VISHAY 30CPQ090GPBF

VS-30CPQ1...GPbF Series, VS-30CPQ1...G-N3 Series
www.vishay.com
Vishay Semiconductors
Schottky Rectifier, 2 x 15 A
FEATURES
Base
common
cathode
2
• 175 °C TJ operation
• Low forward voltage drop
• High frequency operation
• High
purity,
high
temperature
epoxy
encapsulation for enhanced mechanical strength
and moisture resistance
1
3
Anode
Anode
2
1
2
Common
cathode
TO-247AC
• Guard ring for enhanced ruggedness and long
term reliability
• Compliant to RoHS Directive 2002/95/EC
• Designed and qualified according to JEDEC-JESD47
• Halogen-free according to IEC 61249-2-21 definition
(-N3 only)
PRODUCT SUMMARY
Package
TO-247AC
DESCRIPTION
IF(AV)
2 x 15 A
VR
80 V, 90 V, 100 V
VF at IF
0.67 V
IRM max.
7 mA at 125 °C
TJ max.
175 °C
Diode variation
Common cathode
EAS
7.5 mJ
The VS-30CPQ...G... center tap Schottky rectifier has been
optimized for low reverse leakage at high temperature. The
proprietary barrier technology allows for reliable operation
up to 175 °C junction temperature. Typical applications are
in switching power supplies, converters, freewheeling
diodes, and reverse battery protection.
MAJOR RATINGS AND CHARACTERISTICS
CHARACTERISTICS
SYMBOL
IF(AV)
Rectangular waveform
VRRM
IFSM
tp = 5 μs sine
VF
15 Apk, TJ = 125 °C (per leg)
TJ
VALUES
UNITS
30
A
80 to 100
V
920
A
0.67
V
- 55 to 175
°C
VOLTAGE RATINGS
PARAMETER
SYMBOL
Maximum DC
reverse voltage
VR
Maximum working
peak reverse voltage
VSVSVSVSVSVSUNITS
30CPQ080GPbF 30CPQ080G-N3 30CPQ090GPbF 30CPQ090G-N3 30CPQ100GPbF 30CPQ100G-N3
80
80
90
90
100
100
V
VRWM
ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
TEST CONDITIONS
VALUES
UNITS
Maximum average forward current
See fig. 5
IF(AV)
Maximum peak one cycle
non-repetitive surge current per leg
See fig. 7
IFSM
Non-repetitive avalanche energy per leg
EAS
TJ = 25 °C, IAS = 0.50 A, L = 60 mH
7.50
mJ
IAR
Current decaying linearly to zero in 1 μs
Frequency limited by TJ maximum VA = 1.5 x VR typical
0.50
A
Repetitive avalanche current per leg
Revision: 02-Dec-11
50 % duty cycle at TC = 140 °C, rectangular waveform
30
5 µs sine or 3 µs rect. pulse
920
10 ms sine or 6 ms rect. pulse
Following any rated load
condition and with rated
VRRM applied
A
240
Document Number: 94185
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-30CPQ1...GPbF Series, VS-30CPQ1...G-N3 Series
www.vishay.com
Vishay Semiconductors
ELECTRICAL SPECIFICATIONS
SYMBOL
PARAMETER
TEST CONDITIONS
15 A
Maximum forward voltage drop per leg
See fig. 1
VFM (1)
TJ = 25 °C
30 A
15 A
TJ = 125 °C
30 A
Maximum reverse leakage current per leg
See fig. 2
Maximum junction capacitance per leg
IRM (1)
CT
Typical series inductance per leg
LS
Maximum voltage rate of change
dV/dt
TJ = 25 °C
VR = Rated VR
TJ = 125 °C
VR = 5 VDC (test signal range 100 kHz to 1 MHz) 25 °C
Measured lead to lead 5 mm from package body
Rated VR
VALUES
UNITS
0.86
1.05
0.67
V
0.81
0.28
7
500
mA
pF
7.5
nH
10 000
V/μs
VALUES
UNITS
- 55 to
175
°C
Note
(1) Pulse width < 300 μs, duty cycle < 2 %
THERMAL - MECHANICAL SPECIFICATIONS
SYMBOL
PARAMETER
Maximum junction and storage
temperature range
TEST CONDITIONS
TJ, TStg
Maximum thermal resistance,
junction to case per leg
RthJC
Maximum thermal resistance,
junction to case per package
Typical thermal resistance,
case to heatsink
RthCS
DC operation
See fig. 4
2.20
DC operation
1.10
Mounting surface, smooth and greased
0.24
Approximate weight
Mounting torque
minimum
maximum
Non-lubricated threads
°C/W
6
g
0.21
oz.
6 (5)
kgf cm
(lbf in)
12 (10)
30CPQ080G
Marking device
Case style TO-247AC (JEDEC)
30CPQ090G
30CPQ100G
Revision: 02-Dec-11
Document Number: 94185
2
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-30CPQ1...GPbF Series, VS-30CPQ1...G-N3 Series
Vishay Semiconductors
100
1000
IR - Reverse Current (mA)
IF - Instantaneous Forward Current (A)
www.vishay.com
100
TJ = 175 °C
TJ = 125 °C
TJ = 25 °C
10
1
TJ = 175 °C
10
TJ = 150 °C
1
TJ = 125 °C
0.1
TJ = 100 °C
0.01
TJ = 75 °C
TJ = 50 °C
0.001
TJ = 25 °C
0.0001
0.1
0
0.5
1.0
2.0
1.5
20
0
2.5
40
60
80
100
VR - Reverse Voltage (V)
VFM - Forward Voltage Drop (V)
Fig. 1 - Maximum Forward Voltage Drop Characteristics
(Per Leg)
Fig. 2 - Typical Values of Reverse Current vs.
Reverse Voltage (Per Leg)
CT - Junction Capacitance (pF)
1000
TJ = 25 °C
100
0
20
40
80
60
100
VR - Reverse Voltage (V)
ZthJC - Thermal Impedance (°C/W)
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)
10
1
PDM
0.1
0.01
0.001
0.00001
t1
Single pulse
(thermal resistance)
0.0001
0.001
D = 0.50
D = 0.33
D = 0.25
D = 0.17
D = 0.08
0.01
t2
Notes:
1. Duty factor D = t1/t2
2. Peak TJ = PDM x ZthJC + TC
0.1
1
10
100
t1 - Rectangular Pulse Duration (s)
Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)
Revision: 02-Dec-11
Document Number: 94185
3
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-30CPQ1...GPbF Series, VS-30CPQ1...G-N3 Series
Vishay Semiconductors
180
14
175
12
Average Power Loss (W)
Allowable Case Temperature (°C)
www.vishay.com
RthJC (DC) = 220 °C/W
170
165
160
DC
155
150
D = 0.08
D = 0.17
D = 0.25
D = 0.33
D = 0.50
10
RMS limit
8
6
DC
4
2
145
0
0
2
4
6
8
10 12 14 16 18 20 22
0
2
4
6
8
10 12 14 16 18 20 22
VF(AV) - Average Forward Current (A)
Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current (Per Leg)
Fig. 6 - Forward Power Loss Characteristics (Per Leg)
IFSM - Non-Repetitive Surge Current (A)
VF(AV) - Average Forward Current (A)
1000
At any rated load condition
And with rated VRRM applied
following surge
100
10
100
1000
10 000
tp - Square Wave Pulse Duration (µs)
Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)
L
D.U.T.
IRFP460
Rg = 25 Ω
Current
monitor
High-speed
switch
Freewheel
diode
+ Vd = 25 V
40HFL40S02
Fig. 8 - Unclamped Inductive Test Circuit
Revision: 02-Dec-11
Document Number: 94185
4
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-30CPQ1...GPbF Series, VS-30CPQ1...G-N3 Series
www.vishay.com
Vishay Semiconductors
ORDERING INFORMATION TABLE
Device code
VS-
30
C
P
Q
100
G
PbF
1
2
3
4
5
6
7
8
1
2
-
3
-
Vishay Semiconductors product
Current rating
Circuit configuration:
C = Common cathode
4
-
Package:
5
-
Schottky “Q” series
6
-
Voltage code
7
-
G = Schottky generation
8
-
Environmental digit
P = TO-247
080 = 80 V
090 = 90 V
100 = 100 V
PbF = Lead (Pb)-free and RoHS compliant
-N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free
ORDERING INFORMATION (Example)
PREFERRED P/N
QUANTITY PER T/R
MINIMUM ORDER QUANTITY
PACKAGING DESCRIPTION
VS-30CPQ080GPbF
25
500
Antistatic plastic tube
VS-30CPQ080G-N3
25
500
Antistatic plastic tube
VS-30CPQ090GPbF
25
500
Antistatic plastic tube
VS-30CPQ090G-N3
25
500
Antistatic plastic tube
VS-30CPQ100GPbF
25
500
Antistatic plastic tube
VS-30CPQ100G-N3
25
500
Antistatic plastic tube
LINKS TO RELATED DOCUMENTS
Dimensions
Part marking information
SPICE model
Revision: 02-Dec-11
www.vishay.com/doc?95223
TO-247AC PbF
www.vishay.com/doc?95226
TO-247AC -N3
www.vishay.com/doc?95007
www.vishay.com/doc?95469
Document Number: 94185
5
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Outline Dimensions
www.vishay.com
Vishay Semiconductors
DIMENSIONS in millimeters and inches
A
A
(3)
(6) Ø P
E
B
(2) R/2
N
A2
S
(Datum B)
Ø K M DBM
FP1
A
D2
Q
2xR
(2)
D1 (4)
D
1
4
D
3
2
Thermal pad
(5) L1
C
L
A
See view B
2 x b2
3xb
0.10 M C A M
Planting
(4)
E1
0.01 M D B M
View A - A
C
2x e
A1
b4
(b1, b3, b5)
Lead assignments
Base metal
D DE
(c)
c1
E
C
C
Diodes
1. - Anode/open
2. - Cathode
3. - Anode
(b, b2, b4)
(4)
Section C - C, D - D, E - E
SYMBOL
A
A1
A2
b
b1
b2
b3
b4
b5
c
c1
D
D1
MILLIMETERS
MIN.
MAX.
4.65
5.31
2.21
2.59
1.50
2.49
0.99
1.40
0.99
1.35
1.65
2.39
1.65
2.37
2.59
3.43
2.59
3.38
0.38
0.86
0.38
0.76
19.71
20.70
13.08
-
INCHES
MIN.
MAX.
0.183
0.209
0.087
0.102
0.059
0.098
0.039
0.055
0.039
0.053
0.065
0.094
0.065
0.094
0.102
0.135
0.102
0.133
0.015
0.034
0.015
0.030
0.776
0.815
0.515
-
View B
NOTES
SYMBOL
3
4
D2
E
E1
e
FK
L
L1
N
P
P1
Q
R
S
MILLIMETERS
MIN.
MAX.
0.51
1.30
15.29
15.87
13.72
5.46 BSC
2.54
14.20
16.10
3.71
4.29
7.62 BSC
3.56
3.66
6.98
5.31
5.69
4.52
5.49
5.51 BSC
INCHES
MIN.
MAX.
0.020
0.051
0.602
0.625
0.540
0.215 BSC
0.010
0.559
0.634
0.146
0.169
0.3
0.14
0.144
0.275
0.209
0.224
1.78
0.216
0.217 BSC
NOTES
3
Notes
(1) Dimensioning and tolerancing per ASME Y14.5M-1994
(2) Contour of slot optional
(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at
the outermost extremes of the plastic body
(4) Thermal pad contour optional with dimensions D1 and E1
(5) Lead finish uncontrolled in L1
(6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
(7) Outline conforms to JEDEC outline TO-247 with exception of dimension c
Revision: 16-Jun-11
Document Number: 95223
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to
obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Revision: 12-Mar-12
1
Document Number: 91000