LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) Description Features Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground While Sinking Current n Pin Compatible to 1458 and 324 with Precision Specs n Guaranteed Offset Voltage: 150µV Max n Guaranteed Low Drift: 2µV/°C Max n Guaranteed Offset Current: 0.8nA Max n Guaranteed High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min n Guaranteed Low Supply Current: 500µA Max n Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV P-P n Low Current Noise—Better than 0P-07, 0.07pA/√Hz n Applications Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application LT1014 Distribution of Offset Voltage 3-Channel Thermocouple Thermometer 4k LT1004 1.2V 14 + 12 – 13 LT1014 1M 299k 700 5V YSI 44007 5k AT 25°C 1684Ω 2 – 3 + 4 LT1014 1 OUTPUT A 10mV/°C 11 260Ω 1.8k 1M 4k USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C TO 60°C. USE 4TH AMPLIFIER FOR OUTPUT C. 6 – 5 + LT1014 VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 600 NUMBER OF UNITS 5V The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350µA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/MC1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers n 4mA to 20mA Current Loop Transmitters n Multiple Limit Threshold Detection n Active Filters n Multiple Gain Blocks n 3k The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. 300 200 100 7 OUTPUT B 10mV/°C 0 100 –300 –200 –100 0 200 INPUT OFFSET VOLTAGE (µV) 300 1013/14 TA02 10134fd LT1013/LT1014 Absolute Maximum Ratings (Note 1) Supply Voltage........................................................ ± 22V Differential Input Voltage........................................ ± 30V Input Voltage................. Equal to Positive Supply Voltage ............. 5V Below Negative Supply Voltage Output Short-Circuit Duration........................... Indefinite Storage Temperature Range All Grades...........................................– 65°C to 150°C Lead Temperature (Soldering, 10 sec.).................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M..........................– 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D................... 0°C to 70°C LT1013I/ LT1014I..................................– 40°C to 85°C Pin Configuration LT1013 LT1013 LT1013 TOP VIEW V– 2 – + 8 –INA 7 OUTA +INB 3 + 6 V+ –INB 4 – 5 OUTB 7 OUTPUT B 6 –IN B 5 +IN B OUTPUT A 1 –IN A 2 +IN A 3 V– 4 – +A V+ 8 + +INA 1 TOP VIEW V+ – TOP VIEW B OUTPUT A 1 NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION +IN A 3 + – 6 –IN B 4 5 +IN B TJMAX = 125°C, θJA = 55°C/W OBSOLETE PACKAGE OBSOLETE PACKAGE Consider the N or S8 Packages for Alternate Source LT1014 7 OUTPUT B B V–(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN J8 PACKAGE 8-LEAD CERDIP TJMAX = 150°C, QJA = 100°C TJMAX = 150°C, θJA = 190°C/W A –IN A 2 – + N8 PACKAGE 8-LEAD PDIP TJMAX = 150°C, QJA = 130°C S8 PACKAGE 8-LEAD PLASTIC SO 8 Consider the N or S8 (Not N8) Packages for Alternate Source LT1014 TOP VIEW 16 OUTPUT D –IN A 2 15 –IN D +IN A 3 14 +IN D V+ 4 13 V – +IN B 5 12 +IN C –IN B 6 11 –IN C OUTPUT B 7 10 OUTPUT C NC 8 9 SW PACKAGE 16-LEAD PLASTIC SO TJMAX = 150°C, θJA = 130°C/W NC 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 – +A 14 OUTPUT D 13 –IN D + OUTPUT A 1 OUTPUT A – TOP VIEW 12 +IN D D 11 V– + B – + 10 +IN C C – 9 –IN C 8 OUTPUT C N PACKAGE 14-LEAD PDIP TJMAX = 150°C, QJA = 100°C J PACKAGE 14-LEAD CERDIP TJMAX = 150°C, QJA = 100°C OBSOLETE PACKAGE Consider the N or SW Packages for Alternate Source 10134fd LT1013/LT1014 Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LT1013DS8#PBF LT1013DS8#TRPBF 1013 8-Lead Plastic SO 0°C to 70°C LT1013IS8#PBF LT1013IS8#TRPBF 1013I 8-Lead Plastic SO –40°C to 85°C LT1013ACN8#PBF LT1013ACN8#TRPBF LT1013ACN8 8-Lead PDIP 0°C to 70°C LT1013CN8#PBF LT1013CN8#TRPBF LT1013CN8 8-Lead PDIP 0°C to 70°C LT1013DN8#PBF LT1013DN8#TRPBF LT1013DN8 8-Lead PDIP 0°C to 70°C LT1013IN8#PBF LT1013IN8#TRPBF LT1013IN8 8-Lead PDIP –40°C to 85°C LT1014DSW#PBF LT1014DSW#TRPBF LT1014DSW 16-Lead Plastic SO 0°C to 70°C LT1014ISW#PBF LT1014ISW#TRPBF LT1014ISW 16-Lead Plastic SO –40°C to 85°C LT1014ACN#PBF LT1014ACN#TRPBF LT1014ACN 14-Lead PDIP 0°C to 70°C LT1014CN#PBF LT1014CN#TRPBF LT1014CN 14-Lead PDIP 0°C to 70°C LT1014DN#PBF LT1014DN#TRPBF LT1014DN 14-Lead PDIP 0°C to 70°C LT1014IN#PBF LT1014IN#TRPBF LT1014IN 14-Lead PDIP –40°C to 85°C LT1013AMJ8#PBF LT1013AMJ8#TRPBF LT1013AMJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1013MJ8#PBF LT1013MJ8#TRPBF LT1013MJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1013ACJ8#PBF LT1013ACJ8#TRPBF LT1013ACJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1013CJ8#PBF LT1013CJ8#TRPBF LT1013CJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1013AMH#PBF LT1013AMH#TRPBF LT1013AMH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE) LT1013MH#PBF LT1013MH#TRPBF LT1013MH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE) LT1013ACH#PBF LT1013ACH#TRPBF LT1013ACH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE) LT1013CH#PBF LT1013CH#TRPBF LT1013CH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE) LT1014AMJ#PBF LT1014AMJ#TRPBF LT1014AMJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1014MJ#PBF LT1014MJ#TRPBF LT1014MJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1014ACJ#PBF LT1014ACJ#TRPBF LT1014ACJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1014CJ#PBF LT1014CJ#TRPBF LT1014CJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE) Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 10134fd LT1013/LT1014 Electrical Characteristics TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I LT1013AM/AC LT1014AM/AC MIN TYP MAX LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX 40 50 60 60 200 150 180 Long-Term Input Offset Voltage Stability 0.4 ISO Input Offset Current 0.15 0.8 IB Input Bias Current 12 20 en Input Noise Voltage 0.1Hz to 10Hz en Input Noise Voltage Density fO = 10Hz fO = 1000Hz Input Noise Current Density fO = 10Hz in AVOL 300 300 800 0.5 UNITS µV µV µV µV/Mo. 0.2 1.5 15 30 nA nA 0.55 0.55 24 22 24 22 nV/√Hz nV/√Hz 0.07 pA/√Hz Input Resistance – Differential (Note 2) Common Mode 100 400 5 70 300 4 MΩ GΩ Large-Signal Voltage Gain 1.5 0.8 8.0 2.5 1.2 0.5 7.0 2.0 V/µV V/µV 13.5 –15.0 13.8 –15.3 13.5 –15.0 13.8 –15.3 VO = ± 10V, RL = 2k VO = ±10V, RL = 600Ω Input Voltage Range 0.07 µVP-P V V CMRR Common Mode Rejection Ratio VCM = 13.5V, –15.0V 100 117 97 114 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V 103 120 100 117 dB Channel Separation VO = ±10V, RL = 2k 123 140 120 137 dB Output Voltage Swing RL = 2k ±13 ±14 ±12.5 ±14 V 0.2 0.4 0.2 0.4 V/µs VOUT Slew Rate IS Supply Current Per Amplifier 0.35 0.50 0.35 0.55 mA LT1013AM/AC LT1014AM/AC MIN TYP MAX LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX UNITS 60 70 250 280 90 90 250 450 450 950 µV µV µV TA = 25°C. VS+ = 5V, VS– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I IOS Input Offset Current 0.2 1.3 0.3 2.0 nA IB Input Bias Current 15 35 18 50 nA AVOL Large-Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω Input Voltage Range VOUT IS Output Voltage Swing Supply Current 1.0 3.5 Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground Per Amplifier 4.0 3.4 1.0 3.8 – 0.3 15 5 220 4.4 4.0 25 10 350 0.31 0.45 V/µV 3.5 0 3.8 – 0.3 V V 4.0 3.4 15 5 220 4.4 4.0 25 10 350 mV mV mV V V 0.32 0.50 mA 10134fd LT1013/LT1014 Electrical Characteristics The l denotes the specifications which apply over the temperature range – 55°C ≤ TA ≤ 125°C. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage Input Offset Voltage Drift CONDITIONS MIN LT1013AM TYP MAX LT1013M/LT1014M MIN TYP MAX UNITS 80 300 90 350 110 550 µV l 80 120 250 450 450 900 90 150 300 480 480 960 100 200 400 750 750 1500 µV µV µV (Note 3) l 0.4 2.0 0.4 2.0 0.5 2.5 µV/°C VS = 5V, 0V; VO = 1.4V l l 0.3 0.6 2.5 6.0 0.3 0.7 2.8 7.0 0.4 0.9 5.0 10.0 nA nA VS = 5V, 0V; VO = 1.4V l l 15 20 30 80 15 25 30 90 18 28 45 120 nA nA VS = 5V, 0V; VO = 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C Input Offset Current IB Input Bias Current AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l 0.5 2.0 CMRR Common Mode Rejection VCM = 13.0V, –14.9V l 97 PSRR Power Supply Rejection Ratio VS = ±2V to ±18V l 100 VOUT Output Voltage Swing RL = 2k VS = 5V, 0V RL = 600Ω to Ground Output Low Output High l l l Supply Current Per Amplifier LT1014AM TYP MAX l IOS IS MIN VS = 5V, 0V; VO = 1.4V l l 0.4 2.0 0.25 2.0 V/µV 114 96 114 94 113 dB 117 100 117 97 116 dB ±12 ±13.8 ±12 ±13.8 3.2 6 3.8 15 3.2 6 3.8 15 0.38 0.34 0.60 0.55 0.38 0.34 0.60 0.55 ±11.5 ±13.8 3.1 V 6 3.8 18 mV V 0.38 0.34 0.7 0.65 mA mA 10134fd LT1013/LT1014 Electrical Characteristics The l denotes the specifications which apply over the temperature range –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage Average Input Offset Voltage Drift CONDITIONS LT1013D/I, LT1014D/I VS = 5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = 5V, 0V; VO = 1.4V (Note 3) LT1013D/I, LT1014D/I LT1013AC MIN TYP MAX LT1014AC MIN TYP MAX 55 240 65 270 75 350 85 380 l l l LT1013C/D/I LT1014C/D/I MIN TYP MAX l UNITS 80 230 110 400 1000 570 µV µV µV 280 1200 µV l l 0.3 2.0 0.3 2.0 0.4 0.7 2.5 5.0 µV/°C µV/°C l l 0.2 0.4 1.5 3.5 0.2 0.4 1.7 4.0 0.3 0.5 2.8 6.0 nA nA l l 13 18 25 55 13 20 25 60 16 24 38 90 nA nA IOS Input Offset Current IB Input Bias Current AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l 1.0 5.0 1.0 5.0 0.7 4.0 V/µV CMRR Common Mode Rejection Ratio VCM = 13.0V, –15.0V l 98 116 98 116 94 113 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V l 101 119 101 119 97 116 dB VOUT Output Voltage Swing RL = 2k VS = 5V, 0V; RL = 600Ω Output Low Output High l ±12.5 ±13.9 IS Supply Current per Amplifier VS = 5V, 0V; VO = 1.4V VS = 5V, 0V; VO = 1.4V VS = 5V, 0V; VO = 1.4V Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime. l l l l 3.3 ±12.5 ±13.9 6 3.9 13 0.36 0.32 0.55 0.50 3.3 ±12.0 ±13.9 6 3.9 13 0.36 0.32 0.55 0.50 3.2 V 6 3.9 13 mV V 0.37 0.34 0.60 0.55 mA mA Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. Note 3: This parameter is not 100% tested. 10134fd LT1013/LT1014 Typical Performance Characteristics Offset Voltage Drift with Temperature of Representative Units 0 –100 5 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1 VS = 5V, 0V, 25°C 0.1 RS VS = ±15V, 0V, 25°C RS –200 –25 50 25 0 75 TEMPERATURE (°C) 100 0.01 125 1k LT1014 1 LT1013 CERDIP (J) PACKAGE – 0 100 0.1Hz to 10Hz Noise VS = 5V, 0V VS = ±15V 60 40 20 10 100 1k 10k FREQUENCY (Hz) 100k TA = 25oC VS = p2V TO p18V 100 NEGATIVE SUPPLY 80 60 40 VS = ±15V + 1VP-P SINE WAVE TA = 25°C 20 0 0.1 1M POSITIVE SUPPLY 1 10 100 1k 10k FREQUENCY (Hz) 1013/14 TPC04 TA = 25°C VS = ±2V TO ±18V 160 NUMBER OF UNITS VOLTAGE NOISE 30 1 10 100 FREQUENCY (Hz) 140 120 100 80 60 40 1/f CORNER 2Hz 20 1k 1013/14 TPC07 0 10 Supply Current vs Temperature VS = ±15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS 180 CURRENT NOISE 8 460 200 100 6 4 TIME (SECONDS) 1013/14 TPC06 10Hz Voltage Noise Distribution 300 2 0 1M 1013/14 TPC05 Noise Spectrum 1000 100k SUPPLY CURRENT PER AMPLIFIER (µA) 80 5 NOISE VOLTAGE (200nV/DIV) TA = 25°C 1 3 4 2 TIME AFTER POWER ON (MINUTES) 0 1013/14 TPC03 Power Supply Rejection Ratio vs Frequency POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) LT1013 METAL CAN (H) PACKAGE 2 120 120 VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz) 3 1013/14 TPC02 Common Mode Rejection Ratio vs Frequency 10 + VS = ±15V TA = 25°C 4 3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω) 1013/14 TPC01 0 CHANGE IN OFFSET VOLTAGE (µV) INPUT OFFSET VOLTAGE (mV) 100 –50 Warm-Up Drift 10 VS = ±15V 200 INPUT OFFSET VOLTAGE (µV) Offset Voltage vs Balanced Source Resistance 10 20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz) 60 1013/14 TPC08 420 380 VS = ±15V 340 VS = 5V, 0V 300 260 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1013/14 TPC09 10134fd LT1013/LT1014 Typical Performance Characteristics 4 10 3 5 2 0 VS = 5V, 0V VS = ±15V 1 –5 0 –10 –1 0 –5 –25 –10 –15 –20 INPUT BIAS CURRENT (nA) –15 –30 1.0 –30 VCM = 0V 0.6 0.4 VS = 5V, 0V VS =± V 2.5 0.2 –20 VS = 5V, 0V –15 .5V V S = ±2 VS = ±15V –10 –5 VS = ±15V 0 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 1013/14 TPC12 1013/14 TPC11 Output Saturation vs Sink Current vs Temperature Small-Signal Transient Response, VS = ± 15V Large-Signal Transient Response, VS = ± 15V V+ = 5V TO 30V V – = 0V ISINK = 10mA 1 ISINK = 5mA 5V/DIV 20mV/DIV SATURATION VOLTAGE (V) VCM = 0V –25 0.8 1013/14 TPC10 10 Input Bias Current vs Temperature INPUT BIAS CURRENT (nA) 15 TA = 25°C INPUT OFFSET CURRENT (nA) 5 Input Offset Current vs Temperature COMMON MODE INPUT VOLTAGE, VS = ±15V (V) COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V) Input Bias Current vs Common Mode Voltage ISINK = 1mA 0.1 ISINK = 100µA ISINK = 10µA AV = +1 ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 2µs/DIV AV = +1 1013/14 TPC14 50µs/DIV 1013/14 TPC15 125 1013/14 TPC13 Large-Signal Transient Response, VS = 5V, 0V Small-Signal Transient Response, VS = 5V, 0V Large-Signal Transient Response, VS = 5V, 0V 4V 100mV 4V 2V 2V 0V 50mV 0V 0 AV = +1 20µs/DIV RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE 1013/14 TPC16 AV = +1 10µs/DIV RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE 1013/14 TPC17 AV = +1 10µs/DIV NO LOAD INPUT = 0V TO 4V PULSE 1013/14 TPC18 10134fd LT1013/LT1014 typical performance characteristics Output Short-Circuit Current vs Time VS = ±15V –55°C 25°C 20 125°C TA = –55°C, VS = ±15V 0 125°C –20 25°C –30 –55°C TA = –55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V 1M TA = 125°C, VS = 5V, 0V 1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) 100k 100 1k LOAD RESISTANCE TO GROUND (Ω) 80 TA = 25°C VCM = 0V 100 CL = 100pF 140 180 5V, 0V 200 –10 0.1 0.3 1 3 FREQUENCY (MHz) 10 1013/14 TPC22 CHANNEL SEPARATION (dB) VOLTAGE GAIN (dB) ±15V 5V, 0V 40 0 –20 0.01 0.1 10k 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1013/14 TPC21 160 PHASE SHIFT (DEGREES) 120 160 0 VS = ±15V Channel Separation vs Frequency ±15V GAIN VS = 5V, 0V 60 1013/14 TPC20 Gain, Phase vs Frequency 10 80 VO = 20mV TO 3.5V WITH VS = 5V, 0V 1013/14 TPC19 PHASE 100 20 VO = ±10V WITH VS = ±15V –40 20 TA = 25°C CL = 100pF 120 TA = 125°C, VS = ±15V 10 –10 Voltage Gain vs Frequency 140 TA = 25°C, VS = ±15V VOLTAGE GAIN (dB) 30 Voltage Gain vs Load Resistance 10M VOLTAGE GAIN (V/V) SHORT-CIRCUIT CURRENT (mA) SINKING SOURCING 40 VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k 140 LIMITED BY THERMAL INTERACTION 120 RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE 80 60 RS = 100Ω 10 100 10k 1k FREQUENCY (Hz) 100k 1M 1013/14 TPC23 applications information Single Supply Operation The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP‑221, OP‑420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground. 10134fd LT1013/LT1014 Applications Information b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/LT1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect. D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free. Comparator Applications The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators. Voltage Follower with Input Exceeding the Negative Common Mode Range 4V 2V 4V 4V 2V 2V 0V 0V 0V 6VP-P INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL LT1013/LT1014 NO PHASE REVERSAL OUTPUT (V) – 100 2 0 VS = 5V, 0V 50µs/DIV 4 2 INPUT (mV) INPUT (mV) 0 Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives 100 OUTPUT (V) 4 Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives 0 0 VS = 5V, 0V 50µs/DIV 10134fd 10 LT1013/LT1014 Applications Information Low Supply Operation Test Circuit for Offset Voltage and Offset Drift with Temperature The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290µA, therefore power dissipation is only one milliwatt per amplifier. 50k* 15V – 100Ω* 50k* For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet. VO + Noise Testing LT1013 OR LT1014 –15V *RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ±20V. VO = 1000VOS LT1013/14 F06 Typical Applications 5V Single Supply Dual Instrumentation Amplifier 50MHz Thermal RMS-to-DC Converter 100k* +INPUT 5V 2 30k* 30k* – 3 6 5 5 0.01 LT1014 10k 5V 1/2 LTC1043 1 10k* 2 10k* 6 1µF – 300Ω* 10k* 5 + 5V 4 LT1014 8 1/2 LT1013 – 7 4 OUTPUT A R2 1µF 1µF + 100k* 6 + 3 R1 7 –INPUT 18 +INPUT 7 15 11 10k* 13 0.01 LT1014 10k 12 INPUT 300mV– 10VRMS BRN T1A GRN – 1/2 LTC1043 0.01 14 + T1B T2B GRN BRN T2A 1µF 1µF 10 RED 2 11 1µF RED 3 8 20k FULLSCALE TRIM 10k 1/2 LT1013 – 1 OUTPUT B R2 12 + LT1014 9 + – 8 0V TO 4V OUTPUT –INPUT 10k* 13 14 16 0.01 10k* R1 OFFSET = 150mV R2 GAIN = + 1. R1 CMRR = 120dB. COMMON MODE RANGE IS 0V TO 5V. 1013/14 TA04 2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION. 1013/14 TA03 10134fd 11 LT1013/LT1014 typical Applications Hot-Wire Anemometer +15V 500pF Q6 TIP12O OR EQUIVALENT 2k 27Ω 1W 6 33k 2 #328 150k* – A1 LT1014 1 2k 7 150k* 1µF + 12k LT1004-1.2 6, 8 3.3k 11 500k –15V –15V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. *1% RESISTOR. 9 – 10 + 13 – 12 + A4 LT1014 10M RESPONSE TIME ADJUST 2M FULLSCALE FLOW 4 1k ZERO FLOW + 2k* A2 LT1014 –15V Q2 15V 4 – 3 5 1000pF 13 Q4 Q1 0.01µF 10k* Q1–Q4 CA3046 Q3 220 TIE CA3046 PIN 13 Q5 TO –15V. DO NOT USE Q5 14 0V TO 10V = 0 TO 1000 FEET/MINUTE 100k 1µF A3 LT1014 8 1013/14 TA05 Liquid Flowmeter 3.2k** 15V 1M* 3.2k* 15Ω DALE HL-25 1M* 2 1M* 6.25k** 3 10M RESPONSE TIME – 1 A1 LT1014 + 6 – 5 +LT1014 A2 100k 6.25k** 1µF 1M* T1 7 6.98k* 5k FLOW CALIB 1k* T2 15V 4.7k 1N4148 100k 2N4391 300pF 0.1 LT1004-1.2 383k* 2.7k 9 10 – 8 A3 LT1014 100k 12 + 100k –15V 13 + OUTPUT 0Hz TO 300Hz = 0 TO 300ML/MIN 15V 4 14 A4 LT1014 – 11 –15V T1 FLOW 15Ω HEATER RESISTOR T2 FLOW PIPE * 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED 1013/14 TA06 FREQUENCY OUTPUT. 10134fd 12 LT1013/LT1014 typical Applications 5V Powered Precision Instrumentation Amplifier – TO INPUT CABLE SHIELDS 8 LT1014 9 10 + 200k* 2 5V † 20k –INPUT 3 – + 10k* 10k* 1 LT1014 10k † 5V 13 – 4 RG (TYP 2k) 1µF 6 † 20k +INPUT 12 200k* 5 + † 10k* 7 LT1014 OUTPUT + 11 10k – 14 LT1014 10k* * 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES. 5V 1013/14 TA07 9V Battery Powered Strain Gauge Signal Conditioner 15k 2 0.068 3 9V – + 9V 47µF 1N4148 4 LT1014 11 22M 4.7k 1 330Ω 0.01 100k 2N2219 TO A/D RATIO REFERENCE 100k 100k 100k 9V 9V 15k 15 0.068 1 350Ω STRAIN GAUGE BRIDGE 13 0.068 5 – + LT1014 7 14 499 13 – 12 + LT1014 14 TO A/D 499 7 74C221 3k 6 6 9 9 10 – + 100k LT1014 8 5 TO A/D CONVERT COMMAND SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA. 4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO 1013/14 TA08 HIGH ∆V/∆T STEPS. 10134fd 13 LT1013/LT1014 typical Applications 5V Powered Motor Speed Controller No Tachometer Required 5V 2 0.47 330k 3 + 100k 47 1k 82Ω – A1 1/2 LT1013 1 2k Q3 2N5023 Q1 2N3904 + 1N4001 1M 2k 6.8M 0.068 1/4 CD4016 A2 1/2 LT1013 4 + 7 – 5V 8 0.068 0.47 5 1N4001 1N4148 3.3M 6 1N4148 2k MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF. Q2 EIN 0V TO 3V 1013/14 TA09 5V Powered EEPROM Pulse Generator 5V DALE #TC-10-04 1N4148 2N2222 10Ω 5V 20k 0.05 0.1 2N2222 2N2222 4.7k 820 0.33 1N4148 270Ω 100k 820 2 1N4148 1N4148 1N4148 TTL INPUT MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT). *1% METAL FILM. 100Ω 4.7M – LT1013 3 + 1 1N4148 0.005 6 – 8 LT1013 5 + 4 120k 7 1k 2N2222 OUTPUT 100k* LT1004 1.2V 21V 600µs RC 6.19k 1013/14 TA10 10134fd 14 LT1013/LT1014 typical Applications Methane Concentration Detector with Linearized Output 5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813 14 LT1004 1.2V 0.033 390k* 9 10 – + A3 LT1014 100k* 8 13 11 12 5 8 LTC1044 –5V 10µF 1N4148 (4) CD4016 4 10µF + 2 – + 74C04 A4 LT1014 14 74C04 5V 3 + 470pF 470pF 10k 5V 1 SENSOR CA3046 Q1 Q2 2 3 – + –5V Q4 5V 4 A1 LT1014 1 1N4148 OUTPUT 500ppm TO 10,000ppm 50Hz TO 1kHz Q3 1000pF 2k 100k* 6 5 – + A2 LT1014 7 2k 150k* 12k* 1013/14 TA11 Low Power 9V to 5V Converter 9V INPUT L 2N2905 1N4148 10k + 5V 20mA 2N5434 47 390k 1% HP5082-2811 VD = 200mV 9V 10k 100µA 8 + 7 LT1013 5 LT1013 – 4 1 + 5k 1000ppm TRIM 74C04 14 – 2.7k –5V 9V 6 47k L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV. 2 3 120k 1% 330k LT1004 1.2V 1013/14 TA12 10134fd 15 LT1013/LT1014 typical Applications 5V Powered 4mA to 20mA Current Loop Transmitter† 5V Q3 2N2905 820Ω 10µF T1 Q1 2N2905 + 68Ω 1N4002 (4) 10µF + 74C04 (6) 0.002 0.33 100k 5V 8 A1 1/2 LT1013 1 + 100pF 5V 10k* 20mA TRIM 4k* 3 4 † 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080. 10k* 2 10k* 1k 4mA TRIM 4.3k 100Ω* 80k* 7 – – 2k A2 1/2 LT1013 LT1004 1.2V + Q4 2N2222 Q2 2N2905 820Ω 10k 10k 6 4mA TO 20mA OUT TO LOAD 2.2kΩ MAXIMUM 5 INPUT 0V TO 4V 1013/14 TA13 Fully Floating Modification to 4mA-20mA Current Loop† T1 A1 1/2 LT1013 100k A2 1/2 LT1013 1 68k* 5 + 7 – TO INVERTER DRIVE 6 – 8 3 10µF 0.1Ω + 5V 2 4mA TO 20mA OUT FULLY FLOATING + 4 4k* 10k* 5V 301Ω* 1k 20mA TRIM 4.3k LT1004 1.2V 1N4002 (4) † 8-BIT ACCURACY. 2k 4mA TRIM INPUT 0V TO 4V 1013/14 TA14 10134fd 16 LT1013/LT1014 typical Applications 5V Powered, Linearized Platinum RTD Signal Conditioner 2M 9 499Ω 167Ω Q1 200k Q2 2 200k 3 2N4250 (2) – A2 1/4 LT1014 + 1 150Ω 10 5k LINEARITY A4 1/4 LT1014 8 + OUTPUT 0V TO 4V = 0°C TO 400°C ±0.05°C GAIN TRIM 1k 2M 3.01k SENSOR ROSEMOUNT 118MF 7 – 1.5k – A3 1/4 LT1014 6 8.25k 50k ZERO TRIM 5 2.4k 5% + 274k 5V 4 – A1 1/4 LT1014 + 14 5V 11 13 12 LT1009 2.5V 10k 250k ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400°C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED. 1013/14 TA15 Strain Gauge Bridge Signal Conditioner 5V 220 5V 8 4 8 4 LT1004 1.2V 301k 39k 100k 3 E V ≈ –VREF C 5 10k ZERO TRIM VREF LTC1044 + 100µF + 2 2 1/2 LT1013 + 1 – 0.1 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD D PRESSURE TRANSDUCER 350Ω 100µF A 0.33 5 6 + 1/2 LT1013 7 OUTPUT – 0V TO 3.5V 0psi TO 350psi 0.047 2k GAIN TRIM * 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER. 46k* 100Ω* 1013/14 TA16 10134fd 17 LT1013/LT1014 typical Applications LVDT Signal Conditioner 7 0.005 30k 0.005 30k 5 6 8 FREQUENCY = 1.5kHz 5V + 7 LT1013 11 LVDT YEL-BLK RDBLUE – BLUE –5V GRN 10k 4.7k YEL-RD 1N914 BLK 12 LT1004 1.2V 2N4338 1.2k 10µF 100k 14 0.01 13 7.5k 100k PHASE TRIM + LVDT = SCHAEVITZ E-100. 3 + 1µF 2 1/2 LTC1043 100k 2 3 LT1013 1 – 200k 5V + 8 7 LT1011 – 1 OUT 0V TO 3V 1k 10k TO PIN 16, LT1043 4 1013/14 TA17 Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation 3 –INPUT 2 + 1/4 LT1014 – R1 R3 2R 10M RG 6 +INPUT – 1/4 LT1014 5 + 12 + 2R 10M 13 – 9 – 10 + R1 7 R2 8 1/4 LT1014 OUTPUT R3 V+ R 5M R2 1 GAIN = 1 + 2R1 R3 RG R2 4 1/4 LT1014 11 10pF 14 INPUT BIAS CURRENT TYPICALLY <1nA INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN NEGATIVE COMMON MODE LIMIT = V – + IB s 2R + 30mV = 150mV for V – = 0V IB = 12nA 100k V– 18 1013/14 TA18 10134fd LT1013/LT1014 typical Applications Low Dropout Regulator for 6V Battery 12 OUTPUT 1N914 3 8 LTC1044 2 + VBATT 6V 4 + 100Ω 10 5 10 2N2219 100k 100Ω 0.01Ω 1.2k 6 5 – 1M 3 LT1004 1.2V 2 A2 LT1013 5V OUTPUT 0.003µF 8 + 1 LT1013 – 120k 4 7 + 1N914 30k 0.009V DROPOUT AT 5mA OUTPUT. 0.108V DROPOUT AT 100mA OUTPUT. IQUIESCENT = 850µA. 50k OUTPUT ADJUST 1013/14 TA19 Voltage Controlled Current Source with Ground Referred Input and Output 5V 0V TO 2V 3 + 8 1/2 LT1013 2 – 1 4 0.68µF 1k 1/2 LTC1043 7 8 11 1µF 100Ω 1µF 12 13 14 IOUT = 0mA TO 15mA VIN 100Ω FOR BIPOLAR OPERATION, RUN BOTH ICs FROM A BIPOLAR SUPPLY. IOUT = 1013/14 TA20 10134fd 19 LT1013/LT1014 typical Applications 6V to ±15V Regulating Converter 6V 1µF 15pF 10k Q1 CLK 2 CLK 1 74C74 100kHz INPUT D1 Q1 D2 2N3906 –16V 74C00 Q2 L1 1MHY Q2 + +V 10k 10k + 2N3904 1 10 4 1.4M 0.005 2 LT1013 10k 15pF 15VOUT 16V 8 10 16V 22k 2N4391 + 22k – + 6V 200k VOUT ADJ 6V 3 100k –16V LT1004 1.2V 82k – 7 6 LT1013 5 + L1 = 24-104 AIE VERNITRON 0.005 = 1N4148 1M 2N5114 ±5mA OUTPUT 75% EFFICIENCY –15VOUT 1013/14 TA21 Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)† 5V 3 2 5V 1/2 LT1013 – 1 OSCILLATOR SUPPLY STABILIZATION 4 1M* 5M* RT1 3.2k 2.16k* RT2 6.25k RT 1M* 4.22M* TEMPERATURE COMPENSATION GENERATOR YSI 44201 8 3.4k* 4.3k LT1009 2.5V + 1M* 6 5 20k – 1/2 LT1013 + 5V 7 100k 3.5MHz XTAL OSCILLATOR MV-209 100Ω 100k 560k 4.22M* * 1% FILM 3.5MHz XTAL = AT CUT – 35°20' MOUNT RT NEAR XTAL 3mA POWER DRAIN † THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO MINIMIZE OVERALL OSCILLATOR DRIFT 2N2222 510pF 510pF 3.5MHz OUTPUT 0.03ppm/°C, 0°C TO 70°C 680Ω 1013/14 TA22 10134fd 20 LT1013/LT1014 schematic diagram 1/2 LT1013, 1/4 LT1014 V+ 9k 9k 1.6k Q13 Q6 Q5 1.6k 1.6k Q16 100Ω 1k 800Ω Q14 Q36 Q15 Q32 Q30 Q35 Q3 Q4 Q25 – Q1 + IN Q26 2.5pF 400Ω IN Q33 21pF 3.9k Q27 18Ω 2.4k Q38 Q21 OUTPUT Q2 Q41 14k Q28 400Ω Q22 Q39 Q18 Q12 Q29 Q10 4pF Q31 Q11 Q9 75pF 10pF Q7 Q8 5k 5k Q40 Q19 2k V– J1 Q37 Q34 100pF Q17 2k 42k 600Ω Q23 Q24 Q20 1.3k 2k 30Ω 1013/14 SD 10134fd 21 LT1013/LT1014 Package Description H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) .040 (1.016) MAX .335 – .370 (8.509 – 9.398) DIA .305 – .335 (7.747 – 8.509) .027 – .045 (0.686 – 1.143) 45o PIN 1 .028 – .034 (0.711 – 0.864) .050 (1.270) MAX SEATING PLANE .200 (5.080) TYP .165 – .185 (4.191 – 4.699) GAUGE PLANE .010 – .045* (0.254 – 1.143) REFERENCE PLANE .500 – .750 (12.700 – 19.050) .016 – .021** (0.406 – 0.533) .110 – .160 (2.794 – 4.064) INSULATING STANDOFF *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE .016 – .024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 0204 J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .300 BSC (7.62 BSC) CORNER LEADS OPTION (4 PLCS) .023 – .045 (0.584 – 1.143) HALF LEAD OPTION .045 – .068 (1.143 – 1.650) FULL LEAD OPTION .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) .405 (10.287) MAX .005 (0.127) MIN .200 (5.080) MAX 8 6 7 5 .025 (0.635) RAD TYP .220 – .310 (5.588 – 7.874) 0o – 15o 1 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .045 – .065 (1.143 – 1.651) .014 – .026 (0.360 – 0.660) .100 (2.54) BSC 2 3 4 .125 3.175 MIN J8 0801 J Package 14-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .200 (5.080) MAX .300 BSC (7.62 BSC) .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) .005 (0.127) MIN .785 (19.939) MAX 14 13 12 11 10 9 8 .220 – .310 (5.588 – 7.874) .025 (0.635) RAD TYP 0o – 15o 1 .045 – .065 (1.143 – 1.651) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .014 – .026 (0.360 – 0.660) .100 (2.54) BSC 2 3 4 5 6 7 J14 0801 .125 (3.175) MIN OBSOLETE PACKAGES 10134fd 22 LT1013/LT1014 Package Description N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 1 2 3 4 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .065 (1.651) TYP .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 8.255 +0.889 –0.381 .130 ± .005 (3.302 ± 0.127) .045 – .065 (1.143 – 1.651) ) .120 (3.048) .020 MIN (0.508) MIN .018 ± .003 .100 (2.54) BSC (0.457 ± 0.076) N8 1002 NOTE: 1. DIMENSIONS ARE INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 14 13 12 11 10 9 8 1 2 3 4 5 6 7 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 +0.889 8.255 –0.381 NOTE: 1. DIMENSIONS ARE ) .045 – .065 (1.143 – 1.651) .130 ± .005 (3.302 ± 0.127) .020 (0.508) MIN .065 (1.651) TYP .120 (3.048) MIN .005 (0.127) .100 MIN (2.54) BSC .018 ± .003 (0.457 ± 0.076) N14 1103 INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) 10134fd 23 LT1013/LT1014 Package Description S6 Package 6-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1636) .050 BSC .245 MIN .045 ±.005 .189 – .197 (4.801 – 5.004) NOTE 3 .160 ±.005 7 8 .010 – .020 s 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) .030 ±.005 TYP 0°– 8° TYP .016 – .050 (0.406 – 1.270) 5 6 RECOMMENDED SOLDER PAD LAYOUT .053 – .069 (1.346 – 1.752) .150 – .157 (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) .004 – .010 (0.101 – 0.254) 1 NOTE: 1. DIMENSIONS IN 3 2 4 .050 (1.270) BSC .014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) SO8 0303 SW Package XX-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620) .050 BSC .045 ±.005 .030 ±.005 TYP N .005 (0.127) RAD MIN .009 – .013 (0.229 – 0.330) NOTE: 1. DIMENSIONS IN 16 15 14 13 12 11 10 9 N 1 0° – 8° TYP NOTE 3 .325 ±.005 .420 MIN .291 – .299 (7.391 – 7.595) NOTE 4 .010 – .029 s 45° (0.254 – 0.737) .398 – .413 (10.109 – 10.490) NOTE 4 2 3 N/2 RECOMMENDED SOLDER PAD LAYOUT .093 – .104 (2.362 – 2.642) .394 – .419 (10.007 – 10.643) NOTE 3 .037 – .045 (0.940 – 1.143) .016 – .050 (0.406 – 1.270) N/2 1 .050 (1.270) BSC .014 – .019 INCHES (0.356 – 0.482) (MILLIMETERS) TYP 2. DRAWING NOT TO SCALE 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 2 3 4 5 6 7 8 .004 – .012 (0.102 – 0.305) S16 (WIDE) 0502 10134fd 24 LT1013/LT1014 Revision History (Revision history begins at Rev D) REV DATE DESCRIPTION PAGE NUMBER D 05/10 Updates to Typical Application “Hot-Wire Anemometer” 12 Updated Related Parts 26 10134fd Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 25 LT1013/LT1014 Typical Application Step-Up Switching Regulator for 6V Battery INPUT 6V 22k 2N2222 2.2 OUTPUT 15V 50mA + LT1004 1.2V L1 1MHY 200k 5 220pF 1N5821 1M 220k 3 + 0.001 2 LT1013 1 300Ω 130k + 2N5262 6 + 8 LT1013 – 7 4 100 5.6k – 0.1 5.6k LT = AIE–VERNITRON 24–104 78% EFFICIENCY 1013/14 TA23 Related Parts PART NUMBER DESCRIPTION COMMENTS LT2078/LT2079 Dual/Quad 50µA Single Supply Precision Amplifier 50µA Max IS, 70µV Max VOS LT2178/LT2179 Dual/Quad 17µA Single Supply Precision Amplifier 17µA Max IS, 70µV Max VOS LTC6081/LTC6082 Dual/Quad 400µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 400µA Max IS, 70µV VOS 0.8µV/°C TCVOS LTC6078/LTC6079 Dual/Quad 72µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 72µA Max IS, 25µV VOS 0.7µV/°C TCVOS 10134fd 26 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LT 0510 REV D • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 1990