LINEAR_DIMENSIONS LT1013CN8

LT1013/LT1014
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
Description
Features
Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground While Sinking Current
n Pin Compatible to 1458 and 324 with Precision Specs
n Guaranteed Offset Voltage: 150µV Max
n Guaranteed Low Drift: 2µV/°C Max
n Guaranteed Offset Current: 0.8nA Max
n Guaranteed High Gain
5mA Load Current: 1.5 Million Min
17mA Load Current: 0.8 Million Min
n Guaranteed Low Supply Current: 500µA Max
n Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV
P-P
n Low Current Noise—Better than 0P-07, 0.07pA/√Hz
n
Applications
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies.
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
Typical Application
LT1014 Distribution of Offset Voltage
3-Channel Thermocouple Thermometer
4k
LT1004
1.2V
14
+
12
–
13
LT1014
1M
299k
700
5V
YSI 44007
5k
AT 25°C
1684Ω
2
–
3
+
4
LT1014
1
OUTPUT A
10mV/°C
11
260Ω
1.8k
1M
4k
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C TO 60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
6
–
5
+
LT1014
VS = ±15V
TA = 25°C
425 LT1014s
(1700 OP AMPS)
500 TESTED FROM
THREE RUNS
400 J PACKAGE
600
NUMBER OF UNITS
5V
The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration.
Although supply current is only 350µA per amplifier, a new
output stage design sources and sinks in excess of 20mA
of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in the
8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/MC1558,
LM158 and OP-221. The LT1013’s specifications are similar
to (even somewhat better than) the LT1014’s.
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
n 4mA to 20mA Current Loop Transmitters
n Multiple Limit Threshold Detection
n Active Filters
n Multiple Gain Blocks
n
3k
The LT ®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
300
200
100
7
OUTPUT B
10mV/°C
0
100
–300 –200 –100
0
200
INPUT OFFSET VOLTAGE (µV)
300
1013/14 TA02
10134fd
LT1013/LT1014
Absolute Maximum Ratings
(Note 1)
Supply Voltage........................................................ ± 22V
Differential Input Voltage........................................ ± 30V
Input Voltage................. Equal to Positive Supply Voltage
............. 5V Below Negative Supply Voltage
Output Short-Circuit Duration........................... Indefinite
Storage Temperature Range
All Grades...........................................– 65°C to 150°C
Lead Temperature (Soldering, 10 sec.).................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M..........................– 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D................... 0°C to 70°C
LT1013I/ LT1014I..................................– 40°C to 85°C
Pin Configuration
LT1013
LT1013
LT1013
TOP VIEW
V– 2
–
+
8
–INA
7
OUTA
+INB 3
+
6
V+
–INB 4
–
5
OUTB
7
OUTPUT B
6
–IN B
5
+IN B
OUTPUT A 1
–IN A 2
+IN A 3
V– 4
–
+A
V+
8
+
+INA 1
TOP VIEW
V+
–
TOP VIEW
B
OUTPUT A 1
NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
+IN A 3
+ – 6 –IN B
4
5 +IN B
TJMAX = 125°C, θJA = 55°C/W
OBSOLETE PACKAGE
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
LT1014
7 OUTPUT B
B
V–(CASE)
H PACKAGE
8-LEAD TO-5 METAL CAN
J8 PACKAGE
8-LEAD CERDIP
TJMAX = 150°C, QJA = 100°C
TJMAX = 150°C, θJA = 190°C/W
A
–IN A 2 – +
N8 PACKAGE
8-LEAD PDIP
TJMAX = 150°C, QJA = 130°C
S8 PACKAGE
8-LEAD PLASTIC SO
8
Consider the N or S8 (Not N8) Packages for Alternate Source
LT1014
TOP VIEW
16 OUTPUT D
–IN A 2
15 –IN D
+IN A 3
14 +IN D
V+ 4
13 V –
+IN B 5
12 +IN C
–IN B 6
11 –IN C
OUTPUT B 7
10 OUTPUT C
NC 8
9
SW PACKAGE
16-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 130°C/W
NC
1
–IN A
2
+IN A
3
V+
4
+IN B
5
–IN B
6
OUTPUT B
7
–
+A
14 OUTPUT D
13 –IN D
+
OUTPUT A 1
OUTPUT A
–
TOP VIEW
12 +IN D
D
11 V–
+
B
–
+ 10 +IN C
C
– 9 –IN C
8
OUTPUT C
N PACKAGE
14-LEAD PDIP
TJMAX = 150°C, QJA = 100°C
J PACKAGE
14-LEAD CERDIP
TJMAX = 150°C, QJA = 100°C
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
10134fd
LT1013/LT1014
Order Information
LEAD FREE FINISH
TAPE AND REEL
PART MARKING
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LT1013DS8#PBF
LT1013DS8#TRPBF
1013
8-Lead Plastic SO
0°C to 70°C
LT1013IS8#PBF
LT1013IS8#TRPBF
1013I
8-Lead Plastic SO
–40°C to 85°C
LT1013ACN8#PBF
LT1013ACN8#TRPBF
LT1013ACN8
8-Lead PDIP
0°C to 70°C
LT1013CN8#PBF
LT1013CN8#TRPBF
LT1013CN8
8-Lead PDIP
0°C to 70°C
LT1013DN8#PBF
LT1013DN8#TRPBF
LT1013DN8
8-Lead PDIP
0°C to 70°C
LT1013IN8#PBF
LT1013IN8#TRPBF
LT1013IN8
8-Lead PDIP
–40°C to 85°C
LT1014DSW#PBF
LT1014DSW#TRPBF
LT1014DSW
16-Lead Plastic SO
0°C to 70°C
LT1014ISW#PBF
LT1014ISW#TRPBF
LT1014ISW
16-Lead Plastic SO
–40°C to 85°C
LT1014ACN#PBF
LT1014ACN#TRPBF
LT1014ACN
14-Lead PDIP
0°C to 70°C
LT1014CN#PBF
LT1014CN#TRPBF
LT1014CN
14-Lead PDIP
0°C to 70°C
LT1014DN#PBF
LT1014DN#TRPBF
LT1014DN
14-Lead PDIP
0°C to 70°C
LT1014IN#PBF
LT1014IN#TRPBF
LT1014IN
14-Lead PDIP
–40°C to 85°C
LT1013AMJ8#PBF
LT1013AMJ8#TRPBF
LT1013AMJ8
8-Lead CERDIP
–55°C to 125°C (OBSOLETE)
LT1013MJ8#PBF
LT1013MJ8#TRPBF
LT1013MJ8
8-Lead CERDIP
–55°C to 125°C (OBSOLETE)
LT1013ACJ8#PBF
LT1013ACJ8#TRPBF
LT1013ACJ8
8-Lead CERDIP
0°C to 70°C (OBSOLETE)
LT1013CJ8#PBF
LT1013CJ8#TRPBF
LT1013CJ8
8-Lead CERDIP
0°C to 70°C (OBSOLETE)
LT1013AMH#PBF
LT1013AMH#TRPBF
LT1013AMH
8-Lead TO-5 Metal Can
–55°C to 125°C (OBSOLETE)
LT1013MH#PBF
LT1013MH#TRPBF
LT1013MH
8-Lead TO-5 Metal Can
–55°C to 125°C (OBSOLETE)
LT1013ACH#PBF
LT1013ACH#TRPBF
LT1013ACH
8-Lead TO-5 Metal Can
0°C to 70°C (OBSOLETE)
LT1013CH#PBF
LT1013CH#TRPBF
LT1013CH
8-Lead TO-5 Metal Can
0°C to 70°C (OBSOLETE)
LT1014AMJ#PBF
LT1014AMJ#TRPBF
LT1014AMJ
14-Lead CERDIP
–55°C to 125°C (OBSOLETE)
LT1014MJ#PBF
LT1014MJ#TRPBF
LT1014MJ
14-Lead CERDIP
–55°C to 125°C (OBSOLETE)
LT1014ACJ#PBF
LT1014ACJ#TRPBF
LT1014ACJ
14-Lead CERDIP
0°C to 70°C (OBSOLETE)
LT1014CJ#PBF
LT1014CJ#TRPBF
LT1014CJ
14-Lead CERDIP
0°C to 70°C (OBSOLETE)
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
10134fd
LT1013/LT1014
Electrical
Characteristics
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
LT1013
LT1014
LT1013D/I, LT1014D/I
LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX
LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX
40
50
60
60
200
150
180
Long-Term Input Offset Voltage
Stability
0.4
ISO
Input Offset Current
0.15
0.8
IB
Input Bias Current
12
20
en
Input Noise Voltage
0.1Hz to 10Hz
en
Input Noise Voltage Density
fO = 10Hz
fO = 1000Hz
Input Noise Current Density
fO = 10Hz
in
AVOL
300
300
800
0.5
UNITS
µV
µV
µV
µV/Mo.
0.2
1.5
15
30
nA
nA
0.55
0.55
24
22
24
22
nV/√Hz
nV/√Hz
0.07
pA/√Hz
Input Resistance – Differential
(Note 2)
Common Mode
100
400
5
70
300
4
MΩ
GΩ
Large-Signal Voltage Gain
1.5
0.8
8.0
2.5
1.2
0.5
7.0
2.0
V/µV
V/µV
13.5
–15.0
13.8
–15.3
13.5
–15.0
13.8
–15.3
VO = ± 10V, RL = 2k
VO = ±10V, RL = 600Ω
Input Voltage Range
0.07
µVP-P
V
V
CMRR
Common Mode Rejection Ratio
VCM = 13.5V, –15.0V
100
117
97
114
dB
PSRR
Power Supply Rejection Ratio
VS = ±2V to ±18V
103
120
100
117
dB
Channel Separation
VO = ±10V, RL = 2k
123
140
120
137
dB
Output Voltage Swing
RL = 2k
±13
±14
±12.5
±14
V
0.2
0.4
0.2
0.4
V/µs
VOUT
Slew Rate
IS
Supply Current
Per Amplifier
0.35
0.50
0.35
0.55
mA
LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX
LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX
UNITS
60
70
250
280
90
90
250
450
450
950
µV
µV
µV
TA = 25°C. VS+ = 5V, VS– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
LT1013
LT1014
LT1013D/I, LT1014D/I
IOS
Input Offset Current
0.2
1.3
0.3
2.0
nA
IB
Input Bias Current
15
35
18
50
nA
AVOL
Large-Signal Voltage Gain
VO = 5mV to 4V, RL = 500Ω
Input Voltage Range
VOUT
IS
Output Voltage Swing
Supply Current
1.0
3.5
Output Low, No Load
Output Low, 600Ω to Ground
Output Low, ISINK = 1mA
Output High, No Load
Output High, 600Ω to
Ground
Per Amplifier
4.0
3.4
1.0
3.8
– 0.3
15
5
220
4.4
4.0
25
10
350
0.31
0.45
V/µV
3.5
0
3.8
– 0.3
V
V
4.0
3.4
15
5
220
4.4
4.0
25
10
350
mV
mV
mV
V
V
0.32
0.50
mA
10134fd
LT1013/LT1014
Electrical Characteristics
The l denotes the specifications which apply over the temperature range
– 55°C ≤ TA ≤ 125°C. VS = ±15V, VCM = 0V unless otherwise noted.
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Offset Voltage Drift
CONDITIONS
MIN
LT1013AM
TYP MAX
LT1013M/LT1014M
MIN TYP MAX
UNITS
80
300
90
350
110
550
µV
l
80
120
250
450
450
900
90
150
300
480
480
960
100
200
400
750
750
1500
µV
µV
µV
(Note 3)
l
0.4
2.0
0.4
2.0
0.5
2.5
µV/°C
VS = 5V, 0V; VO = 1.4V
l
l
0.3
0.6
2.5
6.0
0.3
0.7
2.8
7.0
0.4
0.9
5.0
10.0
nA
nA
VS = 5V, 0V; VO = 1.4V
l
l
15
20
30
80
15
25
30
90
18
28
45
120
nA
nA
VS = 5V, 0V; VO = 1.4V
– 55°C ≤ TA ≤ 100°C
VCM = 0.1V, TA = 125°C
VCM = 0V, TA = 125°C
Input Offset Current
IB
Input Bias Current
AVOL
Large-Signal Voltage Gain
VO = ±10V, RL = 2k
l
0.5
2.0
CMRR
Common Mode Rejection
VCM = 13.0V, –14.9V
l
97
PSRR
Power Supply Rejection
Ratio
VS = ±2V to ±18V
l
100
VOUT
Output Voltage Swing
RL = 2k
VS = 5V, 0V
RL = 600Ω to Ground
Output Low
Output High
l
l
l
Supply Current
Per Amplifier
LT1014AM
TYP MAX
l
IOS
IS
MIN
VS = 5V, 0V; VO = 1.4V
l
l
0.4
2.0
0.25
2.0
V/µV
114
96
114
94
113
dB
117
100
117
97
116
dB
±12
±13.8
±12
±13.8
3.2
6
3.8
15
3.2
6
3.8
15
0.38
0.34
0.60
0.55
0.38
0.34
0.60
0.55
±11.5 ±13.8
3.1
V
6
3.8
18
mV
V
0.38
0.34
0.7
0.65
mA
mA
10134fd
LT1013/LT1014
Electrical Characteristics
The l denotes the specifications which apply over the temperature range
–40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless
otherwise noted.
SYMBOL PARAMETER
VOS
Input Offset Voltage
Average Input Offset
Voltage Drift
CONDITIONS
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
(Note 3)
LT1013D/I, LT1014D/I
LT1013AC
MIN TYP MAX
LT1014AC
MIN TYP MAX
55
240
65
270
75
350
85
380
l
l
l
LT1013C/D/I
LT1014C/D/I
MIN TYP MAX
l
UNITS
80
230
110
400
1000
570
µV
µV
µV
280
1200
µV
l
l
0.3
2.0
0.3
2.0
0.4
0.7
2.5
5.0
µV/°C
µV/°C
l
l
0.2
0.4
1.5
3.5
0.2
0.4
1.7
4.0
0.3
0.5
2.8
6.0
nA
nA
l
l
13
18
25
55
13
20
25
60
16
24
38
90
nA
nA
IOS
Input Offset Current
IB
Input Bias Current
AVOL
Large-Signal Voltage Gain
VO = ±10V, RL = 2k
l
1.0
5.0
1.0
5.0
0.7
4.0
V/µV
CMRR
Common Mode Rejection
Ratio
VCM = 13.0V, –15.0V
l
98
116
98
116
94
113
dB
PSRR
Power Supply Rejection
Ratio
VS = ±2V to ±18V
l
101
119
101
119
97
116
dB
VOUT
Output Voltage Swing
RL = 2k
VS = 5V, 0V; RL = 600Ω
Output Low
Output High
l ±12.5 ±13.9
IS
Supply Current per Amplifier
VS = 5V, 0V; VO = 1.4V
VS = 5V, 0V; VO = 1.4V
VS = 5V, 0V; VO = 1.4V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.
l
l
l
l
3.3
±12.5 ±13.9
6
3.9
13
0.36
0.32
0.55
0.50
3.3
±12.0 ±13.9
6
3.9
13
0.36
0.32
0.55
0.50
3.2
V
6
3.9
13
mV
V
0.37
0.34
0.60
0.55
mA
mA
Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
10134fd
LT1013/LT1014
Typical Performance Characteristics
Offset Voltage Drift with
Temperature of Representative
Units
0
–100
5
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
VS = 5V, 0V, 25°C
0.1
RS
VS = ±15V, 0V, 25°C
RS
–200
–25
50
25
0
75
TEMPERATURE (°C)
100
0.01
125
1k
LT1014
1
LT1013 CERDIP (J) PACKAGE
–
0
100
0.1Hz to 10Hz Noise
VS = 5V, 0V
VS = ±15V
60
40
20
10
100
1k
10k
FREQUENCY (Hz)
100k
TA = 25oC
VS = p2V TO p18V
100
NEGATIVE
SUPPLY
80
60
40
VS = ±15V + 1VP-P SINE WAVE
TA = 25°C
20
0
0.1
1M
POSITIVE
SUPPLY
1
10
100 1k
10k
FREQUENCY (Hz)
1013/14 TPC04
TA = 25°C
VS = ±2V TO ±18V
160
NUMBER OF UNITS
VOLTAGE NOISE
30
1
10
100
FREQUENCY (Hz)
140
120
100
80
60
40
1/f CORNER 2Hz
20
1k
1013/14 TPC07
0
10
Supply Current vs Temperature
VS = ±15V
TA = 25°C
328 UNITS TESTED
FROM THREE RUNS
180
CURRENT NOISE
8
460
200
100
6
4
TIME (SECONDS)
1013/14 TPC06
10Hz Voltage Noise
Distribution
300
2
0
1M
1013/14 TPC05
Noise Spectrum
1000
100k
SUPPLY CURRENT PER AMPLIFIER (µA)
80
5
NOISE VOLTAGE (200nV/DIV)
TA = 25°C
1
3
4
2
TIME AFTER POWER ON (MINUTES)
0
1013/14 TPC03
Power Supply Rejection Ratio
vs Frequency
POWER SUPPLY REJECTION RATIO (dB)
COMMON MODE REJECTION RATIO (dB)
LT1013 METAL CAN (H) PACKAGE
2
120
120
VOLTAGE NOISE DENSITY (nV/√Hz)
CURRENT NOISE DENSITY (fA/√Hz)
3
1013/14 TPC02
Common Mode Rejection Ratio
vs Frequency
10
+
VS = ±15V
TA = 25°C
4
3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
1013/14 TPC01
0
CHANGE IN OFFSET VOLTAGE (µV)
INPUT OFFSET VOLTAGE (mV)
100
–50
Warm-Up Drift
10
VS = ±15V
200
INPUT OFFSET VOLTAGE (µV)
Offset Voltage vs Balanced
Source Resistance
10
20
40
50
30
VOLTAGE NOISE DENSITY (nV/√Hz)
60
1013/14 TPC08
420
380
VS = ±15V
340
VS = 5V, 0V
300
260
–50
–25
50
25
0
75
TEMPERATURE (°C)
100
125
1013/14 TPC09
10134fd
LT1013/LT1014
Typical Performance Characteristics
4
10
3
5
2
0
VS = 5V, 0V
VS = ±15V
1
–5
0
–10
–1
0
–5
–25
–10
–15
–20
INPUT BIAS CURRENT (nA)
–15
–30
1.0
–30
VCM = 0V
0.6
0.4
VS = 5V, 0V
VS
=±
V
2.5
0.2
–20
VS = 5V, 0V
–15
.5V
V S = ±2
VS = ±15V
–10
–5
VS = ±15V
0
–50
–25
50
25
0
75
TEMPERATURE (°C)
100
125
0
–50 –25
50
25
75
0
TEMPERATURE (°C)
100
125
1013/14 TPC12
1013/14 TPC11
Output Saturation vs Sink
Current vs Temperature
Small-Signal Transient
Response, VS = ± 15V
Large-Signal Transient
Response, VS = ± 15V
V+ = 5V TO 30V
V – = 0V
ISINK = 10mA
1
ISINK = 5mA
5V/DIV
20mV/DIV
SATURATION VOLTAGE (V)
VCM = 0V
–25
0.8
1013/14 TPC10
10
Input Bias Current
vs Temperature
INPUT BIAS CURRENT (nA)
15
TA = 25°C
INPUT OFFSET CURRENT (nA)
5
Input Offset Current
vs Temperature
COMMON MODE INPUT VOLTAGE, VS = ±15V (V)
COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V)
Input Bias Current
vs Common Mode Voltage
ISINK = 1mA
0.1
ISINK = 100µA
ISINK = 10µA
AV = +1
ISINK = 0
0.01
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
2µs/DIV
AV = +1
1013/14 TPC14
50µs/DIV
1013/14 TPC15
125
1013/14 TPC13
Large-Signal Transient
Response, VS = 5V, 0V
Small-Signal Transient
Response, VS = 5V, 0V
Large-Signal Transient
Response, VS = 5V, 0V
4V
100mV
4V
2V
2V
0V
50mV
0V
0
AV = +1
20µs/DIV
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
1013/14 TPC16
AV = +1
10µs/DIV
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE
1013/14 TPC17
AV = +1
10µs/DIV
NO LOAD
INPUT = 0V TO 4V PULSE
1013/14 TPC18
10134fd
LT1013/LT1014
typical performance characteristics
Output Short-Circuit Current
vs Time
VS = ±15V
–55°C
25°C
20
125°C
TA = –55°C, VS = ±15V
0
125°C
–20
25°C
–30
–55°C
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
1M
TA = 125°C, VS = 5V, 0V
1
2
0
3
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
100k
100
1k
LOAD RESISTANCE TO GROUND (Ω)
80
TA = 25°C
VCM = 0V
100
CL = 100pF
140
180
5V, 0V
200
–10
0.1
0.3
1
3
FREQUENCY (MHz)
10
1013/14 TPC22
CHANNEL SEPARATION (dB)
VOLTAGE GAIN (dB)
±15V
5V, 0V
40
0
–20
0.01 0.1
10k
1
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
1013/14 TPC21
160
PHASE SHIFT (DEGREES)
120
160
0
VS = ±15V
Channel Separation
vs Frequency
±15V
GAIN
VS = 5V, 0V
60
1013/14 TPC20
Gain, Phase vs Frequency
10
80
VO = 20mV TO 3.5V
WITH VS = 5V, 0V
1013/14 TPC19
PHASE
100
20
VO = ±10V WITH VS = ±15V
–40
20
TA = 25°C
CL = 100pF
120
TA = 125°C, VS = ±15V
10
–10
Voltage Gain vs Frequency
140
TA = 25°C, VS = ±15V
VOLTAGE GAIN (dB)
30
Voltage Gain vs Load Resistance
10M
VOLTAGE GAIN (V/V)
SHORT-CIRCUIT CURRENT (mA)
SINKING
SOURCING
40
VS = ±15V
TA = 25°C
VIN = 20Vp-p to 5kHz
RL = 2k
140
LIMITED BY
THERMAL
INTERACTION
120
RS = 1kΩ
100
LIMITED BY
PIN TO PIN
CAPACITANCE
80
60
RS = 100Ω
10
100
10k
1k
FREQUENCY (Hz)
100k
1M
1013/14 TPC23
applications information
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific circuitry
which addresses these problems.
At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more
than a few hundred millivolts below ground, two distinct
problems can occur on previous single supply designs,
such as the LM124, LM158, OP-20, OP-21, OP-220,
OP‑221, OP‑420:
a) When the input is more than a diode drop below
ground, unlimited current will flow from the substrate
(V – terminal) to the input. This can destroy the unit. On
the LT1013/LT1014, the 400Ω resistors, in series with the
input (see Schematic Diagram), protect the devices even
when the input is 5V below ground.
10134fd
LT1013/LT1014
Applications Information
b) When the input is more than 400mV below ground
(at 25°C), the input stage saturates (transistors Q3 and
Q4) and phase reversal occurs at the output. This can
cause lock-up in servo systems. Due to a unique phase
reversal protection circuitry (Q21, Q22, Q27, Q28), the
LT1013/LT1014’s outputs do not reverse, as illustrated
below, even when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of
the other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20)
or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance and
high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL compatible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
Voltage Follower with Input Exceeding the Negative Common Mode Range
4V
2V
4V
4V
2V
2V
0V
0V
0V
6VP-P INPUT, – 1.5V TO 4.5V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
LT1013/LT1014
NO PHASE REVERSAL
OUTPUT (V)
– 100
2
0
VS = 5V, 0V
50µs/DIV
4
2
INPUT (mV)
INPUT (mV)
0
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
100
OUTPUT (V)
4
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
0
0
VS = 5V, 0V
50µs/DIV
10134fd
10
LT1013/LT1014
Applications Information
Low Supply Operation
Test Circuit for Offset Voltage and
Offset Drift with Temperature
The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290µA, therefore power
dissipation is only one milliwatt per amplifier.
50k*
15V
–
100Ω*
50k*
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
VO
+
Noise Testing
LT1013
OR LT1014
–15V
*RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
**THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
VO = 1000VOS
LT1013/14 F06
Typical Applications
5V Single Supply Dual Instrumentation Amplifier
50MHz Thermal RMS-to-DC Converter
100k*
+INPUT
5V
2
30k*
30k*
–
3
6
5
5
0.01
LT1014
10k
5V
1/2 LTC1043
1
10k*
2
10k*
6
1µF
–
300Ω*
10k*
5
+
5V
4
LT1014
8
1/2 LT1013
–
7
4
OUTPUT A
R2
1µF
1µF
+
100k*
6
+
3
R1
7
–INPUT
18
+INPUT
7
15
11
10k*
13
0.01
LT1014
10k
12
INPUT
300mV–
10VRMS
BRN
T1A
GRN
–
1/2 LTC1043
0.01
14
+
T1B
T2B
GRN
BRN
T2A
1µF
1µF
10
RED
2
11
1µF
RED
3
8
20k
FULLSCALE
TRIM
10k
1/2 LT1013
–
1
OUTPUT B
R2
12
+
LT1014
9
+
–
8
0V TO 4V
OUTPUT
–INPUT
10k*
13
14
16
0.01
10k*
R1
OFFSET = 150mV
R2
GAIN =
+ 1.
R1
CMRR = 120dB.
COMMON MODE RANGE IS 0V TO 5V.
1013/14 TA04
2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
* 0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
1013/14 TA03
10134fd
11
LT1013/LT1014
typical Applications
Hot-Wire Anemometer
+15V
500pF
Q6
TIP12O OR
EQUIVALENT
2k
27Ω
1W
6
33k
2
#328
150k*
–
A1
LT1014
1
2k
7
150k*
1µF
+
12k
LT1004-1.2
6, 8
3.3k
11
500k
–15V
–15V
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
*1% RESISTOR.
9
–
10
+
13
–
12
+
A4
LT1014
10M
RESPONSE
TIME
ADJUST
2M
FULLSCALE
FLOW
4
1k
ZERO
FLOW
+
2k*
A2
LT1014
–15V
Q2
15V
4
–
3
5
1000pF
13
Q4
Q1
0.01µF
10k*
Q1–Q4
CA3046
Q3
220
TIE CA3046 PIN 13
Q5 TO –15V. DO NOT USE Q5
14
0V TO 10V =
0 TO 1000 FEET/MINUTE
100k
1µF
A3
LT1014
8
1013/14 TA05
Liquid Flowmeter
3.2k**
15V
1M*
3.2k*
15Ω
DALE
HL-25
1M*
2
1M*
6.25k**
3
10M
RESPONSE
TIME
–
1
A1
LT1014
+
6
–
5
+LT1014
A2
100k
6.25k**
1µF
1M*
T1
7
6.98k*
5k
FLOW
CALIB
1k*
T2
15V
4.7k
1N4148
100k
2N4391
300pF
0.1
LT1004-1.2
383k*
2.7k
9
10
–
8
A3
LT1014
100k
12
+
100k
–15V
13
+
OUTPUT
0Hz TO 300Hz =
0 TO 300ML/MIN
15V
4
14
A4
LT1014
–
11
–15V
T1
FLOW
15Ω HEATER RESISTOR
T2
FLOW
PIPE
* 1% FILM RESISTOR.
** SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
1013/14 TA06
FREQUENCY OUTPUT.
10134fd
12
LT1013/LT1014
typical Applications
5V Powered Precision Instrumentation Amplifier
–
TO
INPUT
CABLE SHIELDS
8
LT1014
9
10
+
200k*
2
5V
†
20k
–INPUT
3
–
+
10k*
10k*
1
LT1014
10k
†
5V
13
–
4
RG (TYP 2k)
1µF
6
†
20k
+INPUT
12
200k*
5
+
†
10k*
7
LT1014
OUTPUT
+
11
10k
–
14
LT1014
10k*
* 1% FILM RESISTOR. MATCH 10k's 0.05%
400,000
GAIN EQUATION: A =
+ 1.
RG
†
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
5V
1013/14 TA07
9V Battery Powered Strain Gauge Signal Conditioner
15k
2
0.068
3
9V
–
+
9V 47µF
1N4148
4
LT1014
11
22M
4.7k
1
330Ω
0.01
100k
2N2219
TO A/D RATIO
REFERENCE
100k
100k
100k
9V
9V
15k
15
0.068
1
350Ω
STRAIN GAUGE
BRIDGE
13
0.068
5
–
+
LT1014
7
14
499
13
–
12
+
LT1014
14
TO A/D
499
7 74C221
3k
6
6
9
9
10
–
+
100k
LT1014
8
5
TO A/D
CONVERT COMMAND
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA.
4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
1013/14 TA08
HIGH ∆V/∆T STEPS.
10134fd
13
LT1013/LT1014
typical Applications
5V Powered Motor Speed Controller
No Tachometer Required
5V
2
0.47
330k
3
+
100k
47
1k
82Ω
–
A1
1/2 LT1013
1
2k
Q3
2N5023
Q1
2N3904
+
1N4001
1M
2k
6.8M
0.068
1/4 CD4016
A2
1/2 LT1013
4
+
7
–
5V
8
0.068
0.47
5
1N4001
1N4148
3.3M
6
1N4148
2k
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
Q2
EIN
0V TO 3V
1013/14 TA09
5V Powered EEPROM Pulse Generator
5V
DALE
#TC-10-04 1N4148
2N2222
10Ω
5V
20k
0.05
0.1
2N2222
2N2222
4.7k
820
0.33
1N4148
270Ω
100k
820
2
1N4148
1N4148
1N4148
TTL INPUT
MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).
*1% METAL FILM.
100Ω
4.7M
–
LT1013
3
+
1
1N4148
0.005
6
–
8
LT1013
5
+
4
120k
7
1k
2N2222
OUTPUT
100k*
LT1004
1.2V
21V
600µs RC
6.19k
1013/14 TA10
10134fd
14
LT1013/LT1014
typical Applications
Methane Concentration Detector with Linearized Output
5V
1
* 1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
14
LT1004
1.2V
0.033
390k*
9
10
–
+
A3
LT1014
100k*
8
13
11
12
5
8
LTC1044
–5V
10µF
1N4148 (4)
CD4016
4
10µF
+
2
–
+
74C04
A4
LT1014
14
74C04
5V
3
+
470pF
470pF
10k
5V
1
SENSOR
CA3046
Q1
Q2
2
3
–
+
–5V
Q4
5V
4
A1
LT1014
1
1N4148
OUTPUT
500ppm TO 10,000ppm
50Hz TO 1kHz
Q3
1000pF
2k
100k*
6
5
–
+
A2
LT1014
7
2k
150k*
12k*
1013/14 TA11
Low Power 9V to 5V Converter
9V INPUT
L
2N2905
1N4148
10k
+
5V
20mA
2N5434
47
390k
1%
HP5082-2811
VD = 200mV
9V
10k
100µA
8
+
7
LT1013
5
LT1013
–
4
1
+
5k
1000ppm
TRIM
74C04
14
–
2.7k
–5V
9V
6
47k
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
2
3
120k
1%
330k
LT1004
1.2V
1013/14 TA12
10134fd
15
LT1013/LT1014
typical Applications
5V Powered 4mA to 20mA Current Loop Transmitter†
5V
Q3
2N2905
820Ω
10µF
T1
Q1
2N2905
+
68Ω
1N4002 (4)
10µF
+
74C04
(6)
0.002
0.33
100k
5V
8
A1
1/2 LT1013
1
+
100pF
5V
10k*
20mA
TRIM
4k*
3
4
†
12-BIT ACCURACY.
* 1% FILM.
T1 = PICO-31080.
10k*
2
10k*
1k
4mA
TRIM
4.3k
100Ω*
80k*
7
–
–
2k
A2
1/2 LT1013
LT1004
1.2V
+
Q4
2N2222
Q2
2N2905
820Ω
10k
10k
6
4mA TO 20mA OUT
TO LOAD
2.2kΩ MAXIMUM
5
INPUT
0V TO 4V
1013/14 TA13
Fully Floating Modification to 4mA-20mA Current Loop†
T1
A1
1/2 LT1013
100k
A2
1/2 LT1013
1
68k*
5
+
7
–
TO INVERTER
DRIVE
6
–
8
3
10µF
0.1Ω
+
5V
2
4mA TO 20mA OUT
FULLY FLOATING
+
4
4k*
10k*
5V
301Ω*
1k
20mA
TRIM
4.3k
LT1004
1.2V
1N4002 (4)
†
8-BIT ACCURACY.
2k
4mA
TRIM
INPUT
0V TO 4V
1013/14 TA14
10134fd
16
LT1013/LT1014
typical Applications
5V Powered, Linearized Platinum RTD Signal Conditioner
2M
9
499Ω
167Ω
Q1
200k
Q2
2
200k
3
2N4250
(2)
–
A2
1/4 LT1014
+
1
150Ω
10
5k
LINEARITY
A4
1/4 LT1014
8
+
OUTPUT
0V TO 4V =
0°C TO 400°C
±0.05°C
GAIN TRIM
1k
2M
3.01k
SENSOR
ROSEMOUNT
118MF
7
–
1.5k
–
A3
1/4 LT1014
6
8.25k
50k
ZERO
TRIM
5
2.4k
5%
+
274k
5V
4
–
A1
1/4 LT1014
+
14
5V
11
13
12
LT1009
2.5V
10k
250k
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
5V
220
5V
8
4
8
4
LT1004
1.2V
301k
39k
100k
3
E
V ≈ –VREF
C
5
10k
ZERO
TRIM
VREF
LTC1044
+
100µF
+
2
2
1/2 LT1013
+
1
–
0.1
1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
D
PRESSURE
TRANSDUCER
350Ω
100µF
A
0.33
5
6
+
1/2 LT1013
7
OUTPUT
–
0V TO 3.5V
0psi TO 350psi
0.047
2k GAIN TRIM
* 1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
46k*
100Ω*
1013/14 TA16
10134fd
17
LT1013/LT1014
typical Applications
LVDT Signal Conditioner
7
0.005
30k
0.005
30k
5
6
8
FREQUENCY =
1.5kHz
5V
+
7
LT1013
11
LVDT
YEL-BLK
RDBLUE
–
BLUE
–5V
GRN
10k
4.7k
YEL-RD
1N914
BLK
12
LT1004
1.2V
2N4338
1.2k
10µF
100k
14
0.01
13
7.5k
100k
PHASE
TRIM
+
LVDT = SCHAEVITZ E-100.
3
+
1µF
2
1/2 LTC1043
100k
2
3
LT1013
1
–
200k
5V
+
8
7
LT1011
–
1
OUT
0V TO 3V
1k
10k
TO PIN 16, LT1043
4
1013/14 TA17
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
3
–INPUT
2
+
1/4 LT1014
–
R1
R3
2R
10M
RG
6
+INPUT
–
1/4 LT1014
5
+
12
+
2R
10M
13
–
9
–
10
+
R1
7
R2
8
1/4 LT1014
OUTPUT
R3
V+
R
5M
R2
1
GAIN = 1 + 2R1 R3
RG R2
4
1/4 LT1014
11
10pF
14
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON MODE LIMIT = V – + IB s 2R + 30mV
= 150mV for V – = 0V
IB = 12nA
100k
V–
18
1013/14 TA18
10134fd
LT1013/LT1014
typical Applications
Low Dropout Regulator for 6V Battery
12 OUTPUT
1N914
3
8
LTC1044
2
+
VBATT
6V
4
+
100Ω
10
5
10
2N2219
100k
100Ω
0.01Ω
1.2k
6
5
–
1M
3
LT1004
1.2V
2
A2
LT1013
5V OUTPUT
0.003µF
8
+
1
LT1013
–
120k
4
7
+
1N914
30k
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
IQUIESCENT = 850µA.
50k
OUTPUT ADJUST
1013/14 TA19
Voltage Controlled Current Source with Ground Referred Input and Output
5V
0V TO 2V
3
+
8
1/2 LT1013
2
–
1
4
0.68µF
1k
1/2 LTC1043
7
8
11
1µF
100Ω
1µF
12
13
14
IOUT = 0mA TO 15mA
VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
IOUT =
1013/14 TA20
10134fd
19
LT1013/LT1014
typical Applications
6V to ±15V Regulating Converter
6V
1µF
15pF
10k
Q1
CLK 2
CLK 1 74C74
100kHz INPUT
D1
Q1
D2
2N3906
–16V
74C00
Q2
L1
1MHY
Q2
+
+V
10k
10k
+
2N3904
1
10
4
1.4M
0.005
2
LT1013
10k
15pF
15VOUT
16V
8
10
16V
22k
2N4391
+
22k
–
+
6V
200k
VOUT
ADJ
6V
3
100k
–16V
LT1004
1.2V
82k
–
7
6
LT1013
5
+
L1 = 24-104 AIE VERNITRON
0.005
= 1N4148
1M
2N5114
±5mA OUTPUT
75% EFFICIENCY
–15VOUT
1013/14 TA21
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†
5V
3
2
5V
1/2 LT1013
–
1
OSCILLATOR SUPPLY
STABILIZATION
4
1M*
5M*
RT1
3.2k
2.16k*
RT2
6.25k
RT
1M*
4.22M*
TEMPERATURE
COMPENSATION
GENERATOR
YSI 44201
8
3.4k*
4.3k
LT1009
2.5V
+
1M*
6
5
20k
–
1/2 LT1013
+
5V
7
100k
3.5MHz
XTAL
OSCILLATOR
MV-209
100Ω
100k
560k
4.22M*
* 1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
† THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
2N2222
510pF
510pF
3.5MHz OUTPUT
0.03ppm/°C, 0°C TO 70°C
680Ω
1013/14 TA22
10134fd
20
LT1013/LT1014
schematic diagram
1/2 LT1013, 1/4 LT1014
V+
9k
9k
1.6k
Q13
Q6
Q5
1.6k
1.6k
Q16
100Ω
1k
800Ω
Q14
Q36
Q15
Q32
Q30
Q35
Q3
Q4
Q25
–
Q1
+
IN
Q26
2.5pF
400Ω
IN
Q33
21pF
3.9k
Q27
18Ω
2.4k
Q38
Q21
OUTPUT
Q2
Q41
14k
Q28
400Ω
Q22
Q39
Q18
Q12
Q29
Q10
4pF
Q31
Q11
Q9
75pF
10pF
Q7
Q8
5k
5k
Q40
Q19
2k
V–
J1
Q37
Q34
100pF
Q17
2k
42k
600Ω
Q23 Q24
Q20
1.3k
2k
30Ω
1013/14 SD
10134fd
21
LT1013/LT1014
Package Description
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
.040
(1.016)
MAX
.335 – .370
(8.509 – 9.398)
DIA
.305 – .335
(7.747 – 8.509)
.027 – .045
(0.686 – 1.143)
45o
PIN 1
.028 – .034
(0.711 – 0.864)
.050
(1.270)
MAX
SEATING
PLANE
.200
(5.080)
TYP
.165 – .185
(4.191 – 4.699)
GAUGE
PLANE
.010 – .045*
(0.254 – 1.143)
REFERENCE
PLANE
.500 – .750
(12.700 – 19.050)
.016 – .021**
(0.406 – 0.533)
.110 – .160
(2.794 – 4.064)
INSULATING
STANDOFF
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND THE SEATING PLANE
.016 – .024
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
(0.406 – 0.610)
H8(TO-5) 0.200 PCD 0204
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
.300 BSC
(7.62 BSC)
CORNER LEADS OPTION
(4 PLCS)
.023 – .045
(0.584 – 1.143)
HALF LEAD
OPTION
.045 – .068
(1.143 – 1.650)
FULL LEAD
OPTION
.015 – .060
(0.381 – 1.524)
.008 – .018
(0.203 – 0.457)
.405
(10.287)
MAX
.005
(0.127)
MIN
.200
(5.080)
MAX
8
6
7
5
.025
(0.635)
RAD TYP
.220 – .310
(5.588 – 7.874)
0o – 15o
1
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
.045 – .065
(1.143 – 1.651)
.014 – .026
(0.360 – 0.660)
.100
(2.54)
BSC
2
3
4
.125
3.175
MIN
J8 0801
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
.200
(5.080)
MAX
.300 BSC
(7.62 BSC)
.015 – .060
(0.381 – 1.524)
.008 – .018
(0.203 – 0.457)
.005
(0.127)
MIN
.785
(19.939)
MAX
14
13
12
11
10
9
8
.220 – .310
(5.588 – 7.874)
.025
(0.635)
RAD TYP
0o – 15o
1
.045 – .065
(1.143 – 1.651)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
.014 – .026
(0.360 – 0.660)
.100
(2.54)
BSC
2
3
4
5
6
7
J14 0801
.125
(3.175)
MIN
OBSOLETE PACKAGES
10134fd
22
LT1013/LT1014
Package Description
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
.255 ± .015*
(6.477 ± 0.381)
.300 – .325
(7.620 – 8.255)
.065
(1.651)
TYP
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
8.255
+0.889
–0.381
.130 ± .005
(3.302 ± 0.127)
.045 – .065
(1.143 – 1.651)
)
.120
(3.048) .020
MIN (0.508)
MIN
.018 ± .003
.100
(2.54)
BSC
(0.457 ± 0.076)
N8 1002
NOTE:
1. DIMENSIONS ARE
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.770*
(19.558)
MAX
14
13
12
11
10
9
8
1
2
3
4
5
6
7
.255 ± .015*
(6.477 ± 0.381)
.300 – .325
(7.620 – 8.255)
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
+0.889
8.255
–0.381
NOTE:
1. DIMENSIONS ARE
)
.045 – .065
(1.143 – 1.651)
.130 ± .005
(3.302 ± 0.127)
.020
(0.508)
MIN
.065
(1.651)
TYP
.120
(3.048)
MIN
.005
(0.127) .100
MIN (2.54)
BSC
.018 ± .003
(0.457 ± 0.076)
N14 1103
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
10134fd
23
LT1013/LT1014
Package Description
S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1636)
.050 BSC
.245
MIN
.045 ±.005
.189 – .197
(4.801 – 5.004)
NOTE 3
.160 ±.005
7
8
.010 – .020
s 45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
.030 ±.005
TYP
0°– 8° TYP
.016 – .050
(0.406 – 1.270)
5
6
RECOMMENDED SOLDER PAD LAYOUT
.053 – .069
(1.346 – 1.752)
.150 – .157
(3.810 – 3.988)
NOTE 3
.228 – .244
(5.791 – 6.197)
.004 – .010
(0.101 – 0.254)
1
NOTE:
1. DIMENSIONS IN
3
2
4
.050
(1.270)
BSC
.014 – .019
(0.355 – 0.483)
TYP
INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
SO8 0303
SW Package
XX-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
.050 BSC .045 ±.005
.030 ±.005
TYP
N
.005
(0.127)
RAD MIN
.009 – .013
(0.229 – 0.330)
NOTE:
1. DIMENSIONS IN
16
15
14
13
12
11
10
9
N
1
0° – 8° TYP
NOTE 3
.325 ±.005
.420
MIN
.291 – .299
(7.391 – 7.595)
NOTE 4
.010 – .029 s 45°
(0.254 – 0.737)
.398 – .413
(10.109 – 10.490)
NOTE 4
2
3
N/2
RECOMMENDED SOLDER PAD LAYOUT
.093 – .104
(2.362 – 2.642)
.394 – .419
(10.007 – 10.643)
NOTE 3
.037 – .045
(0.940 – 1.143)
.016 – .050
(0.406 – 1.270)
N/2
1
.050
(1.270)
BSC
.014 – .019
INCHES
(0.356 – 0.482)
(MILLIMETERS)
TYP
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
2
3
4
5
6
7
8
.004 – .012
(0.102 – 0.305)
S16 (WIDE) 0502
10134fd
24
LT1013/LT1014
Revision History
(Revision history begins at Rev D)
REV
DATE
DESCRIPTION
PAGE NUMBER
D
05/10
Updates to Typical Application “Hot-Wire Anemometer”
12
Updated Related Parts
26
10134fd
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
25
LT1013/LT1014
Typical Application
Step-Up Switching Regulator for 6V Battery
INPUT
6V
22k
2N2222
2.2
OUTPUT
15V
50mA
+
LT1004
1.2V
L1
1MHY
200k
5
220pF
1N5821
1M
220k
3
+
0.001
2
LT1013
1
300Ω
130k
+
2N5262
6
+
8
LT1013
–
7
4
100
5.6k
–
0.1
5.6k
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
1013/14 TA23
Related Parts
PART NUMBER
DESCRIPTION
COMMENTS
LT2078/LT2079
Dual/Quad 50µA Single Supply Precision Amplifier
50µA Max IS, 70µV Max VOS
LT2178/LT2179
Dual/Quad 17µA Single Supply Precision Amplifier
17µA Max IS, 70µV Max VOS
LTC6081/LTC6082
Dual/Quad 400µA Precision Rail-to-Rail Amplifier
VS = 2.7V to 6V, 400µA Max IS, 70µV VOS 0.8µV/°C TCVOS
LTC6078/LTC6079
Dual/Quad 72µA Precision Rail-to-Rail Amplifier
VS = 2.7V to 6V, 72µA Max IS, 25µV VOS 0.7µV/°C TCVOS
10134fd
26 Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
LT 0510 REV D • PRINTED IN USA
 LINEAR TECHNOLOGY CORPORATION 1990