[AK5388A] AK5388A 120dB 24-bit 192kHz 4-Channel ADC GENERAL DESCRIPTION The AK5388A is a 24bit, 216kHz sampling 4-channel A/D converter for high-end audio systems. The modulator in the AK5388A uses AKM’s Enhanced Dual Bit architecture, enabling the AK5388A to realize high accuracy and low cost. The AK5388A achieves 120dB dynamic range and 110dB S/(N+D), and an optional mono mode extends dynamic range to 123dB. The AK5388A’s digital filter features a modified FIR architecture that minimizes group delay while maintaining excellent linear phase response. So the device is suitable for professional audio applications including recording, sound reinforcement, effects processing, sound cards, and high-end A/V receivers. The AK5388A is available in 44pin LQFP package. FEATURES Sampling Rate: 8kHz ~ 216kHz Full Differential Inputs S/(N+D): 110dB DR, S/N: 120dB(Mono Mode: 123dB) Short Delay Digital Filter (GD=12.6/fs) Passband: 0~21.648kHz (@fs=48kHz) Ripple: 0.01dB Stopband: 80dB Digital HPF Power Supply: 4.75 ~ 5.25V(Analog), 3.0 ~ 3.6V(Digital) Output format: 24bit MSB justified, I2S or TDM Cascade TDM I/F: 8ch/48kHz, 4ch/96kHz, 4ch/192kHz Master & Slave Mode Overflow Flag Power Dissipation: 575 mW (@fs=48kHz) Package: 44pin LQFP AVDD1 VSS1 AVDD2 VSS6 DVDD1 VSS3 LIN1+ LIN1RIN1+ RIN1LIN2+ LIN2- Modulator Decimation Filter Modulator Decimation Filter Modulator Decimation Filter Modulator Decimation Filter DVDD2 VSS4 VSS5 LRCK BICK SDTO1 SDTO2 Audio Interface TDMIN MSN DIF TDM0 RIN2+ RIN2- TDM1 HPF MONO VCOM1 VCOM2 Voltage Reference Clock Divider VREFP1 VREFL1 VREFP2 VREFL2 OVF MS1494-E-03 PDN MCLK CKS0 CKS2 CKS2 2014/02 -1- [AK5388A] ■ Ordering Guide –10 ~ +70C 44pin LQFP (0.8mm pitch) Evaluation Board for AK5388A AK5388AEQ AKD5388A RIN2+ RIN2- VSS6 AVDD2 TEST2 VSS5 VSS4 DVDD2 HPFE MONO DIF 33 32 31 30 29 28 27 26 25 24 23 ■ Pin Layout VREFP2 34 22 TDM1 VREFL2 35 21 TDM0 VCOM2 36 20 TDMIN LIN2+ 37 19 OVF 18 SDTO2 17 SDTO1 16 VSS3 LIN2- 38 TEST3 39 RIN1- 40 AK5388AEQ Top View 8 9 10 11 CKS1 CKS2 PDN M/SN LIN1+ 7 MCLK 6 12 VSS2 44 CKS0 VREFP1 5 BICK TEST1 13 4 43 AVDD1 VREFL1 3 LRCK 2 DVDD1 14 LIN1- 15 42 VSS1 41 1 RIN1+ VCOM1 MS1494-E-03 2014/02 -2- [AK5388A] PIN / FUNCTION No. 1 2 3 4 5 6 7 8 Pin Name LIN1+ LIN1 VSS1 AVDD1 TEST1 VSS2 CKS0 CKS1 I/O I I I I I Function ADC1 Lch Positive Analog Input Pin ADC1 Lch Negative Analog Input Pin Ground Pin Analog Power Supply Pin, 4.75 5.25V Test Pin (Connected to VSS1-6) Ground pin Clock Mode Select #0 Pin Clock Mode Select #1 Pin Clock Mode Select #2 Pin 9 CKS2 I 10 PDN I 11 MSN I 12 MCLK I 13 BICK I/O 14 LRCK I/O 15 16 DVDD1 VSS3 - 17 SDTO1 O 18 SDTO2 O 19 OVF O 20 TDMIN I 21 TDM0 I 22 TDM1 I 23 DIF I 24 MONO I 25 HPFE I 26 27 28 DVDD2 VSS4 VSS5 - Power-Down Mode Pin When “L”, the circuit is in power-down mode. The AK5388A should always be reset upon power-up. Master/Slave mode Select Pin “L”: Slave mode, “H”: Master mode Master Clock Input Pin Audio Serial Data Clock Pin “L” Output in Master Mode at Power-down mode. Output Channel Clock Pin “L” Output in Master Mode at Power-down mode. Digital Power Supply Pin, 3.0 3.6V Ground Pin ADC1 Audio Serial Data Output Pin “L” Output at Power-down mode. ADC2 Audio Serial Data Output Pin “L” Output at Power-down mode. Analog Input Overflow Detect Pin This pin goes to “H” if any analog inputs overflows. “L” Output at Power-down mode. TDM Data Input Pin TDM I/F Format Enable Pin “L” : Normal Mode, “H” : TDM Mode TDM I/F BICK Frequency Select Pin “L” : Normal Mode, “H” : TDM Mode Audio Interface Format Pin “L”: 24BitMSB justified, “H”: 24BitI2S Compatible Stereo/Mono mode Select Pin “L”: Stereo mode, “H”: Mono mode HPF Enable Pin “L”: Disable, “H” Enable Digital Power Supply Pin, 3.0 3.6V Ground Pin Ground pin MS1494-E-03 2014/02 -3- [AK5388A] No. 29 30 31 32 33 34 35 Pin Name TEST2 AVDD2 VSS6 RIN2 RIN2+ VREFP2 VREFL2 I/O I I I I I Function Test Pin (Connected to VSS1-6) Analog Power Supply Pin, 4.75 5.25V Ground Pin ADC2 Rch Negative Analog Input Pin ADC2 Rch Positive Analog Input Pin ADC2 High Level Voltage Reference Input Pin ADC2 Low Level Voltage Reference Input Pin Common Voltage Output Pin, (AVDD2)/2 36 VCOM2 O Normally connected to AVSS2 with a 0.1F ceramic capacitor in parallel with an electrolytic capacitor less than 2.2F. 37 LIN2+ I ADC2 Lch Positive Analog Input Pin 38 LIN2 I ADC2 Lch Negative Analog Input Pin 39 TEST3 I Test Pin (Connected to VSS1-6) 40 RIN1 I ADC1 Rch Negative Analog Input Pin 41 RIN1+ I ADC1 Rch Positive Analog Input Pin Common Voltage Output Pin, (AVDD1)/2 42 VCOM1 O Normally connected to AVSS1 with a 0.1F ceramic capacitor in parallel with an electrolytic capacitor less than 2.2F. 43 VREFL1 I ADC1 Low Level Voltage Reference Input Pin 44 VREFP1 I ADC1 High Level Voltage Reference Input Pin Note: All digital input pins should not be allowed to float. MS1494-E-03 2014/02 -4- [AK5388A] ■ Handling of Unused Pin The unused I/O pins should be processed appropriately as below. Classification Analog Digital Pin Name LIN1+/, RIN1+/ LIN2+/, RIN+/ OVF TEST1 TEST2 TEST3 Setting These pins should be connected to VSS1-6 These pins should be connected to VSS1-6 This pin should be open. This pin should be connected to VSS1-6 This pin should be connected to VSS1-6 This pin should be connected to VSS1-6 ABSOLUTE MAXIMUM RATINGS (VSS1-6=0V; Note 1) Parameter Symbol min max Unit Power Supplies: Analog Analog Digital Digital Output Buffer Input Current, Any Pin Except Supplies Analog Input Voltage (Note 2) AVDD1 AVDD2 DVDD1 DVDD2 IIN VINA VINA VIND VIND Ta Tstg 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 10 65 6.0 6.0 6.0 6.0 10 AVDD1+0.3 AVDD2+0.3 DVDD1+0.3 DVDD2+0.3 70 150 V V V V mA Digital Input Voltage (Note 3) V V Ambient Temperature (power applied) C Storage Temperature C Note 1. All voltages with respect to VSS1-6 pins. Note 2. VREFP1, VREFP2, VREFL1, VREFL2, AINL1/2+, AINL1/2-, AINR1/2+ and AINR1/2- pins Note 3. PDN, CKS0, CKS1, CKS2, TDMIN, MCLK, BICK, LRCK, DIF, TDM0, TDM1, HPFE, MONO and TST1/2/3 pins WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. MS1494-E-03 2014/02 -5- [AK5388A] RECOMMENDED OPERATING CONDITIONS (VSS1-6=0V; Note 1) Parameter Power Supplies: (Note 4) Voltage Reference (Note 5) Analog Analog Digital “H” voltage Reference “L” voltage reference Symbol min typ max Unit AVDD1 AVDD2 DVDD1/2 VREFP1 VREFP2 VREFL1 VREFL2 VREF VREF 4.75 4.75 3.0 AVDD1-0.5 AVDD2-0.5 VSS1-6 VSS1-6 AVDD1-0.5 AVDD2-0.5 5.0 5.0 3.3 - 5.25 5.25 3.6 AVDD1 AVDD2 AVDD1 AVDD2 V V V V V V V V V VREFP1 – VREFL1 VREFP2 – VREFL2 Note 1. All voltages with respect to VSS1-6 pins. Note 4. The power up sequence between AVDD1/2 and DVDD1/2 is not critical. Note 5. VREFL– and VREFR– pins should be connected to VSS1-6 pins. Analog input voltage scales with voltage of {(VREFP) – (VREFL)}. Vin (typ, @ 0dB) = 2.8 x {(VREF+) – (VREF–)} / 5 [V]. WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS1494-E-03 2014/02 -6- [AK5388A] ANALOG CHARACTERISTICS (Ta = 25C; AVDD1/2=5.0V; DVDD1/2=3.3V; VSS1-6=0V; VREFP1=VREFP2=AVDD, VREFL1 = VREFL2 = VSS1-6; fs=48kHz, 96kHz, 192kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=10Hz 20kHz at fs = 48kHz, 40Hz 40kHz at fs = 96kHz, 40Hz 40kHz at fs = 192kHz; unless otherwise specified) Parameter min typ max Unit Analog Input Characteristics: Resolution 24 Bits Input Voltage (Note 6) 2.7 2.8 2.9 Vpp 1dBFS 100 110 dB S/(N+D) fs=48kHz 20dBFS 97 dB BW=20kHz 60dBFS 57 dB 1dBFS 97 107 dB fs=96kHz 20dBFS 90 dB BW=40kHz 60dBFS 50 dB 1dBFS 107 dB fs=192kHz 20dBFS 90 dB BW=40kHz 60dBFS 50 dB Stereo Mode Dynamic Range 114 120 dB Mono Mode (60dBFS with A-weighted) 123 Stereo Mode S/N 114 120 dB Mono Mode (A-weighted) 123 Input Resistance 3.15 3.7 4.25 k Interchannel Isolation 110 120 dB Interchannel Gain Mismatch 0.1 0.5 dB Power Supply Rejection (Note 7) 60 dB Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) AVDD1/2 105 130 mA DVDD (fs=48kHz) 15 22 mA DVDD (fs=96kHz) 27 39 mA DVDD (fs=192kHz) 20 29 mA Power down mode (PDN pin = “L”) (Note 8) AVDD+DVDD 10 100 A Note 6. This value is (LIN+)(LIN) and (RIN+)(RIN). Input voltage is proportional to VREF voltage. Vin = 0.56 x VREF1/2 (Vpp). Note 7. PSR is applied to AVDD1/2 and DVDD1/2 with 1kHz, 20mVpp. The VREFP1 and VREFP2 pins held a constant voltage. Note 8. All digital input pins are held DVDD1/2 or VSS3/4. MS1494-E-03 2014/02 -7- [AK5388A] FILTER CHARACTERISTICS (fs=48kHz) (Ta=25C; AVDD1/2=4.75 5.25V; DVDD1/2=3.0 3.6V; DFS1 = “L”, DFS0 = “L”) Parameter Symbol min typ ADC Digital Filter (Decimation LPF): Passband (Note 9) 0.01dB PB 0 0.1dB 22.0 3.0dB 23.8 6.0dB 24.4 Stopband SB 27.9 Passband Ripple PR Stopband Attenuation SA 80 Group Delay (Note 10) GD 12.6 Group Delay Distortion GD 0.01 ADC Digital Filter (HPF): Frequency Response (Note 9) 3dB FR 1.0 0.1dB 6.5 max Unit 21.6 - kHz kHz kHz kHz kHz dB dB 1/fs s 0.01 Hz Hz FILTER CHARACTERISTICS (fs=96kHz) (Ta=25C; AVDD1/2=4.75 5.25V; DVDD1/2=3.0 3.6V; DFS1 = “L”, DFS0 = “H”) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 9) 0.01dB PB 0 43.3 kHz 0.1dB 44.2 kHz 3.0dB 47.6 kHz 6.0dB 48.9 kHz Stopband SB 55.9 kHz Passband Ripple PR 0.01 dB Stopband Attenuation SA 80 dB Group Delay (Note 10) GD 12.6 1/fs Group Delay Distortion GD 0.013 s ADC Digital Filter (HPF): Frequency Response (Note 9) 3dB FR 1.0 Hz 0.1dB 6.5 Hz Note 9. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz. Note 10. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 24bit data both channels to the ADC output register for ADC. MS1494-E-03 2014/02 -8- [AK5388A] FILTER CHARACTERISTICS (fs=192kHz) (Ta=25C; AVDD1/2=4.75 5.25V; DVDD1/2=3.0 3.6V; DFS1 = “H”, DFS0 = “L”) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 11) 0.08dB PB 83.0 kHz 0.1dB 83.4 kHz 3.0dB 99.9 kHz 6.0dB 106.5 kHz Stopband SB 141.1 kHz Passband Ripple PR 0.08 dB Stopband Attenuation SA 80 dB Group Delay (Note 12) GD 9.8 1/fs Group Delay Distortion GD 0 s ADC Digital Filter (HPF): Frequency Response (Note 11) 3dB FR 1.0 Hz 0.1dB 6.5 Hz Note 11. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz. Note 12. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 24bit data both channels to the ADC output register for ADC. DC CHARACTERISTICS (Ta=25C; AVDD1/2=4.75 5.25V; DVDD1/2=3.0 3.6V) Parameter Symbol High-Level Input Voltage VIH Low-Level Input Voltage VIL High-Level Output Voltage (Iout=400A) VOH Low-Level Output Voltage Input Leakage Current (Iout=400A) VOL Iin MS1494-E-03 min 70%DVDD1 70%DVDD2 DVDD10.4 DVDD20.4 - typ - max 30%DVDD1 30%DVDD2 0.4 10 Unit V V V V V V V A 2014/02 -9- [AK5388A] SWITCHING CHARACTERISTICS (Ta=25C; AVDD1/2=4.75 5.25V; DVDD1/2=3.0 3.6V; CL=20pF) Parameter Symbol min Master Clock Timing Master Clock 128fs: Pulse Width Low Pulse Width High 192fs: Pulse Width Low Pulse Width High 256fs: Pulse Width Low Pulse Width High 384fs: Pulse Width Low Pulse Width High 512fs: Pulse Width Low Pulse Width High 768fs: Pulse Width Low Pulse Width High LRCK Timing (Slave Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency Duty Cycle TDM256 MODE (TDM1=“L”, TDM0=“H”) LRCK Frequency “H” time “L” time TDM128 MODE (TDM1=“H”, TDM0=“H”) LRCK Frequency “H” time “L” time LRCK Timing (Master Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency Duty Cycle TDM256 MODE (TDM1=“L”, TDM0=“H”) LRCK Frequency “H” time (Note 13) TDM128 MODE (TDM1=“H”, TDM0=“H”) LRCK Frequency “H” time (Note 13) Note 13. “L” time at I2S format typ max Unit 24.576 27.648 36.864 41.472 12.288 27.648 18.432 41.472 24.576 27.648 36.864 41.472 MHz ns ns MHz ns ns MHz ns ns MHz ns ns MHz ns ns MHz ns ns fCLK tCLKL tCLKH fCLK tCLKL tCLKH fCLK tCLKL tCLKH fCLK tCLKL tCLKH fCLK tCLKL tCLKH fCLK tCLKL tCLKH 1.024 0.4fCLK 0.4fCLK 1.536 0.4fCLK 0.4fCLK 2.048 0.4fCLK 0.4fCLK 3.072 0.4fCLK 0.4fCLK 4.096 0.4fCLK 0.4fCLK 6.144 0.4fCLK 0.4fCLK fs Duty 8 45 216 55 kHz % fs tLRH tLRL 8 1/256fs 1/256fs 54 kHz ns ns fs tLRH tLRL 8 1/128fs 1/128fs 216 kHz ns ns fs Duty 8 216 kHz % fs tLRH 8 54 kHz ns fs tLRH 8 216 kHz ns MS1494-E-03 50 1/8fs 1/4fs 2014/02 - 10 - [AK5388A] Parameter Symbol min Normal mode (TDM1=“L”, TDM0=“L”) BICK Period Normal Speed Mode Double , Quad Speed Mode Duty Cycle LRCK Edge to BICK “” (Note 14) BICK “” to LRCK Edge (Note 14) LRCK to SDTO1/2 (MSB) (Except I2S mode) BICK “” to SDTO1/2 TBCK TBCK Duty tLRB tBLR tLRS tBSD 1/128fs 1/64fs 40 20 20 TDM256 mode (TDM1=“L”, TDM0=“H”) BICK Period Duty Cycle LRCK Edge to BICK “” (Note 14) BICK “” to LRCK Edge (Note 14) BICK “” to SDTO1/2 (Note 15) TDMIN Setup time tBCK Duty tLRB tBLR tBSD tTDMS 1/256fs 40 20 20 tBCK Duty tLRB tBLR tBSD 1/128fs 40 20 20 tBCK Duty tLRB tBLR tBSS tBSH 1/128fs 40 10 10 10 5 typ max Unit Audio Interface Timing (Slave mode) TDM128 mode (TDM1=“H”, TDM0=“H”) (8KHz fs 108KHz) BICK Period Duty Cycle LRCK Edge to BICK “” (Note 14) BICK “” to LRCK Edge (Note 14) BICK “” to SDTO1 (Note 15) TDM128 mode (TDM1=“H”, TDM0=“H”) (108KHz fs 216KHz) BICK Period Duty Cycle LRCK Edge to BICK “” (Note 14) BICK “” to LRCK Edge (Note 14) SDTO1 Setup time BICK “ “ (Note 15) SDTO1 Hold time BICK “ “ (Note 15) MS1494-E-03 60 20 60 20 16 60 20 60 ns ns % ns ns ns ns ns % ns ns ns ns ns % ns ns ns ns % ns ns ns ns 2014/02 - 11 - [AK5388A] Parameter Symbol min typ max Unit Audio Interface Timing (Master mode) Normal mode (TDM1=“L”, TDM0=“L”) BICK Frequency fBCK 64fs Hz BICK Duty dBCK 50 % BICK “” to LRCK tMBLR 20 20 ns BICK “” to SDTO1/2 tBSD 20 20 ns TDM256 mode (TDM1=“L”, TDM0=“H”) BICK Frequency fBCK 256fs Hz BICK Duty (Note 16) dBCK 50 % BICK “” to LRCK tMBLR 12 12 ns BICK “” to SDTO1 (Note 15) tBSD 20 20 ns TDM128 mode (TDM1=“H”, TDM0=“H”) (8KHz fs 108KHz) BICK Frequency fBCK 128fs Hz BICK Duty dBCK 50 % BICK “” to LRCK tMBLR 12 12 ns BICK “” to SDTO1 (Note 15) tBSD 20 20 ns TDM128 mode (TDM1=“H”, TDM0=“H”) (108KHz fs 216KHz) BICK Frequency fBCK 128fs Hz BICK Duty dBCK 50 % BICK “” to LRCK tMBLR 6 6 ns BICK “” to SDTO1 tBSD 10 10 ns Power-Down & Reset Timing PDN Pulse Width (Note 17) tPD 150 ns PDN “” to SDTO1/2 valid (Note 18) tPDV 516 1/fs Note 14. BICK rising edge must not occur at the same time as LRCK edge. Note 15. SDTO2 output is fixed to “L”. Note 16. This value is MCLK=512fs. Duty cycle is not guaranteed when MCLK=256fs/384fs. Note 17. The AK5388A can be reset by bringing the PDN pin = “L”. Note 18. This cycle is the number of LRCK rising edges from the PDN pin = “H”. The value is when the AK5388A is in master mode. In case of in slave mode, the value will be 1LRCK clock cycle (1/fs) longer. MS1494-E-03 2014/02 - 12 - [AK5388A] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKL tCLKH Figure 1. MCLK Timing (TDM0 pin = “L” or “H”) 1/fs VIH LRCK VIL tLRH tLRL Figure 2. LRCK Timing (TDM0 pin = “L” or “H”) tBCK VIH BICK VIL tBCKH tBCKL Duty = tBCKH/tBCK, tBCKL/tBCK Figure 3.BICK Timing (TDM0 pin = “L” or “H”) MS1494-E-03 2014/02 - 13 - [AK5388A] VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%DVDD Figure 4. Audio Interface Timing (Slave mode, TDM0 pin = “L”) Note: SDTO shows SDTO1 and SDTO2. VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSD SDTO1 50%DVDD tTDMS VIH TDMIN VIL Figure 5. Audio Interface Timing (Slave mode, TDM0 pin = “H”) MS1494-E-03 2014/02 - 14 - [AK5388A] VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSD SDTO1 50%DVDD Figure 6. Audio Interface Timing (Slave mode, TDM0 pin = “H”, TDM1 pin = “H”, 8KHz fs 108KHz) VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSS SDTO1 tBSH DATA 50%DVDD Figure 7. Audio Interface Timing (Slave mode, TDM0 pin = “H”, TDM1 pin = “H”, 108KHz < fs 216KHz) MS1494-E-03 2014/02 - 15 - [AK5388A] LRCK 50%DVDD tMBLR dBCK BICK 50%DVDD tBSD SDTO 50%DVDD Figure 8. Audio Interface Timing (Master mode) VIH PDN VIL tPDV tPD SDTO 50%DVDD Figure 9. Power Down & Reset Timing Note: SDTO shows SDTO1 and SDTO2. MS1494-E-03 2014/02 - 16 - [AK5388A] OPERATION OVERVIEW ■ System Clock MCLK (128fs/192fs/256fs/384fs/512fs/768fs), BICK (48fs) and LRCK (fs) clocks are required in slave mode. The LRCK clock input must be synchronized with MCLK, however the phase is not critical. Table 1, Table 2 and Table 3 show the relationship of typical sampling frequency and the system clock frequency. MCLK frequency is selected by CKS1-0 pins as shown in Table 4. Since the AK5388A includes a phase detection circuit for LRCK, the AK5388A is reset automatically when the synchronization is out of phase after changing the clock frequencies. All external clocks (MCLK, BICK and LRCK) must be present unless the PDN pin = “L”. If these clocks are not provided, the AK5388A may draw excess current due to its use of internal dynamically refreshed logic. If the external clocks are not present, place the AK5388A in power-down mode (PDN pin = “L”). In master mode, the master clock (MCLK) must be provided unless the PDN pin = “L”. In case of using two or more devices, the AK5388A should be reset by the PDN pin when changing clocks, changing clock modes and switching digital interfaces for a synchronization. Clock or mode changes should be made during the reset, and a stable clock is needed after the reset. fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs 8.192MHz 12.288MHz 12.288MHz 18.432MHz 24.576MHz N/A N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 1. System Clock Example (Slave Mode) fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs 8.192MHz 12.288MHz 12.288MHz 18.432MHz 24.576MHz 36.864MHz N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 2. System Clock Example (Master Mode) fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs N/A N/A N/A N/A 24.576MHz 36.864MHz N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 3. System Clock Example (Auto Mode) MS1494-E-03 2014/02 - 17 - [AK5388A] CKS2 pin CKS1 pin CKS0 pin L L L L L H L H L L H H H L L H L H H H L H H H M/S Pin L H L H L H L H L H L H L H L MCLK Frequency Quad Speed Mode 128fs (108KHz fs 216KHz) Quad Speed Mode 192fs (108KHz fs 216KHz) Normal Speed Mode 256fs (8KHz fs 54KHz) Double Speed Mode 256fs (54KHz fs 108KHz) Auto (8KHz fs 216KHz) Double Speed Mode 384fs (54KHz fs 108KHz) Normal Speed Mode 384fs (8KHz fs 54KHz) Normal Speed Mode 512fs (8KHz fs 54KHz) Normal Speed Mode 768fs (8KHz fs 54KHz) Table 4. MCLK Frequency When changing MCLK frequency in master/slave mode, the AK5388A should reset by PDN pin = “L”. (ex. 12.288MHz(@fs=48kHz) at CKS1 pin = CKS0 pin = “L”. ■ Audio Interface Format 12 different audio data interface formats can be selected using the TDM1-0, M/S and DIF pins as shown in Table 5. The audio data format can be selected by the DIF pin. In all formats the serial data is MSB-first, 2's compliment format. The SDTO1/2 is clocked out on the falling edge of BICK. In normal mode, Mode 0-1 are the slave mode, and BICK is available up to 128fs at fs=48kHz. BICK outputs 64fs clock in Mode 2-3. In TDM256 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pins. The SDTO2 output is fixed to “L”. BICK should be fixed to 256fs. In slave mode, “H” time and “L” time of LRCK should be at least 1/256fs. In master mode, “H” time (“L” time at I2S mode) of LRCK is 1/8fs (typ). TDM256 mode only supports 48kHz sampling. In TDM128 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pin. The SDTO2 output is fixed to “L”. BICK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be at least 1/128fs. In master mode, “H” time (“L” time at I2S mode) of LRCK is 1/4fs (typ). TDM128 mode supports up to 192kHz sampling. Cautions for when using TDM128 mode in slave mode When setting the AK5388A to TDM128 mode while it is operated in slave mode, the BICK falling edge must not occur more than 100 times during the period from the second rising edge of MCLK after releasing a PDN reset to the first LRCK rising edge (in MSB justified) or falling edge (in I2S compatible). The data to the SDTO1 pin may shift the timing against LRCK if BICK falls more than 123 times in this period. The AK5388A must be reset by the PDN pin when changing the clock frequency in TDM128 mode while it is operated in slave mode. When releasing this reset, BICK falling edge must also not occur more than 100 times during the period from the second rising edge of MCLK to the first LRCK rising edge (in MSB justified) or falling edge (in I2S compatible). MS1494-E-03 2014/02 - 18 - [AK5388A] PDN MCLK 1 2 LRCK BICK 0 BICK_Counter 1 2 3 4 5 6 97 98 99 100 101 102 103 BICK falling edge must be less than 100 times during the period from the second rising edge of MCLK after releasing PDN reset to the first rising edge of LRCK Figure 10. Clock Input Timing (TDM128, Slave mode, MSB justified) PDN MCLK 1 2 LRCK BICK 0 BICK_Counter 1 2 3 4 5 6 97 98 99 100 101 102 103 BICK falling edge must be less than 100 times during the period from the second rising edge of MCLK after releasing PDN reset to the first falling edge of LRCK Figure 11. Clock Input Timing (TDM128, Slave mode, I2S Compatible) Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 TDM1 Normal L TDM256 L TDM128 H N/A H LRCK I/O L 24bit, MSB justified H/L I L H 24bit, I2S Compatible L/H I L L 24bit, MSB justified H/L O H H 24bit, I2S Compatible L/H O L 24bit, MSB justified I L H 24bit, I2S Compatible I H L 24bit, MSB justified O H H 24bit, I2S Compatible O L 24bit, MSB justified I L 2 H 24bit, I S Compatible I H L 24bit, MSB justified O H H 24bit, I2S Compatible O L N/A N/A N/A N/A N/A Table 5. Audio Interface Formats (N/A: Not available) TDM0 M/S DIF SDTO MS1494-E-03 BICK 48-128fs 48-128fs 64fs 64fs 256fs 256fs 256fs 256fs 128fs 128fs 128fs 128fs N/A I/O I I O O I I O O I I O O N/A 2014/02 - 19 - [AK5388A] LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 BICK(64fs) SDTO1/2(o) 23 22 12 11 10 23:MSB, 0:LSB 0 23 22 12 11 10 Lch Data 0 23 Rch Data Figure 12. Mode 0/2 Timing (Normal mode, MSB justified) LRCK 0 1 2 3 23 24 25 26 29 30 31 0 1 2 3 23 24 25 26 29 30 31 0 1 BICK(64fs) SDTO1/2(o) 23 22 2 1 23:MSB, 0:LSB 0 23 22 Lch Data 2 1 0 Rch Data 2 Figure 13. Mode 1/3 Timing (Normal mode, I S Compatible) 256 BICK LRCK (Mode 6) LRCK (Mode 4) BICK (256fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 14. Mode 4/6 Timing (TDM256 mode, MSB justified) 256 BICK LRCK (Mode 7) LRCK (Mode5) 5) BICK (256fs) SDTO1 23 0 23 0 23 0 23 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 Figure 15. Mode 5/7 Timing (TDM256 mode, I2S Compatible) MS1494-E-03 2014/02 - 20 - [AK5388A] 128 BICK LRCK (Mode 10) LRCK (Mode 8) BICK (128fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 16. Mode 8/10 Timing (TDM128 mode, MSB justified) 128 BICK LRCK (Mode 11) LRCK (Mode 9) BICK (128fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 2 Figure 17. Mode 9/11 Timing (TDM128 mode, I S Compatible) MS1494-E-03 2014/02 - 21 - [AK5388A] ■ Digital High Pass Filter (HPF) The ADC has a digital high pass filter for DC offset cancellation. The HPF is controlled by the HPFE pin. If the HPF setting (ON/OFF) is changed during operation, a click noise occurs due to the change in DC offset. The HPF setting should only be changed when the PDN pin = “L”. ■ Overflow Detection The AK5388A has an overflow detect function for the analog input. The OVF pin goes to “H” if either channel overflows (more than 0.3dBFS). OVF output for overflowed analog input has the same group delay as the ADC (GD=13/fs=0.27ms@fs=48kHz). OVF is “L” for 516/fs (=10.75ms@fs=48kHz) after the PDN pin = “”, and then overflow detection is enabled. ■ Power Down and Reset The AK5388A is placed in the power-down mode by bringing PDN pin “L” and the digital filter is also reset at the same time. This reset should always be done after power-up. In the power-down mode, the VCOM is AGND level. An analog initialization cycle starts after exiting the power-down mode. The output data SDTO is valid after 516 cycles of LRCK clock in master mode (517 cycles in slave mode). During initialization, the ADC digital data outputs of both channels are forced to “0”. The ADC outputs settle to data correspondent to the input signals after the end of initialization (Settling takes approximately the group delay time). The AK5388A should be reset once by bringing the PDN pin “L” after power-up. The internal timing starts clocking by the rising edge (falling edge at Mode 1) of LRCK after exiting from reset and power down state by MCLK. (1) PDN Internal State Normal Operation Power-down Initialize Normal Operation GD (2) GD A/D In (Analog) A/D Out (Digital) Clock In MCLK,LRCK,SCLK (3) “0”data Idle Noise “0”data Idle Noise (4) Notes: (1) 517/fs in slave mode and 516/fs in master mode. (2) Digital output corresponding to analog input has group delay (GD). (3) A/D output is “0” data in power-down state. (4) When the external clocks (MCLK, SCLK, LRCK) are stopped, the AK5388A should be in the power-down state. Figure 18. Power-down/up sequence example MS1494-E-03 2014/02 - 22 - [AK5388A] ■ Cascade TDM Mode The AK5388A supports cascading of up to two devices in a daisy chain configuration in TDM256 mode. In this mode, SDTO1 pin of device #1 is connected to TDMIN pin of device #2. The SDTO1 pin of device #2 can output 8-chnnels of TDM data multiplexed with 4-chnnel of TDM data from device #1 and 4-channel of TDM data from device #2. Figure 19 shows a connection example of a daisy chain. When using two AK5388A’s in slave mode by cascade connection, the internal timing between device #1 and #2 may differ for 1MCLK clock cycle. BICK falling edge must me more than ±10ns from a MICK rising edge to prevent this phase difference between two devices. (Table 6) BICK must be divided by two on a MCLK falling edge (Figure 21) when MCLK=2 x BICK (Normal speed 512fs mode or Double speed 256fs mode), and BICK must be in-phase signal to MCLK (Figure 22) when MCLK = BICK (Normal speed 256fs mode or Quad speed 128fs mode) to achieve this internal timing synchronization. AK5388A #1 MCLK 256fs or 512fs LRCK 48kHz BICK 256fs TDMIN SDTO1 GND SDTO2 MCLK AK5388A #2 LRCK BICK TDMIN 8ch TDM SDTO1 SDTO2 Figure 19. Cascade TDM Connection Diagram 256 BICK LRCK BICK(256fs) #1 SDTO1(o) #1 SDTO2(o) #2 TDMIN(i) #2 SDTO1(o) 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L1-#1 R1-#1 L2-#1 R2-#1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 20. Cascade TDM Timing MS1494-E-03 2014/02 - 23 - [AK5388A] Parameter Symbol min MCLK “” to BICK “↓” BICK “↓” to MCLK“” tMCB tBIM 10 10 typ max Units ns ns Table 6 TDM Mode Clock Timing VIH MCLK VIL tMCB tBIM VIH BICK VIL Figure 21. Audio Interface timing (Slave mode, TDM0 Mode MCLK=2 x BICK) VIH MCLK VIL tMCB tBIM VIH BICK VIL Figure 22. Audio Interface Timing (Slave mode, TDM0 Mode MCLK=BICK) ■ Mono Mode When the MONO pin is set to “H”, the AK5388A is in Mono mode. In this mode, dynamic range and S/N can be improved by approximately 3dB when the same analog signal is inputted to LIN1 and RIN1, LIN2 and RIN2. The LIN1 and RIN1 data are summed and the amplitude is attenuated into half to be output from the SDTO1 pin. The LIN2 and RIN2 data are summed and the amplitude is attenuated into half to be output from the SDTO2 pin. MONO pin SDTO1/2 Output Data L Stereo Mode H Mono Mode Table 7. Setup of MONO mode MS1494-E-03 2014/02 - 24 - [AK5388A] SYSTEM DESIGN LIN2+ LIN2- 100u 2.2u ++ + 20Ω VREFP2 34 VREFL2 35 LIN2+ 37 LIN2- 38 TEST3 39 RIN1- 40 RIN1+ 41 VCOM1 42 LIN1- RIN2- 32 VSS1 VSS6 31 4 AVDD1 5 TEST1 TEST2 29 6 VSS2 VSS5 28 7 CKS0 8 CKS1 DVDD2 26 9 CKS2 HPFE 25 AVDD2 30 AK5388A VSS4 27 Top View 10u + 0.1u 10u + Digital 3.3V 22 TDM1 21 TDM0 20 TDMIN 19 OVF 18 SDTO2 17 SDTO1 DIF 23 16 VSS3 11 MSN 15 DVDD1 MONO 24 14 LRCK 10 PDN 0.1u 0.1u Analog Ground Ground + Electrolytic Capacitor 10u 64fs fs Digital + RIN2+ RIN2- 3 12 MCLK MicroController 0.1u RIN2+ 33 2 13 BICK 10u + LIN1+ VREFL1 43 1 VREFP1 44 LIN1+ 20Ω 0.1u 0.1u 0.1u 0.1u LIN1- Analog 5.0V 2.2u 100u + + VCOM2 36 Analog 5.0V RIN1+ RIN1- Figure 23 and Figure 24 show the system connection diagram. The evaluation board demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. MicroController Ceramic Capacitor Digital 3.3v Digital Ground Note: - VSS1-6 should be distributed separately from the ground of external digital devices (MPU, DSP etc.). - All digital input pins should not be left floating. Figure 23. Typical Connection Diagram MS1494-E-03 2014/02 - 25 - [AK5388A] Controller LIN1+ 2 LIN1- 3 VSS1 4 AVDD1 5 TEST1 6 VSS2 7 CKS0 8 CKS1 9 CKS2 VREFP2 34 VCOM2 36 LIN2- 38 LIN2+ 37 RIN1- 40 TEST3 39 RIN1+ 41 VCOM1 42 VREFL2 35 1 RIN2+ 33 RIN2- 32 AK5388AEQ System VREFL1 43 Analog Ground VREFP1 44 Digital Ground VSS6 31 AVDD2 30 TEST2 29 VSS5 28 VSS4 27 DVDD2 26 HPFE 25 22 TDM1 21 TDM0 20 TDMIN DIF 23 19 OVF 18 SDTO2 17 SDTO1 14 LRCK 13 BICK 12 MCLK 11 M/SN 16 VSS3 MONO 24 15 DVDD1 10 PDN Figure 24. Ground Layout Note: VSS1-6 must be connected to the same analog ground plane. 1. Grounding and Power Supply Decoupling The AK5388A requires careful attention to power supply and grounding arrangements. AVDD1/2 and DVDD1/2 are usually supplied from the system’s analog supply. Alternatively if AVDD1/2 and DVDD1/2 are supplied separately, the power up sequence is not critical. VSS1-6 of the AK5388A must be connected to the analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK5388A as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference Inputs The reference voltage for A/D converter is supplied from VREFP1/2 pins at VREFL1/2 reference. VREFL1/2 pins are connected to analog ground and an electrolytic capacitor over 10F parallel with a 0.1F ceramic capacitor between the VREFP1/2 pins and the VREFL1/2 pins eliminate the effects of high frequency noise. It is important that a ceramic capacitor should be as near to the pins as possible. All digital signals, especially clocks, should be kept away from the VREFP1/2 pins in order to avoid unwanted coupling into the AK5388A. VCOM1/2 is a signal ground for this device. An electrolytic capacitor (2.2µF typical) attached to the VCOM1/2 pins eliminates the effects of high frequency noise. It is important that a ceramic capacitor should be as near to the pins as possible. No load current may be drawn from the VCOM1/2 pins. All signals, especially clocks, should be kept away from the VCOM1/2 pins in order to avoid unwanted coupling into the AK5388A. 3. Analog Inputs The Analog input signal is differentially supplied into the modulator via the LIN+ (RIN+) and the LIN (RIN) pins. The input voltage is the difference between the LIN+ (RIN+) and LIN (RIN) pins. The full scale signal on each pin is nominally 2.8Vpp(typ). The AK5388A can accept input voltages from VSS1-6 to AVDD1/2. The ADC output data format is two’s complement. The internal HPF removes DC offset. The AK5388A samples the analog inputs at 128fs (6.144MHz@fs=48kHz, Normal Speed Mode). The digital filter rejects noise above the stop band except for multiples of 128fs. The AK5388A includes an anti-aliasing filter (RC filter) to attenuate a noise around 128fs. The AK5388A requires a +5V analog supply voltage. Any voltage which exceeds the upper limit of AVDD1/2+0.3V and lower limit of VSS1-6 0.3V and any current beyond 10mA for the analog input pins (LIN+/, RIN+/) should be avoided. Excessive currents to the input pins may damage the device. Hence input pins must be protected from signals at or beyond these limits. Use caution especially when using 15V for other analog circuits in the system. MS1494-E-03 2014/02 - 26 - [AK5388A] 4. External Analog Circuit Examples Figure 25 shows an input buffer circuit example 1. (1st order HPF; fc=0.70Hz, 2nd order LPF; fc=351kHz, gain=-14.5dB). The analog signal is able to input through XLR or BNC connectors. (short JP1 and JP2 for BNC input, open JP1 and JP2 for XLR input). The input level of this circuit is +/-15.0Vpp (AK5388A: +/-2.8Vpp Typ.). When using this circuit, analog characteristics at fs=48kHz is DR=120dB, S/(N+D)=110dB. 620 4.7k 4.7k Analog In JP1 VP+ Vin+ 68µ + 15.4Vpp 1n 3.3k Bias VP- 10 + 2.9Vpp AK5388A AIN+ NJM5534 NJM5534 XLR 15n VA+ 620 10k Bias 11k JP2 1n 3.3k - + 10µ 68µ Vin- AK5388A AIN- + 0.1µ VA=+5 V VP=15 V 10 NJM5534 Bias 2.9Vpp Figure 25.Input Buffer example1 fin 1Hz 10Hz Frequency Response 1.77dB 0.02dB Table 8. Frequency Response of HPF fin 20kHz 40kHz 80kHz Frequency Response 0.00dB 0.00dB 0.00dB Table 9. Frequency Response of LPF MS1494-E-03 6.144MHz 49.68dB 2014/02 - 27 - [AK5388A] Figure 26 shows an input buffer circuit example in Mono mode. (1st order HPF; fc=0.70Hz, 2nd order LPF; fc=351kHz, gain=-14.5dB). 4.7k 4.7k Analog In 620 JP1 VP+ Vin+ 68µ + 15.0Vpp 1n 3.3k Bias VP- 10 + 2.8Vpp AK5388A LIN+ NJM5534 15n NJM5534 AK5388A LINXLR VA+ 620 10k JP2 Bias 68µ + 11k 10µ AK5388A RIN+ 15n 1n 3.3k Vin- - 10 + 0.1µ NJM5534 Bias VA=+5V AK5388A RIN2.8Vpp VP=15V Figure 26 External Analog Circuit Examples fin 1Hz 10Hz Frequency Response 1.77dB 0.02dB Table 10. Frequency Response of HPF fin 20kHz 40kHz 80kHz Frequency Response 0.00dB 0.00dB 0.00dB Table 11. Frequency Response of LPF MS1494-E-03 6.144MHz 49.68dB 2014/02 - 28 - [AK5388A] 5. Performance Plot Figure 27 shows a FFT measurement result. [Conditions] Ta=25ºC; AVDD1/2=5.0V; VREFP1/2=5.0V, VREFL1/2=0V, DVDD=3.3V; VSS1=VSS2=VSS3=VSS4=0V; fs=48kHz; Signal Frequency =1kHz, -1dBFS, Measured by Audio Precision, System Two. +0 -10 -20 -30 -40 -50 -60 -70 d B F S -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 27. FFT (Blue: Left Channel, Red: Right Channel) MS1494-E-03 2014/02 - 29 - [AK5388A] PACKAGE 44pin LQFP (Unit: mm) 1.70max 12.0 0 ~ 0.2 10.0 23 33 0.80 12.0 22 10.0 34 12 44 1 11 0.09 ~ 0.20 0.370.10 010 0.600.20 0.15 ■ Material & Lead finish Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder (Pb free) plate MS1494-E-03 2014/02 - 30 - [AK5388A] MARKING AK5388AEQ XXXXXXX AKM 1 1) Pin #1 indication 2) Audio 4 pro Logo 3) Date Code: XXXXXXX(7 digits) 4) Marking Code: AK5388A 5) AKM Logo REVISION HISTORY Date (Y/M/D) 12/12/10 13/02/15 Revision 00 01 13/05/24 02 14/02/24 05 Reason First Edition Specification Change Error Correction Specification Change Page Contents 7 ANALOG CHARACTERISTICS Input Resistance: 3.3 → 3.15k (min), 4.1 → 4.25k (max) SYSTEM DESIGN Figure 23 was changed. Audio Interface Format A note about for when using TDM128 mode in slave mode was added. Figure 10 and 11 were added. 25 18-19 MS1494-E-03 2014/02 - 31 - [AK5388A] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS1494-E-03 2014/02 - 32 -