal counter stops incrementing when it reaches a count of FFFF FFFFh and does not increment when an OOS condition exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4. The source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit. 90 of 130 DS32506/DS32508/DS32512 10. JTAG INFORMATION The DS325xx LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. The devices contain the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture: Test Access Port (TAP) TAP Controller Instruction Register Bypass Register Boundary Scan Register Device Identification Register The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins can be found in Table 7-9. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.11990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994. IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. The bypass register is a 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions to provide a short path between JTDI and JTDO. The boundary scan register contains a shift register path and a latched parallel output for control cells and digital I/O cells. DS325xx BSDL files are available at www.maxim-ic.com/TechSupport/telecom/bsdl.htm. An optional test register, the identification register, has also been included in the device design. The identification register contains a 32-bit shift register and a 32-bit latched parallel output. Table 10-1 shows the identification register contents for the DS32506, DS32508, and DS32512 devices. Table 10-1. JTAG ID Code PART DS32506 DS32508 DS32512 REVISION Consult factory Consult factory Consult factory DEVICE CODE 0000 0000 0111 1000 0000 0000 0111 1001 0000 0000 0111 1010 91 of 130 MANUFACTURER CODE 00010100001 00010100001 00010100001 REQUIRED 1 1 1 DS32506/DS32508/DS32512 11. ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS Voltage Range on Any Input or Output Lead with Respect to VSS…………………………………………-0.3V to +5.5V Supply Voltage Range with Respect to VSS VDD33………………………………………………………………………………………………...-0.3V to +3.63V VDD18 ………………………………………………………………………………………………..-0.1V to +1.89V Ambient Operating Temperature Range*..…………………………………………………………………..-40°C to +85°C Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C Storage Temperature Range………………………………………………………………………………...-55°C to +125°C Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. *Ambient operating temperature range when device is mounted on a four-layer JEDEC test board with no airflow. Note: The typical values listed in the following tables and operation at -40oC are not production tested, but are guaranteed by design (GBD). Table 11-1. Recommended DC Operating Conditions (TA = -40°C to +85°C) PARAMETER Digital Supply Voltage Analog Supply Voltage SYMBOL MIN TYP MAX VDD18 1.71 1.8 1.89 VDD33 3.135 3.300 3.465 1.71 1.80 1.89 V AVDD CONDITIONS CVDD, JVDD, RVDD, and TVDD UNITS V Logic 1, All Other Input Pins VIH 2.0 3.6 V Logic 0, All Other Input Pins VIL -0.3 +0.8 V 92 of 130 DS32506/DS32508/DS32512 Table 11-2. DC Characteristics (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) PARAMETER SYMBOL TYP MAX DS32506 DS32508 DS32512 DS32506 DS32508 DS32512 DS32506 DS32508 DS32512 DS32506 DS32508 DS32512 248 324 476 90 120 180 170 220 320 90 120 180 320 420 620 165 220 330 200 260 380 165 220 330 IDDPD18 DS32506, DS32508, DS32512 16 40 mA IDDPD33 DS32506, DS32508, DS32512 5.3 10 mA 7 10 +10 +10 +10 VDD33 0.4 pF μA μA μA V V Supply Current, VDD18 (Note 1) IDD18 Supply Current, VDD33 (Note 1) IDD33 Supply Current, Transmitters Disabled (All TOE = 0), VDD18 (Note 2) IDDTTS18 Supply Current, Transmitters Disabled (All TOE = 0), VDD33 (Note 2) IDDTTS33 Supply Current, Power-Down (All TPD = RPD = 1), VDD18 (Notes 2, 3) Supply Current, Power-Down (All TPD = RPD = 1), VDD33 (Notes 2, 3) Lead Capacitance Input Leakage, Input Pins with Pullup Input Leakage, All Other Input Pins Output Leakage (when High-Z) Output Voltage (IO = -4.0mA) Output Voltage (IO = +4.0mA) CIO IIL IIL ILO VOH VOL CONDITIONS (Note 4) (Note 4) (Note 4) MIN -300 -50 -10 2.4 0 UNITS mA mA mA mA Note 2: TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); TXPn/TXNn driving all ones into 75Ω resistive loads; analog loopback enabled; all other inputs at VDD33 or grounded; all other outputs open. TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); other inputs at VDD33 or grounded; digital outputs left open circuited. Note 3: HW = 0, CLAD[6:0] = 0000000 (disabled), G1SRS[3:0] = 0000 (disable), CS = 1 (inactive). Note 4: 0V < VIN < VDD18 for all other digital inputs. Note 1: 93 of 130 DS32506/DS32508/DS32512 Table 11-3. Framer Interface Timing (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-1 and Figure 11-2.) PARAMETER RCLK/TCLK Clock Period RCLK Duty Cycle TCLK Duty Cycle LIU Reference Clock Duty Cycle TPOS/TDAT, TNEG to TCLK Setup Time TPOS/TDAT, TNEG Hold Time RCLK to RPOS/RDAT, RNEG/RLCV Value Change RCLK Rise and Fall Time TCLK Rise and Fall Time SYMBOL CONDITIONS MIN (Notes 1, 2) (Notes 2, 3) (Notes 2, 4) (Notes 5, 6) (Note 6) (Notes 6, 7) (Notes 6, 8) (Notes 6, 8) 45 30 30 3 1 t6 (Notes 5, 6, 9) 1 t7 t8 (Notes 6, 10 ) (Notes 5, 11) t1 t2/t, t3/t1 t2/t, t3/t1 t2/t, t3/t1 t4 t5 TYP 22.4 29.1 19.3 50 1 MAX UNITS ns 55 70 70 % % % ns ns 7 ns 2 2 ns ns Note 1: DS3 mode. Note 2: Note 3: 78MHz is the maximum instantaneous frequency for a gapped clock. The maximum average frequency is 45.094MHz for DS3, 34.643MHz for E3, and 52.255MHz for STS-1. E3 mode. Note 4: STS-1 mode. Note 5: Outputs loaded with 25pF, measured at 50% threshold. Note 6: Not tested during production test. Note 7: The LIU reference clock must be a ±20ppm low-jitter clock. See Section 8.7.1 for more information on reference clocks. Note 8: Note 10: When TCLKI = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCLKI = 1, TPOS/TDAT and TNEG are sampled on the falling edge of TCLK. When RCLKI = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCLKI = 1, RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK. Outputs loaded with 25pF, measured between VOL(MAX) and VOH(MIN). Note 11: Measured between VIL(MAX) and VIH(MIN). Note 9: 94 of 130 DS32506/DS32508/DS32512 Figure 11-1. Transmitter Framer Interface Timing Diagram t1 t2 t3 TCLK (NORMAL) TCLK (INVERTED) t 8 t4 t5 TPOS/TDAT TNEG Figure 11-2. Receiver Framer Interface Timing Diagram t1 t2 t3 RCLK (NORMAL) RCLK (INVERTED) t6 t7 RPOS/RDAT RNEG/RLCV 95 of 130 DS32506/DS32508/DS32512 Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) PARAMETER MIN Receive Sensitivity (Length of Cable) Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2) Input Pulse Amplitude, RMON = 0 (Notes 2, 3) Input Pulse Amplitude, RMON = 1 (Note 2, 3) Analog LOS Declare, RMON = 0 (Note 4) Analog LOS Clear, RMON = 0 (Note 4) Analog LOS Declare, RMON = 1 (Note 4) Analog LOS Clear, RMON = 1 (Note 4) Intrinsic Jitter Generation (Note 2) Note 1: Note 2: Note 3: Note 4: TYP MAX UNITS 1500 10 -20 -34 -23 -22 -37 -36 0.02 ft 1000 200 -25 -39 mVpk mVpk dB dB dB dB UIP-P 15 An interfering signal (2 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the lowest signal-9 to-noise ratio that results in a bit error ratio ≤10 . Not tested during production test. Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement, 15 incoming data traffic is unframed 2 - 1 PRBS. With respect to nominal 800mVpk signal. Table 11-5. Receiver Input Characteristics—E3 Mode (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) PARAMETER Receive Sensitivity (Length of Cable) Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2) Input Pulse Amplitude, RMON = 0 (Notes 2, 3) Input Pulse Amplitude, RMON = 1 (Notes 2, 3) Analog LOS Declare, RMON = 0 (Note 4) Analog LOS Clear, RMON = 0 (Note 4) Analog LOS Declare, RMON = 1 (Note 4) Analog LOS Clear, RMON = 1 (Note 4) Intrinsic Jitter Generation (Note 2) Note 1: Note 2: Note 3: Note 4: MIN 900 TYP 1200 12 MAX 1500 UNITS ft 1300 260 -24 mVpk mVpk dB dB dB dB UIP-P -18 -44 -38 0.03 23 An interfering signal (2 - 1 PRBS, HDB3 encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the -9 lowest signal-to-noise ratio that results in a bit error ratio ≤10 . Not tested during production test. Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement, 23 incoming data traffic is unframed 2 - 1 PRBS. With respect to nominal 1000mVpk signal. 96 of 130 DS32506/DS32508/DS32512 Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) PARAMETER MIN TYP MAX UNITS DS3 Output Pulse Amplitude, TLBO = 0 (Note 1) 700 800 900 mVpk DS3 Output Pulse Amplitude, TLBO = 1 (Note 1) 500 600 700 mVpk STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1) 700 800 900 mVpk STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1) 500 600 700 mVpk Ratio of Positive and Negative Pulse-Peak Amplitudes 0.9 1.0 1.1 DS3 Power Level at 22.368MHz (Note 2) -1.8 DS3 Power Level at 44.736MHz vs. Power Level at 22.368MHz (Note 2) +5.7 dBm -20 dB Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 0 680 mVpk Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 1 480 mVpk Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 0 920 mVpk Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 1 720 mVpk Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1). Note 2: Unframed all-ones output signal, 3kHz bandwidth. Table 11-7. Transmitter Output Characteristics—E3 Mode (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) PARAMETER Output Pulse Amplitude (Note 1) MIN TYP MAX UNITS 900 1000 1100 mVpk Pulse Width (Note 1) 14.55 ns Positive/Negative Pulse Amplitude Ratio (at Centers of Pulses) (Note 1) 0.95 1.00 1.05 Positive/Negative Pulse Width Ratio (at Nominal Half Amplitude) 0.95 1.00 1.05 Transmit Driver Monitor Minimum Threshold (VTXMIN) 880 mVpk Transmit Driver Monitor Maximum Threshold (VTXMAX) 1120 mVpk Note 1: Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1). 97 of 130 DS32506/DS32508/DS32512 Table 11-8. Parallel CPU Interface Timing (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-3, Figure 11-4, Figure 11-5, Figure 11-6, Figure 11-7, Figure 11-8, Figure 11-9, and Figure 11-10.) PARAMETER SYMBOL MIN TYP MAX UNITS Setup Time for A[10:0] Valid to RD, WR, or DS Active (Notes 1, 2) t1 0 ns Setup Time for CS Active to RD, WR, or DS Active t2 0 ns Delay Time from RD or DS Active to D[15:0] Valid Without RDY/ACK Handshake Delay Time from RDY or ACK Active to D[15:0] Valid t3a 65 ns t3b 20 ns Hold Time from RD, WR, or DS Inactive to CS Inactive t4 0 ns Delay from CS, RD, or DS Inactive to D[15:0] Invalid (Note 3) t5 2 ns t6a 65 ns Wait Time from WR or DS Active to Latch D[15:0] Without RDY/ACK Handshake Wait Time from RDY or ACK Active to Latch D[15:0] t6b 20 ns D[15:0] Setup Time to WR or DS Inactive t7 10 ns D[15:0] Hold Time from WR or DS Inactive t8 2 ns A[10:0] Hold Time from WR, RD, or DS Inactive t9a 5 ns Delay from WR, RD, or DS Inactive to ALE Active t9b 20 ns RD, WR, or DS Inactive Time Muxed Address Valid to ALE Inactive (Note 4) Muxed Address Hold Time from ALE Inactive (Note 4) ALE Pulse Width (Note 4) t10 75 ns t11 t12 t13 10 10 20 ns ns ns Setup Time for ALE High or Muxed Address Valid to CS Active (Notes 4, 5, 6) t14 0 ns Delay from CS Inactive to D[15:0] Disable t15 15 ns Delay from CS Active to RDY/ACK Enable t16 15 ns Delay from CS, RD, WR, or DS Inactive to RDY/ACK Inactive (Note 7) t17 Delay from CS Inactive to RDY/ACK Disable t18 2 ns 15 ns Note 1: D[15:0] loaded with 50pF when tested as outputs. Note 2: If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest TCLK gap. Not tested during production test. Note 3: Note 5: In nonmultiplexed bus applications (Figure 11-3 to Figure 11-6), ALE should be wired high. In multiplexed bus applications (Figure 11-7 to Figure 11-10), A[10:0] should be wired to D[15:0] and the falling edge of ALE latches the address. t14 starts at the occurrence of the rising edge of ALE or A[10:0] valid whichever occurs later. Note 6: In order to avoid bus contention, during a read cycle A[10:0] should be disabled prior to RD or DS being active. Note 7: RDY/ACK may be disabled (t18) before going inactive (t17). Note 4: 98 of 130 DS32506/DS32508/DS32512 Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed) t1 t9a A[10:0] WR t2 CS t4 t10 RD t3a t5 t15 D[15:0] t16 t3b t18 RDY t17 Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed) t1 t9a A[10:0] RD CS t2 t4 t6a WR t10 t7 t8 D[15:0] t16 t18 RDY t6b 99 of 130 t17 DS32506/DS32508/DS32512 Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed) t1 t9a A[10:0] R/W t2 CS t4 t10 DS t3a t5 t15 D[15:0] t16 t3b t18 RDY t17 Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed) t1 t9a A[10:0] R/W CS t2 t4 t6a DS t10 t7 t8 D[15:0] t16 t18 RDY t6b 100 of 130 t17 DS32506/DS32508/DS32512 Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed) ALE 9b t13 t11 t12 A[10:0] t14 WR t2 CS t4 t10 RD t3a t5 t15 D[15:0] t16 t3b t18 RDY t17 Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed) ALE 9b t13 t11 t12 A[10:0] t14 RD CS t2 t4 t6a WR t10 t7 t8 D[15:0] t16 RDY t18 t6b 101 of 130 t17 DS32506/DS32508/DS32512 Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed) ALE 9b t13 t11 t12 A[10:0] t14 R/W t2 CS t4 t10 DS t3a t5 t15 D[15:0] t16 t3b t18 RDY t17 Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed) ALE 9b t13 t11 t12 A[10:0] t14 R/W CS t2 t4 t6a DS t10 t7 t8 D[15:0] t16 RDY t18 t6b 102 of 130 t17 DS32506/DS32508/DS32512 Table 11-9. SPI Interface Timing (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-11.) (Note 1) PARAMETER SYMBOL MIN TYP MAX UNITS 10 SCLK Frequency SCLK Cycle Time fBUS tCYC 100 MHz ns CS Setup to First SCLK Edge tSUC 15 ns CS Hold Time After Last SCLK Edge SCLK High Time SCLK Low Time SDI Data Setup Time SDI Data Hold Time SDO Enable Time (High Impedance to Output Active) SDO Disable Time (Output Active to High Impedance) SDO Data Valid Time SDO Data Hold Time After Update SCLK Edge tHDC 15 ns tCLKH tCLKL tSUI tHDI tEN tDIS tDV tHDO 50 50 5 15 0 ns ns ns ns ns ns ns ns Note 1: All timing is specified with 100 pF load on all SPI pins. 103 of 130 25 40 5 DS32506/DS32508/DS32512 Figure 11-11. SPI Interface Timing Diagram CPHA = 0 CS tSUC tHDC tCYC tCLKL SCLK, CPOL=0 tCLKH tCLKL SCLK, CPOL=1 tSUI tCLKH tHDI SDI tDV tDIS SDO tEN tHDO CPHA = 1 CS tSUC SCLK, CPOL=0 SCLK, CPOL=1 tHDC tCYC tCLKL tCLKH tCLKL tSUI tCLKH tHDI SDI tDV SDO tEN tHDO 104 of 130 tDIS DS32506/DS32508/DS32512 Table 11-10. JTAG Interface Timing (VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-12.) PARAMETER SYMBOL JTCLK Clock Period JTCLK Clock High/Low Time (Note 1) JTCLK to JTDI, JTMS Setup Time JTCLK to JTDI, JTMS Hold Time JTCLK to JTDO Delay JTCLK to JTDO High-Z Delay (Note 2) t1 t2/t3 t4 t5 t6 t7 50 50 50 2 2 t8 100 JTRST Width Low Time Note 1: Clock can be stopped high or low. Note 2: Not tested during production test. MIN Figure 11-12. JTAG Timing Diagram t1 t2 t3 JTCLK t4 t5 JTDI JTMS JTRST t6 t7 JTDO t8 JTRST 105 of 130 TYP MAX UNITS 50 50 ns ns ns ns ns ns 1000 500 ns DS32506/DS32508/DS32512 12. PIN ASSIGNMENTS Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512 SIGNAL BALL SIGNAL BALL SIGNAL BALL SIGNAL BALL A0 A1/LB5[1] A2/LB6[1] A3/LB7[1] A4/LB8[1] A5/LB9[1] V5 T8 W5 R9 Y4 P9 RCLK8 RCLK9 RCLK10 RCLK11 RCLK12 RCLKI N16 H11 T20 G18 R18 A3 TCC TCLK1 TCLK2 TCLK3 TCLK4 TCLK5 C6 L16 R22 K18 M17 J18 TVSS4 TVSS4 TVSS4 TVSS5 TVSS5 TVSS5 P6 U3 V1 C9 E9 F10 A6/LB10[1] AA3 RD/DS R11 TCLK6 T21 TVSS6 U10 A7/LB11[1] T9 U8 TCLK7 G21 TVSS6 V8 A8/LB12[1] A9/ITRE A10 AIST ALE CLADBYP CLKA CLKB CLKC CLKD AB2 R10 W6 E7 T10 G7 M21 M22 M19 M20 RDY/ACK REFCLK RESREF RLOS1 RLOS2 RLOS3 RLOS4 RLOS5 RLOS6 RLOS7 RLOS8 L22 L2 K19 P22 F22 V22 H19 M14 H16 W21 TCLK8 TCLK9 TCLK10 TCLK11 TCLK12 TCLKI TDM1 TDM2 TDM3 TDM4 P17 H15 U20 E20 T17 C5 K21 P21 K15 P19 TVSS6 TVSS7 TVSS7 TVSS7 TVSS8 TVSS8 TVSS8 TVSS9 TVSS9 TVSS9 V9 C12 D11 F12 T12 V12 Y12 D14 E15 F14 CS CVDD CVDD CVSS D0/LB1[0]/SDO D1/LB2[0]/SDI D2/LB3[0]/SCLK D3/LB4[0] Y5 RLOS9 D20 TDM5 J20 TVSS10 U14 L18 L19 L20 T5 T6 R5 R6 RLOS10 RLOS11 RLOS12 RMON1 RMON2 RMON3 RMON4 P14 H9 R13 L6 R4 F2 AA1 TDM6 TDM7 TDM8 TDM9 TDM10 TDM11 TDM12 N17 H14 Y21 B22 U19 H10 T16 TVSS10 TVSS10 TVSS11 TVSS11 TVSS11 TVSS12 TVSS12 V15 Y16 C18 C19 F16 U16 V18 D4/LB5[0] T7 RMON5 D8 E4 TVSS12 Y20 D5/LB6[0] D6/LB7[0]/CPHA D7/LB8[0]/CPOL D8/LB9[0] D9/LB10[0] D10/LB11[0] D11/LB12[0] D12/LB1[1] D13/LB1[2] D14/LB1[3] D15/LB1[4] GPIOA1/LM1[1] GPIOA2/LM2[1] R7 V4 P7 U5 W4 Y3 N8 AA2 P8 AB1 R8 J5 M7 RMON6 RMON7 RMON8 RMON9 RMON10 RMON11 RMON12 RNEG1 RNEG2 RNEG3 RNEG4 RNEG5 RNEG6 V10 A10 V13 B14 W16 A18 W19 K17 N21 E22 L14 J17 Y22 TEST TLBO1 TLBO2 TLBO3 TLBO4 TLBO5 TLBO6 TLBO7 TLBO8 TLBO9 TLBO10 TLBO11 TLBO12 TNEG1 L7 M9 K8 N5 D10 Y7 E13 AB10 D16 AA14 F17 T14 J22 TXN1 TXN1 TXN2 TXN2 TXN3 TXN3 TXN4 TXN4 TXN5 TXN5 TXN6 TXN6 TXN7 J1 J2 P1 P2 D1 D2 W1 W2 A7 B7 AA8 AB8 A12 106 of 130 DS32506/DS32508/DS32512 SIGNAL BALL SIGNAL BALL SIGNAL BALL SIGNAL BALL GPIOA3/LM3[1] GPIOA4/LM4[1] GPIOA5/LM5[1] GPIOA6/LM6[1] GPIOA7/LM7[1] GPIOA8/LM8[1] GPIOA9/LM9[1] GPIOA10/LM10[1] GPIOA11/LM11[1] GPIOA12/LM12[1] GPIOB1/LM1[0] GPIOB2/LM2[0] GPIOB3/LM3[0] GPIOB4/LM4[0] GPIOB5/LM5[0] GPIOB6/LM6[0] GPIOB7/LM7[0] GPIOB8/LM8[0] GPIOB9/LM9[0] J7 N6 F8 U11 F11 U13 F13 Y14 F15 Y18 G2 M4 G5 T1 E8 Y10 B10 AB14 A14 RNEG7 RNEG8 RNEG9 RNEG10 RNEG11 RNEG12 RPD RPOS1 RPOS2 RPOS3 RPOS4 RPOS5 RPOS6 RPOS7 RPOS8 RPOS9 RPOS10 RPOS11 RPOS12 H18 N15 H12 W20 G17 R17 B3 J21 L17 J15 U22 H20 P20 H17 R20 F18 T19 G16 R16 TNEG2 TNEG3 TNEG4 TNEG5 TNEG6 TNEG7 TNEG8 TNEG9 TNEG10 TNEG11 TNEG12 TOE1 TOE2 TOE3 TOE4 TOE5 TOE6 TOE7 TOE8 M18 K20 W22 J19 V21 E21 AA22 C21 R15 F19 T18 K22 T22 G22 M16 C22 R19 F21 P16 TXN7 TXN8 TXN8 TXN9 TXN9 TXN10 TXN10 TXN11 TXN11 TXN12 TXN12 TXP1 TXP1 TXP2 TXP2 TXP3 TXP3 TXP4 TXP4 B12 AA12 AB12 A16 B16 AA16 AB16 A20 B20 AA20 AB20 H1 H2 N1 N2 C1 C2 U1 U2 GPIOB10/LM10[0] R12 TOE9 D21 TXP5 A8 B18 U15 RST RVDD1 RVDD2 C3 GPIOB11/LM11[0] GPIOB12/LM12[0] L4 P3 TOE10 TOE11 V19 F20 TXP5 TXP6 B8 AA7 HIZ HW IFSEL0 IFSEL1 IFSEL2 J8 RVDD3 G4 TOE12 U17 TXP6 AB7 B1 U9 Y6 W7 RVDD4 RVDD5 RVDD6 RVDD7 V3 C8 Y9 C11 TPD TPOS1 TPOS2 TPOS3 D6 L15 N19 H21 TXP7 TXP7 TXP8 TXP8 A13 B13 AA11 AB11 AB3 RVDD8 Y13 TPOS4 M15 TXP9 A17 G8 C4 F7 E5 D4 D3 F6 H7 RVDD9 RVDD10 RVDD11 RVDD12 RVSS1 RVSS2 RVSS3 RVSS4 E14 V16 D17 U18 L1 P5 F5 W3 TPOS5 TPOS6 TPOS7 TPOS8 TPOS9 TPOS10 TPOS11 TPOS12 J16 U21 G20 P15 H13 V20 E19 R14 TXP9 TXP10 TXP10 TXP11 TXP11 TXP12 TXP12 VDD18 B17 AA15 AB15 A21 B21 AA19 AB19 C10 INT JAD0 JAD1 JAS0 JAS1 JTCLK JTDI JTDO JTMS JTRST JVDD1 JVDD2 JVDD3 JVDD4 JVDD5 JVDD6 JVDD7 E3 RVSS5 C7 TVDD1 J3 VDD18 C17 H3 M1 A1 T4 E10 AA6 D13 RVSS6 RVSS7 RVSS8 RVSS9 RVSS10 RVSS11 RVSS12 W10 E11 W13 C14 Y17 E17 AB22 TVDD1 TVDD1 TVDD2 TVDD2 TVDD2 TVDD3 TVDD3 K4 K5 M3 M6 N3 A2 F4 VDD18 VDD18 VDD18 VDD18 VDD18 VDD18 VDD33 G1 H22 N20 T2 AA10 AA18 J10 107 of 130 DS32506/DS32508/DS32512 SIGNAL BALL SIGNAL BALL SIGNAL BALL SIGNAL BALL JVDD8 JVDD9 JVDD10 JVDD11 JVDD12 JVSS1 JVSS2 JVSS3 JVSS4 JVSS5 JVSS6 JVSS7 JVSS8 JVSS9 JVSS10 JVSS11 JVSS12 LBS MT0 MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8 MT9 MT10 RBIN RCLK1 RCLK2 RCLK3 RCLK4 RCLK5 RCLK6 W11 E16 W14 E18 V17 H4 M2 B2 T3 A9 AB6 C13 V11 C16 V14 D19 W17 H8 L21 D5 G6 AA4 AB4 A4 B4 AA5 AB5 A5 B5 E6 K16 N22 D22 N18 J14 R21 RXN1 RXN2 RXN3 RXN4 RXN5 RXN6 RXN7 RXN8 RXN9 RXN10 RXN11 RXN12 RXP1 RXP2 RXP3 RXP4 RXP5 RXP6 RXP7 RXP8 RXP9 RXP10 RXP11 RXP12 TAIS1 TAIS2 TAIS3 TAIS4 TAIS5 TAIS6 TAIS7 TAIS8 TAIS9 TAIS10 TAIS11 TAIS12 K1 R2 E1 Y2 B6 AB9 A11 AB13 A15 AA17 A19 AA21 K2 R1 E2 Y1 A6 AA9 B11 AA13 B15 AB17 B19 AB21 F1 L3 H6 R3 G9 W8 G11 T11 G13 P12 G15 AB18 TVDD3 TVDD4 TVDD4 TVDD4 TVDD5 TVDD5 TVDD5 TVDD6 TVDD6 TVDD6 TVDD7 TVDD7 TVDD7 TVDD8 TVDD8 TVDD8 TVDD9 TVDD9 TVDD9 TVDD10 TVDD10 TVDD10 TVDD11 TVDD11 TVDD11 TVDD12 TVDD12 TVDD12 TVSS1 TVSS1 TVSS1 TVSS2 TVSS2 TVSS2 TVSS3 TVSS3 K6 N7 U4 V2 B9 D9 F9 P11 V7 Y8 D12 E12 G10 U12 W12 Y11 C15 D15 G12 T13 W15 Y15 C20 D18 G14 T15 W18 Y19 J4 K3 M8 M5 N4 P4 F3 G3 VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VDD33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS J13 K9 K14 N9 N14 P10 P13 A22 J6 J9 J11 J12 K7 K10 K11 K12 K13 L5 L8 L9 L10 L11 L12 L13 M10 M11 M12 M13 N10 N11 N12 N13 P18 U6 U7 W9 RCLK7 G19 TBIN D7 TVSS3 H5 WR/R/W V6 Note: There are two TXP leads and two TXN leads for each LIU port. For best performance, the two TXP leads must be wired together and the two TXN leads must be wired together on each port. 108 of 130 DS32506/DS32508/DS32512 Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 MT9 RXP5 TXN5 TXP5 JVSS5 RMON7 RXN7 B HW JVSS3 RPD MT6 MT10 RXN5 TXN5 TXP5 TVDD5 GPIOB7 RXP7 C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 TVSS7 E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST GPIOB5 TVSS5 JVDD5 RVSS7 F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 GPIOA5 TVDD5 TVSS5 GPIOA7 G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP JAD0 TAIS5 TVDD7 TAIS7 H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS RLOS11 TDM11 RCLK9 J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE TAIS8 U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 RMON6 JVSS8 W TXN4 TXN4 RVSS4 D9 A2 A10 IFSEL2 TAIS6 VSS RVSS6 JVDD8 Y RXP4 RXN4 D10 A4 CS IFSEL1 TLBO6 TVDD6 RVDD6 GPIOB6 TVDD8 AA RMON4 D12 A6 MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB D14 A8 INT MT4 MT8 JVSS6 TXP6 TXN6 RXN6 TLBO8 TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 109 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 GPIOB9 RXN9 TXN9 TXP9 RMON11 RXN11 TXN11 TXP11 VSS A TXN7 TXP7 RMON9 RXP9 TXN9 TXP9 GPIOB11 RXP11 TXN11 TXP11 TDM9 B TVSS7 JVSS7 RVSS9 TVDD9 JVSS9 VDD18 TVSS11 TVSS11 TVDD11 TNEG9 TOE5 C TVDD7 JVDD7 TVSS9 TVDD9 TLBO9 RVDD11 TVDD11 JVSS11 RLOS9 TOE9 RCLK3 D TVDD7 TLBO7 RVDD9 TVSS9 JVDD9 RVSS11 JVDD11 TPOS11 TCLK11 TNEG7 RNEG3 E TVSS7 GPIOA9 TVSS9 GPIOA11 TVSS11 TLBO11 RPOS9 TNEG11 TOE11 TOE7 RLOS3 F TVDD9 TAIS9 TVDD11 TAIS11 RPOS11 RNEG11 RCLK11 RCLK7 TPOS7 TCLK7 TOE3 G RNEG9 TPOS9 TDM7 TCLK9 RLOS7 RPOS7 RNEG7 RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N TAIS10 VDD33 RLOS10 TPOS8 TOE8 TCLK8 VSS TDM4 RPOS6 TDM2 RLOS2 P GPIOB10 RLOS12 TPOS12 TNEG10 RPOS12 RNEG12 RCLK12 TOE6 RPOS8 RCLK6 TCLK2 R TVSS8 TVDD10 TLBO12 TVDD12 TDM12 TCLK12 TNEG12 RPOS10 RCLK10 TCLK6 TOE2 T TVDD8 GPIOA8 TVSS10 GPIOB12 TVSS12 TOE12 RVDD12 TDM10 TCLK10 TPOS6 RPOS4 U TVSS8 RMON8 JVSS10 TVSS10 RVDD10 JVDD12 TVSS12 TOE10 TPOS10 TNEG6 RLOS4 V TVDD8 RVSS8 JVDD10 TVDD10 RMON10 JVSS12 TVDD12 RMON12 RNEG10 RLOS8 TNEG4 W TVSS8 RVDD8 GPIOA10 TVDD10 TVSS10 RVSS10 GPIOA12 TVDD12 TVSS12 TDM8 RNEG6 Y TXN8 RXP8 TLBO10 TXP10 TXN10 RXN10 VDD18 TXP12 TXN12 RXN12 TNEG8 AA TXN8 RXN8 GPIOB8 TXP10 TXN10 RXP10 TAIS12 TXP12 TXN12 RXP12 RVSS12 AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 110 of 130 DS32506/DS32508/DS32512 Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 MT9 RXP5 TXN5 TXP5 JVSS5 RMON7 RXN7 B HW JVSS3 RPD MT6 MT10 RXN5 TXN5 TXP5 TVDD5 LM7[0] RXP7 C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 TVSS7 E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST LM5[0] TVSS5 JVDD5 RVSS7 F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 LM5[1] TVDD5 TVSS5 LM7[1] G VDD18 LM1[0] TVSS3 RVDD3 LM3[0] MT2 CLADBYP JAD0 TAIS5 TVDD7 TAIS7 H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS RLOS11 TDM11 RCLK9 J TXN1 TXN1 TVDD1 TVSS1 LM1[1] VSS LM3[1] HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 LM2[0] TVSS2 TVDD2 LM2[1] TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 LM4[1] TVDD4 LB12[0] VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 LB8[0] LB2[1] LB9[1] VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 LB3[0] LB4[0] LB6[0] LB4[1] LB7[1] ITRE N.C. T LM4[0] VDD18 JVSS4 JVDD4 LB1[0] LB2[0] LB5[0] LB5[1] LB11[1] N.C. TAIS8 U TXP4 TXP4 TVSS4 TVDD4 LB9[0] VSS VSS N.C. IFSEL0 TVSS6 LM6[1] V TVSS4 TVDD4 RVDD4 LB7[0] N.C. N.C. TVDD6 TVSS6 TVSS6 RMON6 JVSS8 W TXN4 TXN4 RVSS4 LB10[0] LB6[1] N.C. IFSEL2 TAIS6 VSS RVSS6 JVDD8 Y RXP4 RXN4 LB11[0] LB8[1] N.C. IFSEL1 TLBO6 TVDD6 RVDD6 LM6[0] TVDD8 AA RMON4 LB1[1] LB10[1] MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB LB3[1] LB12[1] N.C. MT4 MT8 JVSS6 TXP6 TXN6 RXN6 TLBO8 TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 111 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 LM9[0] RXN9 TXN9 TXP9 RMON11 RXN11 TXN11 TXP11 VSS A TXN7 TXP7 RMON9 RXP9 TXN9 TXP9 LM11[0] RXP11 TXN11 TXP11 TDM9 B TVSS7 JVSS7 RVSS9 TVDD9 JVSS9 VDD18 TVSS11 TVSS11 TVDD11 TNEG9 TOE5 C TVDD7 JVDD7 TVSS9 TVDD9 TLBO9 RVDD11 TVDD11 JVSS11 RLOS9 TOE9 RCLK3 D TVDD7 TLBO7 RVDD9 TVSS9 JVDD9 RVSS11 JVDD11 TPOS11 TCLK11 TNEG7 RNEG3 E TVSS7 LM9[1] TVSS9 LM11[1] TVSS11 TLBO11 RPOS9 TNEG11 TOE11 TOE7 RLOS3 F TVDD9 TAIS9 TVDD11 TAIS11 RPOS11 RNEG11 RCLK11 RCLK7 TPOS7 TCLK7 TOE3 G RNEG9 TPOS9 TDM7 TCLK9 RLOS7 RPOS7 RNEG7 RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N TAIS10 VDD33 RLOS10 TPOS8 TOE8 TCLK8 VSS TDM4 RPOS6 TDM2 RLOS2 P LM10[0] RLOS12 TPOS12 TNEG10 RPOS12 RNEG12 RCLK12 TOE6 RPOS8 RCLK6 TCLK2 R TVSS8 TVDD10 TLBO12 TVDD12 TDM12 TCLK12 TNEG12 RPOS10 RCLK10 TCLK6 TOE2 T TVDD8 LM8[1] TVSS10 LM12[0] TVSS12 TOE12 RVDD12 TDM10 TCLK10 TPOS6 RPOS4 U TVSS8 RMON8 JVSS10 TVSS10 RVDD10 JVDD12 TVSS12 TOE10 TPOS10 TNEG6 RLOS4 V TVDD8 RVSS8 JVDD10 TVDD10 RMON10 JVSS12 TVDD12 RMON12 RNEG10 RLOS8 TNEG4 W TVSS8 RVDD8 LM10[1] TVDD10 TVSS10 RVSS10 LM12[1] TVDD12 TVSS12 TDM8 RNEG6 Y TXN8 RXP8 TLBO10 TXP10 TXN10 RXN10 VDD18 TXP12 TXN12 RXN12 TNEG8 AA TXN8 RXN8 LM8[0] TXP10 TXN10 RXP10 TAIS12 TXP12 TXN12 RXP12 RVSS12 AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 112 of 130 DS32506/DS32508/DS32512 Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 N.C. MT5 MT9 RXP5 TXN5 TXP5 JVSS5 N.C. RXN7 B HW JVSS3 N.C. MT6 MT10 RXN5 TXN5 TXP5 TVDD5 GPIOB7 RXP7 C TXP3 TXP3 RST N.C. N.C. N.C. RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 N.C. N.C. N.C. TVDD5 N.C. TVSS7 E RXN3 RXP3 JTRST TEST N.C. N.C. N.C. GPIOB5 TVSS5 JVDD5 RVSS7 F N.C. N.C. TVSS3 TVDD3 RVSS3 JTDO N.C. GPIOA5 TVDD5 TVSS5 GPIOA7 G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP N.C. N.C. TVDD7 N.C. H TXP1 TXP1 JVDD1 JVSS1 TVSS3 N.C. JTMS N.C. N.C. N.C. RCLK9 J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS N.C. VDD33 VSS VSS L RVSS1 RESREF N.C. RVDD1 VSS N.C. N.C. VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 N.C. VSS VSS N TXP2 TXP2 TVDD2 TVSS2 N.C. GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 N.C. N.C. D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE N.C. U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 N.C. JVSS8 W TXN4 TXN4 RVSS4 D9 A2 A10 IFSEL2 N.C. VSS RVSS6 JVDD8 Y RXP4 RXN4 D10 A4 CS IFSEL1 N.C. TVDD6 RVDD6 GPIOB6 TVDD8 AA N.C. D12 A6 MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB D14 A8 INT MT4 MT8 JVSS6 TXP6 TXN6 RXN6 N.C. TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 113 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 GPIOB9 RXN9 TXN9 TXP9 N.C. RXN11 TXN11 TXP11 VSS A TXN7 TXP7 N.C. RXP9 TXN9 TXP9 GPIOB11 RXP11 TXN11 TXP11 N.C. B TVSS7 JVSS7 RVSS9 TVDD9 JVSS9 VDD18 TVSS11 TVSS11 TVDD11 TNEG9 N.C. C TVDD7 JVDD7 TVSS9 TVDD9 N.C. RVDD11 TVDD11 JVSS11 N.C. N.C. RCLK3 D TVDD7 N.C. RVDD9 TVSS9 JVDD9 RVSS11 JVDD11 TPOS11 TCLK11 TNEG7 RNEG3 E TVSS7 GPIOA9 TVSS9 GPIOA11 TVSS11 N.C. RPOS9 TNEG11 N.C. N.C. N.C. F TVDD9 N.C. TVDD11 N.C. RPOS11 RNEG11 RCLK11 RCLK7 TPOS7 TCLK7 N.C. G RNEG9 TPOS9 N.C. TCLK9 N.C. RPOS7 RNEG7 N.C. RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 N.C. RPOS1 TNEG1 J VSS VSS VDD33 N.C. RCLK1 RNEG1 TCLK3 N.C. TNEG3 N.C. N.C. K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS N.C. TPOS4 N.C. TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 N.C. RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. TPOS8 N.C. TCLK8 VSS N.C. RPOS6 N.C. N.C. P GPIOB10 N.C. TPOS12 TNEG10 RPOS12 RNEG12 RCLK12 N.C. RPOS8 RCLK6 TCLK2 R TVSS8 TVDD10 N.C. TVDD12 N.C. TCLK12 TNEG12 RPOS10 RCLK10 TCLK6 N.C. T TVDD8 GPIOA8 TVSS10 GPIOB12 TVSS12 N.C. RVDD12 N.C. TCLK10 TPOS6 RPOS4 U TVSS8 N.C. JVSS10 TVSS10 RVDD10 JVDD12 TVSS12 N.C. TPOS10 TNEG6 N.C. V TVDD8 RVSS8 JVDD10 TVDD10 N.C. JVSS12 TVDD12 N.C. RNEG10 N.C. TNEG4 W TVSS8 RVDD8 GPIOA10 TVDD10 TVSS10 RVSS10 GPIOA12 TVDD12 TVSS12 N.C. RNEG6 Y TXN8 RXP8 N.C. TXP10 TXN10 RXN10 VDD18 TXP12 TXN12 RXN12 TNEG8 AA TXN8 RXN8 GPIOB8 TXP10 TXN10 RXP10 N.C. TXP12 TXN12 RXP12 RVSS12 AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 114 of 130 DS32506/DS32508/DS32512 Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 N.C. RXP5 TXN5 TXP5 JVSS5 RMON7 RXN7 B HW JVSS3 RPD MT6 N.C. RXN5 TXN5 TXP5 TVDD5 GPIOB7 RXP7 C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 TVSS7 E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST GPIOB5 TVSS5 JVDD5 RVSS7 F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 GPIOA5 TVDD5 TVSS5 GPIOA7 G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP JAD0 TAIS5 TVDD7 TAIS7 H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE TAIS8 U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 RMON6 JVSS8 W TXN4 TXN4 RVSS4 D9 A2 A10 IFSEL2 TAIS6 VSS RVSS6 JVDD8 Y RXP4 RXN4 D10 A4 CS IFSEL1 TLBO6 TVDD6 RVDD6 GPIOB6 TVDD8 AA RMON4 D12 A6 MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB D14 A8 INT MT4 MT8 JVSS6 TXP6 TXN6 RXN6 TLBO8 TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 115 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B TVSS7 JVSS7 VSS VSS VSS VDD18 VSS VSS VSS N.C. TOE5 C TVDD7 JVDD7 VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D TVDD7 TLBO7 VSS VSS VSS VSS VSS N.C. N.C. TNEG7 RNEG3 E TVSS7 N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. TOE7 RLOS3 F VSS N.C. VSS N.C. N.C. N.C. N.C. RCLK7 TPOS7 TCLK7 TOE3 G N.C. N.C. TDM7 N.C. RLOS7 RPOS7 RNEG7 RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. TPOS8 TOE8 TCLK8 VSS TDM4 RPOS6 TDM2 RLOS2 P N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE6 RPOS8 RCLK6 TCLK2 R TVSS8 VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 TOE2 T TVDD8 GPIOA8 VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U TVSS8 RMON8 VSS VSS VSS VSS VSS N.C. N.C. TNEG6 RLOS4 V TVDD8 RVSS8 VSS VSS N.C. VSS VSS N.C. N.C. RLOS8 TNEG4 W TVSS8 RVDD8 N.C. VSS VSS VSS N.C. VSS VSS TDM8 RNEG6 Y TXN8 RXP8 N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. TNEG8 AA TXN8 RXN8 GPIOB8 N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 116 of 130 DS32506/DS32508/DS32512 Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 N.C. RXP5 TXN5 TXP5 JVSS5 RMON7 RXN7 B HW JVSS3 RPD MT6 N.C. RXN5 TXN5 TXP5 TVDD5 LM7[0] RXP7 C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 TVSS7 E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST LM5[0] TVSS5 JVDD5 RVSS7 F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 LM5[1] TVDD5 TVSS5 LM7[1] G VDD18 LM1[0] TVSS3 RVDD3 LM3[0] MT2 CLADBYP JAD0 TAIS5 TVDD7 TAIS7 H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 LM1[1] VSS LM3[1] HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 LM2[0] TVSS2 TVDD2 LM2[1] TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 LM4[1] TVDD4 N.C. VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 LB8[0] LB2[1] N.C. VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 LB3[0] LB4[0] LB6[0] LB4[1] LB7[1] ITRE N.C. T LM4[0] VDD18 JVSS4 JVDD4 LB1[0] LB2[0] LB5[0] LB5[1] N.C. N.C. TAIS8 U TXP4 TXP4 TVSS4 TVDD4 N.C. VSS VSS N.C. IFSEL0 TVSS6 LM6[1] V TVSS4 TVDD4 RVDD4 LB7[0] N.C. N.C. TVDD6 TVSS6 TVSS6 RMON6 JVSS8 W TXN4 TXN4 RVSS4 N.C. LB6[1] N.C. IFSEL2 TAIS6 VSS RVSS6 JVDD8 Y RXP4 RXN4 N.C. LB8[1] N.C. IFSEL1 TLBO6 TVDD6 RVDD6 LM6[0] TVDD8 AA RMON4 LB1[1] N.C. MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB LB3[1] N.C. N.C. MT4 MT8 JVSS6 TXP6 TXN6 RXN6 TLBO8 TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 117 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B TVSS7 JVSS7 VSS VSS VSS VDD18 VSS VSS VSS N.C. TOE5 C TVDD7 JVDD7 VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D TVDD7 TLBO7 VSS VSS VSS VSS VSS N.C. N.C. TNEG7 RNEG3 E TVSS7 N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. TOE7 RLOS3 F VSS N.C. VSS N.C. N.C. N.C. N.C. RCLK7 TPOS7 TCLK7 TOE3 G N.C. N.C. TDM7 N.C. RLOS7 RPOS7 RNEG7 RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. TPOS8 TOE8 TCLK8 VSS TDM4 RPOS6 TDM2 RLOS2 P N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE6 RPOS8 RCLK6 TCLK2 R TVSS8 VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 TOE2 T TVDD8 LM8[1] VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U TVSS8 RMON8 VSS VSS VSS VSS VSS N.C. N.C. TNEG6 RLOS4 V TVDD8 RVSS8 VSS VSS N.C. VSS VSS N.C. N.C. RLOS8 TNEG4 W TVSS8 RVDD8 N.C. VSS VSS VSS N.C. VSS VSS TDM8 RNEG6 Y TXN8 RXP8 N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. TNEG8 AA TXN8 RXN8 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 118 of 130 DS32506/DS32508/DS32512 Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 N.C. MT5 N.C. RXP5 TXN5 TXP5 JVSS5 N.C. RXN7 B HW JVSS3 N.C. MT6 N.C. RXN5 TXN5 TXP5 TVDD5 GPIOB7 RXP7 C TXP3 TXP3 RST N.C. N.C. N.C. RVSS5 RVDD5 TVSS5 VDD18 RVDD7 D TXN3 TXN3 JTDI JTCLK MT1 N.C. N.C. N.C. TVDD5 N.C. TVSS7 E RXN3 RXP3 JTRST TEST N.C. N.C. N.C. GPIOB5 TVSS5 JVDD5 RVSS7 F N.C. N.C. TVSS3 TVDD3 RVSS3 JTDO N.C. GPIOA5 TVDD5 TVSS5 GPIOA7 G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP N.C. N.C. TVDD7 N.C. H TXP1 TXP1 JVDD1 JVSS1 TVSS3 N.C. JTMS N.C. N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS N.C. VDD33 VSS VSS L RVSS1 RESREF N.C. RVDD1 VSS N.C. N.C. VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 N.C. VSS VSS N TXP2 TXP2 TVDD2 TVSS2 N.C. GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 N.C. N.C. D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE N.C. U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 N.C. JVSS8 W TXN4 TXN4 RVSS4 D9 A2 A10 IFSEL2 N.C. VSS RVSS6 JVDD8 Y RXP4 RXN4 D10 A4 CS IFSEL1 N.C. TVDD6 RVDD6 GPIOB6 TVDD8 AA N.C. D12 A6 MT3 MT7 JVDD6 TXP6 TXN6 RXP6 VDD18 TXP8 AB D14 A8 INT MT4 MT8 JVSS6 TXP6 TXN6 RXN6 N.C. TXP8 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 119 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A TXN7 TXP7 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B TVSS7 JVSS7 VSS VSS VSS VDD18 VSS VSS VSS N.C. N.C. C TVDD7 JVDD7 VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D TVDD7 N.C. VSS VSS VSS VSS VSS N.C. N.C. TNEG7 RNEG3 E TVSS7 N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. N.C. F VSS N.C. VSS N.C. N.C. N.C. N.C. RCLK7 TPOS7 TCLK7 N.C. G N.C. N.C. N.C. N.C. N.C. RPOS7 RNEG7 N.C. RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 N.C. RPOS1 TNEG1 J VSS VSS VDD33 N.C. RCLK1 RNEG1 TCLK3 N.C. TNEG3 N.C. N.C. K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS N.C. TPOS4 N.C. TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 RNEG8 RCLK8 N.C. RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. TPOS8 N.C. TCLK8 VSS N.C. RPOS6 N.C. N.C. P N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. RPOS8 RCLK6 TCLK2 R TVSS8 VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 N.C. T TVDD8 GPIOA8 VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U TVSS8 N.C. VSS VSS VSS VSS VSS N.C. N.C. TNEG6 N.C. V TVDD8 RVSS8 VSS VSS N.C. VSS VSS N.C. N.C. N.C. TNEG4 W TVSS8 RVDD8 N.C. VSS VSS VSS N.C. VSS VSS N.C. RNEG6 Y TXN8 RXP8 N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. TNEG8 AA TXN8 RXN8 GPIOB8 N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 120 of 130 DS32506/DS32508/DS32512 Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 N.C. RXP5 TXN5 TXP5 JVSS5 N.C. N.C. B HW JVSS3 RPD MT6 N.C. RXN5 TXN5 TXP5 TVDD5 N.C. N.C. C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 VSS D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 VSS E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST GPIOB5 TVSS5 JVDD5 VSS F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 GPIOA5 TVDD5 TVSS5 N.C. G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP JAD0 TAIS5 VSS N.C. H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE N.C. U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 RMON6 VSS W TXN4 TXN4 RVSS4 D9 A2 N.C. IFSEL2 TAIS6 VSS RVSS6 VSS Y RXP4 RXN4 D10 A4 CS IFSEL1 TLBO6 TVDD6 RVDD6 GPIOB6 VSS AA RMON4 D12 A6 MT3 N.C. JVDD6 TXP6 TXN6 RXP6 VDD18 N.C. AB D14 A8 INT MT4 N.C. JVSS6 TXP6 TXN6 RXN6 N.C. N.C. 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 121 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B VSS VSS VSS VSS VSS VDD18 VSS VSS VSS N.C. TOE5 C VSS VSS VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. N.C. RNEG3 E VSS N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. RLOS3 F VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE3 G N.C. N.C. N.C. N.C. N.C. N.C. N.C. RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 N.C. N.C. TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. N.C. N.C. N.C. VSS TDM4 RPOS6 TDM2 RLOS2 P N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE6 N.C. RCLK6 TCLK2 R VSS VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 TOE2 T VSS N.C. VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. TNEG6 RLOS4 V VSS VSS VSS VSS N.C. VSS VSS N.C. N.C. N.C. TNEG4 W VSS VSS N.C. VSS VSS VSS N.C. VSS VSS N.C. RNEG6 Y N.C. N.C. N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. N.C. AA N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 122 of 130 DS32506/DS32508/DS32512 Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 RCLKI MT5 N.C. RXP5 TXN5 TXP5 JVSS5 N.C. N.C. B HW JVSS3 RPD MT6 N.C. RXN5 TXN5 TXP5 TVDD5 N.C. N.C. C TXP3 TXP3 RST JAD1 TCLKI TCC RVSS5 RVDD5 TVSS5 VDD18 VSS D TXN3 TXN3 JTDI JTCLK MT1 TPD TBIN RMON5 TVDD5 TLBO5 VSS E RXN3 RXP3 JTRST TEST JAS1 RBIN AIST LM5[0] TVSS5 JVDD5 VSS F TAIS1 RMON3 TVSS3 TVDD3 RVSS3 JTDO JAS0 LM5[1] TVDD5 TVSS5 N.C. G VDD18 LM1[0] TVSS3 RVDD3 LM3[0] MT2 CLADBYP JAD0 TAIS5 VSS N.C. H TXP1 TXP1 JVDD1 JVSS1 TVSS3 TAIS3 JTMS LBS N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 LM1[1] VSS LM3[1] HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS TLBO3 VDD33 VSS VSS L RVSS1 RESREF TAIS2 RVDD1 VSS RMON1 TLBO1 VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 LM2[0] TVSS2 TVDD2 LM2[1] TVSS1 TLBO2 VSS VSS N TXP2 TXP2 TVDD2 TVSS2 TLBO4 LM4[1] TVDD4 N.C. VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 N.C. LB2[1] N.C. VDD33 TVDD6 R RXP2 RXN2 TAIS4 RMON2 LB3[0] LB4[0] LB6[0] LB4[1] VSS ITRE N.C. T LM4[0] VDD18 JVSS4 JVDD4 LB1[0] LB2[0] LB5[0] LB5[1] N.C. N.C. N.C. U TXP4 TXP4 TVSS4 TVDD4 N.C. VSS VSS N.C. IFSEL0 TVSS6 LM6[1] V TVSS4 TVDD4 RVDD4 VSS N.C. N.C. TVDD6 TVSS6 TVSS6 RMON6 VSS W TXN4 TXN4 RVSS4 N.C. LB6[1] N.C. IFSEL2 TAIS6 VSS VSS VSS Y RXP4 RXN4 N.C. N.C. N.C. IFSEL1 TLBO6 TVDD6 RVDD6 LM6[0] VSS AA RMON4 LB1[1] N.C. MT3 N.C. JVDD6 TXP6 TXN6 RXP6 VDD18 N.C. AB LB3[1] N.C. N.C. MT4 N.C. JVSS6 TXP6 TXN6 RXN6 N.C. N.C. 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 123 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B VSS VSS VSS VSS VSS VDD18 VSS VSS VSS N.C. TOE5 C VSS VSS VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. N.C. RNEG3 E VSS N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. RLOS3 F VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE3 G N.C. N.C. N.C. N.C. N.C. N.C. N.C. RLOS5 RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 TDM5 RPOS1 TNEG1 J VSS VSS VDD33 TDM3 RCLK1 RNEG1 TCLK3 RLOS1 TNEG3 TDM1 TOE1 K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS RLOS6 TPOS4 TOE4 TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 N.C. N.C. TDM6 RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. N.C. N.C. N.C. VSS TDM4 RPOS6 TDM2 RLOS2 P N.C. N.C. N.C. N.C. N.C. N.C. N.C. TOE6 N.C. RCLK6 TCLK2 R VSS VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 TOE2 T VSS N.C. VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. TNEG6 RLOS4 V VSS VSS VSS VSS N.C. VSS VSS N.C. N.C. N.C. TNEG4 W VSS VSS N.C. VSS VSS VSS N.C. VSS VSS N.C. RNEG6 Y N.C. N.C. N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. N.C. AA N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 124 of 130 DS32506/DS32508/DS32512 Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only Left Half 1 2 3 4 5 6 7 8 9 10 11 A JVDD3 TVDD3 N.C. MT5 N.C. RXP5 TXN5 TXP5 JVSS5 N.C. N.C. B HW JVSS3 N.C. MT6 N.C. RXN5 TXN5 TXP5 TVDD5 N.C. N.C. C TXP3 TXP3 RST N.C. N.C. N.C. RVSS5 RVDD5 TVSS5 VDD18 VSS D TXN3 TXN3 JTDI JTCLK MT1 N.C. N.C. N.C. TVDD5 N.C. VSS E RXN3 RXP3 JTRST TEST N.C. N.C. N.C. GPIOB5 TVSS5 JVDD5 VSS F N.C. N.C. TVSS3 TVDD3 RVSS3 JTDO N.C. GPIOA5 TVDD5 TVSS5 N.C. G VDD18 GPIOB1 TVSS3 RVDD3 GPIOB3 MT2 CLADBYP N.C. N.C. VSS N.C. H TXP1 TXP1 JVDD1 JVSS1 TVSS3 N.C. JTMS N.C. N.C. N.C. N.C. J TXN1 TXN1 TVDD1 TVSS1 GPIOA1 VSS GPIOA3 HIZ VSS VDD33 VSS K RXN1 RXP1 TVSS1 TVDD1 TVDD1 TVDD3 VSS N.C. VDD33 VSS VSS L RVSS1 RESREF N.C. RVDD1 VSS N.C. N.C. VSS VSS VSS VSS M JVDD2 JVSS2 TVDD2 GPIOB2 TVSS2 TVDD2 GPIOA2 TVSS1 N.C. VSS VSS N TXP2 TXP2 TVDD2 TVSS2 N.C. GPIOA4 TVDD4 D11 VDD33 VSS VSS P TXN2 TXN2 RVDD2 TVSS2 RVSS2 TVSS4 D7/CPOL D13 A5 VDD33 TVDD6 R RXP2 RXN2 N.C. N.C. D2/SCLK D3 D5 D15 A3 A9 RD/DS T GPIOB4 VDD18 JVSS4 JVDD4 D0/SDO D1/SDI D4 A1 A7 ALE N.C. U TXP4 TXP4 TVSS4 TVDD4 D8 VSS VSS RDY/ACK IFSEL0 TVSS6 GPIOA6 V TVSS4 TVDD4 RVDD4 D6/CPHA A0 WR/R/W TVDD6 TVSS6 TVSS6 N.C. VSS W TXN4 TXN4 RVSS4 D9 A2 N.C. IFSEL2 N.C. VSS RVSS6 VSS Y RXP4 RXN4 D10 A4 CS IFSEL1 N.C. TVDD6 RVDD6 GPIOB6 VSS AA N.C. D12 A6 MT3 N.C. JVDD6 TXP6 TXN6 RXP6 VDD18 N.C. AB D14 A8 INT MT4 N.C. JVSS6 TXP6 TXN6 RXN6 N.C. N.C. 1 2 3 4 5 6 7 8 9 10 11 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 125 of 130 DS32506/DS32508/DS32512 Right Half 12 13 14 15 16 17 18 19 20 21 22 N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS A N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. B VSS VSS VSS VSS VSS VDD18 VSS VSS VSS N.C. N.C. C VSS VSS VSS VSS N.C. VSS VSS VSS N.C. N.C. RCLK3 D VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. N.C. RNEG3 E VSS N.C. VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. N.C. F VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. G N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. RPOS5 TPOS3 VDD18 H VSS VDD33 RCLK5 RPOS3 TPOS5 RNEG5 TCLK5 TNEG5 N.C. RPOS1 TNEG1 J VSS VSS VDD33 N.C. RCLK1 RNEG1 TCLK3 N.C. TNEG3 N.C. N.C. K VSS VSS RNEG4 TPOS1 TCLK1 RPOS2 CVDD CVDD CVSS MT0 REFCLK L VSS VSS N.C. TPOS4 N.C. TCLK4 TNEG2 CLKC CLKD CLKA CLKB M VSS VSS VDD33 N.C. N.C. N.C. RCLK4 TPOS2 VDD18 RNEG2 RCLK2 N N.C. VDD33 N.C. N.C. N.C. N.C. VSS N.C. RPOS6 N.C. N.C. P N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. RCLK6 TCLK2 R VSS VSS N.C. VSS N.C. N.C. N.C. N.C. N.C. TCLK6 N.C. T VSS N.C. VSS N.C. VSS N.C. VSS N.C. N.C. TPOS6 RPOS4 U VSS N.C. VSS VSS VSS VSS VSS N.C. N.C. TNEG6 N.C. V VSS VSS VSS VSS N.C. VSS VSS N.C. N.C. N.C. TNEG4 W VSS VSS N.C. VSS VSS VSS N.C. VSS VSS N.C. RNEG6 Y N.C. N.C. N.C. N.C. N.C. N.C. VDD18 N.C. N.C. N.C. N.C. AA N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VSS AB 12 13 14 15 16 17 18 19 20 21 22 High-Speed Analog Low-Speed Analog High-Speed Digital Low-Speed Digital N.C. and Manufacturing Test VDD 1.8V VDDIO 3.3V Analog VSS Analog VDD 1.8V VSS 126 of 130 DS32506/DS32508/DS32512 13. PACKAGE INFORMATION (The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for each package is a link to the latest package outline information.) 13.1 484-Lead BGA (23mm x 23mm) (56-G60038-001) 127 of 130 DS32506/DS32508/DS32512 14. THERMAL INFORMATION Table 14-1. Thermal Properties, Natural Convection PARAMETER Ambient Temperature (Note 1) Junction Temperature Theta-JA (θJA), Still Air (Note 1) Theta-JC (θJC) Psi-JB Psi-JT Note 1: MIN -40 -40 TYP 16.0 5.4 7.7 0.4 MAX +85 +125 UNITS °C °C °C/W °C/W °C/W °C/W The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power. Table 14-2. Theta-JA (θJA) vs. Airflow FORCED AIR (METERS PER SECOND) 0 1 2 THETA-JA (θJA) 16.0 °C/W 13.8 °C/W 12.8 °C/W 128 of 130 DS32506/DS32508/DS32512 15. AIS AMI B3ZS BER BPV CV DS3 EXZ HDB3 IO, I/O LIU LOL LOS LSB MSB PDH PRBS Rx, RX SONET SDH STS STS-1 Tx, TX UI UIP-P UIRMS 16. ACRONYMS AND ABBREVIATIONS Alarm Indication Signal Alternate Mark Inversion Bipolar with Three-Zero Substitution Bit-Error Rate, Bit-Error Ratio Bipolar Violation Code Violation Digital Signal, Level 3 Excessive Zeros High-Density Bipolar of Order 3 Input/Output Line Interface Unit Loss of Lock Loss of Signal Least Significant Bit Most Significant Bit Plesiochronous Digital Hierarchy Pseudo-Random Bit Sequence Receive Synchronous Optical Network Synchronous Digital Hierarchy Synchronous Transmission Signal Synchronous Transmission Signal at Level 1 Transmit Unit Interval Unit Interval Peak-to-Peak Unit Intervals Root Mean Square TRADEMARK ACKNOWLEDGEMENTS ACCUNET is a registered trademark of AT&T. SPI is a trademark of Motorola, Inc. Telcordia is a registered trademark of Telcordia Technologies. 129 of 130 DS32506/DS32508/DS32512 17. DATA SHEET REVISION HISTORY REVISION DATE 062906 DESCRIPTION Initial data sheet release. Added Internal Receive Enable (ITRE) pin to Table 7-1. Short Pin Descriptions. Changed VDD18 tolerance from ±10% to ±5% (Table 7-1. Short Pin Descriptions). Added Internal Receive Enable (ITRE) pin description to Table 7-5. Hardware Interface Pin Description. Changed VDD18 tolerance from ±10% to ±5% (Table 7-10. Power-Supply Pin Descriptions). In Section 8.2.8, removed “Note that internal termination is only available when a microprocessor interface is enabled.” Changed RXP to TXN in the third paragraph of Section 8.2.9: Driver Monitor and Output Failure Detection. 091307 20 23 25 26 30 Removed Section 8.12: Initialization. 48 In Table 11-1, changed VDD18 from 1.62V (min) to 1.71V (min) and 1.98V (max) to 1.89V (max). In Table 11-2, changed all IDD18, IDD33, IDDTTS18, and IDDTTS33 typ and max values. 92 93 In Table 12-1, added ITRE to ball R10. 93, 94, 96, 97, 98, 103, 105 106 In Figure 12-2, Figure 12-5, and Figure 12-8, changed ball R10 from N.C. to ITRE for DS32512, DS32508, and DS32506 hardware-interface-only pin assignments. 111, 117, 123 In Table 11-2 to Table 11-10, changed VDD18 tolerance from ±10% to ±5%. 103008 15 In Section 8.3.1, removed “Note that internal termination is only available when a microprocessor interface is enabled.” In the Absolute Maximum Ratings section, changed the VDD18 supply range from ”-0.1V to +1.98V” to “-0.1V to +1.89V”. 040808 PAGES CHANGED — 14 In Figure 12-8 (left half), corrected typos where some pins for port 7 were listed (do not exist on the DS32506). Changed pins A10, A11, B10, B11, F11, and G11 to N.C. Changed pins C11, D11, E11, G10, R9, and V4 to VSS. In Section 9.7, clarified register bit text descriptions for LINE.RSR:BPVC and LINE.RSR:EXCZ. 123 83 130 of 130 Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2008 Maxim Integrated Products The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.