GS8160E18/32/36DGT-xxxV 333 MHz–150 MHz 1.8 V or 2.5 V VDD 1.8 V or 2.5 V I/O 1M x 18, 512K x 32, 512K x 36 18Mb Sync Burst SRAMs 100-Pin TQFP Commercial Temp Industrial Temp Features • FT pin for user-configurable flow through or pipeline operation • Single Dual Cycle Deselect (SDCD) operation • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply • LBO pin for Linear or Interleaved Burst mode • Internal input resistors on mode pins allow floating mode pins • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle • Automatic power-down for portable applications • RoHS-compliant 100-lead TQFP package available Functional Description Applications The GS8160E18/32/36DGT-xxxV is an 18,874,368-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support. Controls Addresses, data I/Os, chip enables (E1, E2, E3), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance. DCD Pipelined Reads The GS8160E18/32/36DGT-xxxV is a DCD (Dual Cycle Deselect) pipelined synchronous SRAM. SCD (Single Cycle Deselect) versions are also available. DCD SRAMs pipeline disable commands to the same degree as read commands. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock. Byte Write and Global Write Byte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs. Sleep Mode Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode. Core and Interface Voltages The GS8160E18/32/36DGT-xxxV operates on a 1.8 V or 2.5 V power supply. All inputs are 1.8 V or 2.5 V compatible. Separate output power (VDDQ) pins are used to decouple output noise from the internal circuits and are 1.8 V or 2.5 V compatible. Parameter Synopsis Pipeline 3-1-1-1 Flow Through 2-1-1-1 Rev: 1.03a 9/2013 tKQ tCycle Curr (x18) Curr (x32/x36) tKQ tCycle Curr (x18) Curr (x32/x36) -333 3.0 3.0 -250 3.0 4.0 -200 3.0 5.0 -150 3.8 6.7 Unit ns ns 305 360 5.0 5.0 235 265 245 285 5.5 5.5 215 245 205 235 6.5 6.5 205 225 175 195 7.5 7.5 190 205 mA mA ns ns mA mA 1/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV A A E1 E2 NC NC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS8160E18DGT-xxxV 100-Pin TQFP Pinout NC NC NC VDDQ A NC NC VDDQ VSS NC DQPA DQA DQA VSS VDDQ DQA DQA VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA NC NC VSS VDDQ NC NC NC LBO A A A A A1 A0 NC NC VSS VDD A A A A A A A A A VSS NC NC DQB DQB VSS VDDQ DQB DQB FT VDD NC VSS DQB DQB VDDQ VSS DQB DQB DQPB NC VSS VDDQ NC NC NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 1M x 18 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03a 9/2013 2/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV A A E1 E2 BD BC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS8160E32DGT-xxxV 100-Pin TQFP Pinout NC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC NC DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA NC LBO A A A A A1 A0 NC NC VSS VDD A A A A A A A A A FT VDD NC VSS DQD DQD VDDQ VSS DQD3 DQD DQD DQD VSS VDDQ DQD DQD NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 512K x 32 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03a 9/2013 3/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV A A E1 E2 BD BC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS8160E36DGT-xxxV 100-Pin TQFP Pinout DQPC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC DQPB DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA DQPA LBO A A A A A1 A0 NC NC VSS VDD A A A A A A A A A FT VDD NC VSS DQD DQD VDDQ VSS DQD3 DQD DQD DQD VSS VDDQ DQD DQD DQPD 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 512K x 36 10 71 11 Top View 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03a 9/2013 4/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV TQFP Pin Description Symbol Type Description A 0, A 1 I Address field LSBs and Address Counter preset Inputs A I Address Inputs DQA DQB DQC DQD I/O Data Input and Output pins BW I Byte Write—Writes all enabled bytes; active low BA , BB I Byte Write Enable for DQA, DQB Data I/Os; active low BC , BD I Byte Write Enable for DQC, DQD Data I/Os; active low CK I Clock Input Signal; active high GW I Global Write Enable—Writes all bytes; active low E 1, E 3 I Chip Enable; active low E2 I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable; active low ADSP, ADSC I Address Strobe (Processor, Cache Controller); active low ZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active low VDD I Core power supply VSS I I/O and Core Ground VDDQ I Output driver power supply NC Rev: 1.03a 9/2013 No Connect 5/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV GS8160E18/32/36DGT-xxxV Block Diagram Register A0–An D Q A0 A0 D0 Q0 A1 A1 D1 Q1 Counter Load A LBO ADV Memory Array CK ADSC ADSP Q D Register GW BW BA D Q Register D 36 Q BB 36 4 Register D Q D Q D Q Register Register D Q Register BC BD Register D Q Register E1 E2 E3 D Q Register D Q FT G ZZ 1 Power Down DQx1–DQx9 Control Note: Only x36 version shown for simplicity. Rev: 1.03a 9/2013 6/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Mode Pin Functions Mode Name Pin Name Burst Order Control LBO Output Register Control FT Power Down Control ZZ State Function L Linear Burst H Interleaved Burst L Flow Through H or NC Pipeline L or NC Active H Standby, IDD = ISB Note: There is a pull-up device on the FT pin and a pull-down device on the ZZ pin , so this input pin can be unconnected and the chip will operate in the default states as specified in the above tables. Burst Counter Sequences Linear Burst Sequence Interleaved Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] 1st address 00 01 10 11 1st address 00 01 10 11 2nd address 01 10 11 00 2nd address 01 00 11 10 3rd address 10 11 00 01 3rd address 10 11 00 01 4th address 11 00 01 10 4th address 11 10 01 00 Note: The burst counter wraps to initial state on the 5th clock. Rev: 1.03a 9/2013 Note: The burst counter wraps to initial state on the 5th clock. 7/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Byte Write Truth Table Function GW BW BA BB BC BD Notes Read H H X X X X 1 Write No Bytes H L H H H H 1 Write byte a H L L H H H 2, 3 Write byte b H L H L H H 2, 3 Write byte c H L H H L H 2, 3, 4 Write byte d H L H H H L 2, 3, 4 Write all bytes H L L L L L 2, 3, 4 Write all bytes L X X X X X Notes: 1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs, BA, BB, BC and/or BD. 2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes. 3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs. 4. Bytes “C” and “D” are only available on the x32 and x36 versions. Rev: 1.03a 9/2013 8/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Synchronous Truth Table Operation Address Used State Diagram Key E1 E2 E3 ADSP ADSC ADV W DQ3 Deselect Cycle, Power Down None X L X H X L X X High-Z Deselect Cycle, Power Down None X L L X X L X X High-Z Deselect Cycle, Power Down None X L X H L X X X High-Z Deselect Cycle, Power Down None X L L X L X X X High-Z Deselect Cycle, Power Down None X H X X X L X X High-Z Read Cycle, Begin Burst External R L H L L X X X Q Read Cycle, Begin Burst External R L H L H L X F Q Write Cycle, Begin Burst External W L H L H L X T D Read Cycle, Continue Burst Next CR X X X H H L F Q Read Cycle, Continue Burst Next CR H X X X H L F Q Write Cycle, Continue Burst Next CW X X X H H L T D Write Cycle, Continue Burst Next CW H X X X H L T D Read Cycle, Suspend Burst Current X X X H H H F Q Read Cycle, Suspend Burst Current H X X X H H F Q Write Cycle, Suspend Burst Current X X X H H H T D Write Cycle, Suspend Burst Current H X X X H H T D Notes: 1. X = Don’t Care, H = High, L = Low 2. E = T (True) if E2 = 1 and E1 = E3 = 0; E = F (False) if E2 = 0 or E1 = 1 or E3 = 1 3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding. 4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown as “Q” in the Truth Table above). 5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity. 6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above. 7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above. Rev: 1.03a 9/2013 9/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Simplified State Diagram X Deselect W R Simple Burst Synchronous Operation Simple Synchronous Operation W X R R First Write First Read CR CW W X CR R R X Burst Write Burst Read X CR CW CR Notes: 1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low. 2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and that ADSP is tied high and ADSC is tied low. 3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and assumes ADSP is tied high and ADV is tied low. Rev: 1.03a 9/2013 10/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Simplified State Diagram with G X Deselect W R W X R R First Write CR CW W CW W X First Read X CR R Burst Write R CR CW W Burst Read X CW CR Notes: 1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G. 2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passing through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles. 3. Transitions shown in gray tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet Data Input Set Up Time. Rev: 1.03a 9/2013 11/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Absolute Maximum Ratings (All voltages reference to VSS) Symbol Description Value Unit VDD Voltage on VDD Pins –0.5 to 4.6 V VDDQ Voltage on VDDQ Pins –0.5 to VDD V VI/O Voltage on I/O Pins –0.5 to VDD +0.5 ( 4.6 V max.) V VIN Voltage on Other Input Pins –0.5 to VDD +0.5 ( 4.6 V max.) V IIN Input Current on Any Pin +/–20 mA IOUT Output Current on Any I/O Pin +/–20 mA PD Package Power Dissipation 1.5 W TSTG Storage Temperature –55 to 125 oC TBIAS Temperature Under Bias –55 to 125 oC Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version) Parameter Symbol Min. Typ. Max. Unit 1.8 V Supply Voltage VDD1 1.7 1.8 2.0 V 2.5 V Supply Voltage VDD2 2.3 2.5 2.7 V 1.8 V VDDQ I/O Supply Voltage VDDQ1 1.7 1.8 VDD V 2.5 V VDDQ I/O Supply Voltage VDDQ2 2.3 2.5 VDD V Parameter Symbol Min. Typ. Max. Unit VDD Input High Voltage VIH 0.6*VDD — VDD + 0.3 V VDD Input Low Voltage VIL –0.3 — 0.3*VDD V VDDQ2 & VDDQ1 Range Logic Levels Notes: 1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. VIH (max) must be met for any instantaneous value of VDD. 3. VDD needs to power-up before or at the same time as VDDQ to make sure VIH (max) is not exceeded. Rev: 1.03a 9/2013 12/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Operating Temperature Parameter Symbol Min. Typ. Max. Unit Junction Temperature (Commercial Range Versions) TJ 0 25 85 C Junction Temperature (Industrial Range Versions)* TJ –40 25 100 C Note: * The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. Thermal Impedance Package Test PCB Substrate JA (C°/W) Airflow = 0 m/s JA (C°/W) Airflow = 1 m/s JA (C°/W) Airflow = 2 m/s JB (C°/W) JC (C°/W) 100 TQFP 4-layer 35.7 31.0 29.4 27.0 8.4 Notes: 1. Thermal Impedance data is based on a number of samples from mulitple lots and should be viewed as a typical number. 2. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to the PCB can result in cooling or heating of the RAM depending on PCB temperature. Undershoot Measurement and Timing Overshoot Measurement and Timing VIH 20% tKC VDD + 2.0 V VSS 50% 50% VDD VSS – 2.0 V 20% tKC VIL Note: Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Capacitance (TA = 25oC, f = 1 MHZ, VDD = 2.5 V) Parameter Symbol Test conditions Typ. Max. Unit Input Capacitance CIN VIN = 0 V 8 10 pF Input/Output Capacitance CI/O VOUT = 0 V 12 14 pF Note: These parameters are sample tested. Rev: 1.03a 9/2013 13/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV AC Test Conditions Parameter Conditions Input high level VDD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level VDD/2 Output reference level VDDQ/2 Output load Fig. 1 Figure 1 Output Load 1 DQ 30pF* 50 VDDQ/2 * Distributed Test Jig Capacitance Notes: 1. Include scope and jig capacitance. 2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted. 3. Device is deselected as defined by the Truth Table. DC Electrical Characteristics Parameter Symbol Test Conditions Min Max Input Leakage Current (except mode pins) IIL VIN = 0 to VDD –1 uA 1 uA FT Input Current IIN VDD VIN 0 V –100 uA 100 uA Output Leakage Current IOL Output Disable, VOUT = 0 to VDD –1 uA 1 uA 1.8 V Output High Voltage VOH1 IOH = –4 mA, VDDQ = 1.7 V VDDQ – 0.4 V — 2.5 V Output High Voltage VOH2 IOH = –8 mA, VDDQ = 2.375 V 1.7 V — 1.8 V Output Low Voltage VOL1 IOL = 4 mA — 0.4 V 2.5 V Output Low Voltage VOL2 IOL = 8 mA — 0.4 V Rev: 1.03a 9/2013 14/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology Rev: 1.03a 9/2013 — — ZZ VDD – 0.2 V Device Deselected; All other inputs VIH or VIL Operating Current Standby Current Deselect Current IDD 70 70 IDD Pipeline Flow Through 45 ISB 45 ISB Pipeline Flow Through 220 15 280 25 IDDQ IDD IDDQ IDD IDDQ IDD 240 25 310 50 IDD IDDQ 0 to 70°C 90 90 65 65 240 15 300 25 260 25 330 50 70 70 45 45 205 10 225 20 225 20 245 40 90 90 65 65 225 10 245 20 245 20 265 40 70 70 45 45 195 10 190 15 210 15 205 30 -150 90 90 65 65 215 10 210 15 230 15 225 30 70 70 45 45 180 10 160 15 190 15 175 20 90 90 65 65 200 10 180 15 210 15 195 20 –40 0 –40 to 85°C to 70°C to 85°C -200 –40 0 to 85°C to 70°C -250 0 –40 to 85°C to 70°C -333 Symbol Flow Through Pipeline Flow Through Pipeline Mode Notes: 1. IDD and IDDQ apply to any combination of VDD and VDDQ operation. 2. All parameters listed are worst case scenario. (x18) Device Selected; All other inputs VIH or VIL Output open (x32/ x36) Test Conditions Parameter Operating Currents mA mA mA mA mA mA mA mA Unit GS8160E18/32/36DGT-xxxV Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 15/22 © 2011, GSI Technology GS8160E18/32/36DGT-xxxV AC Electrical Characteristics Pipeline Flow Through Parameter Symbol Clock Cycle Time -333 -250 -200 -150 Unit Min Max Min Max Min Max Min Max tKC 3.0 — 4.0 — 5.0 — 6.7 — ns Clock to Output Valid tKQ — 3.0 — 3.0 — 3.0 — 3.8 ns Clock to Output Invalid tKQX 1.5 — 1.5 — 1.5 — 1.5 — ns Clock to Output in Low-Z tLZ1 1.5 — 1.5 — 1.5 — 1.5 — ns Setup time tS 1.0 — 1.2 — 1.4 — 1.5 — ns Hold time tH 0.1 — 0.2 — 0.4 — 0.5 — ns Clock Cycle Time tKC 5.0 — 5.5 — 6.5 — 7.5 — ns Clock to Output Valid tKQ — 5.0 — 5.5 — 6.5 — 7.5 ns Clock to Output Invalid tKQX 2.0 — 2.0 — 2.0 — 2.0 — ns Clock to Output in Low-Z tLZ1 2.0 — 2.0 — 2.0 — 2.0 — ns Setup time tS 1.3 — 1.5 — 1.5 — 1.5 — ns Hold time tH 0.3 — 0.5 — 0.5 — 0.5 — ns Clock HIGH Time tKH 1.0 — 1.3 — 1.3 — 1.5 — ns Clock LOW Time tKL 1.2 — 1.5 — 1.5 — 1.7 — ns Clock to Output in High-Z tHZ1 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.8 ns G to Output Valid tOE — 3.0 — 3.0 — 3.0 — 3.8 ns G to output in Low-Z tOLZ1 0 — 0 — 0 — 0 — ns G to output in High-Z tOHZ1 — 3.0 — 3.0 — 3.0 — 3.8 ns ZZ setup time tZZS2 5 — 5 — 5 — 5 — ns ZZ hold time tZZH2 1 — 1 — 1 — 1 — ns ZZ recovery tZZR 20 — 20 — 20 — 20 — ns Notes: 1. These parameters are sampled and are not 100% tested. 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above. Rev: 1.03a 9/2013 16/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Pipeline Mode Timing (DCD) Begin Read A Cont Deselect Deselect Write B Read C Read C+1 Read C+2 Read C+3 Cont Deselect Deselect tKL tKH tKC CK ADSP tS ADSC initiated read tH ADSC tS tH ADV tS tH Ao–An A B C tS GW tS tH BW tH tS Ba–Bd tS Deselected with E1 tH E1 tS E2 and E3 only sampled with ADSC tH E2 tS tH E3 G tS tOE DQa–DQd Hi-Z Rev: 1.03a 9/2013 tOHZ Q(A) tKQ tH D(B) tHZ tLZ tKQX Q(C) Q(C+1) 17/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. Q(C+2) Q(C+3) © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Flow Through Mode Timing (DCD) Begin Read A Cont Deselect Write B Read C Read C+1 Read C+2 Read C+3 Read C Deselect tKL tKH tKC CK ADSP Fixed High tS tH tS tH ADSC initiated read ADSC tH tS tS tH ADV tS tH Ao–An A B C tS tH GW tS tH BW tH tS Ba–Bd tS Deselected with E1 tH E1 masks ADSP E1 tS tH E2 and E3 only sampled with ADSP and ADSC E2 tS tH E1 masks ADSP E3 G tH tS tOE tKQ DQa–DQd Rev: 1.03a 9/2013 tOHZ Q(A) tKQX tHZ tLZ D(B) Q(C) Q(C+1) Q(C+2) 18/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. Q(C+3) Q(C) © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Sleep Mode During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time. Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode. Sleep Mode Timing Diagram tKH tKC tKL CK Setup Hold ADSP ADSC tZZR tZZS tZZH ZZ Rev: 1.03a 9/2013 19/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Description A1 Standoff 0.05 0.10 0.15 A2 Body Thickness 1.35 1.40 1.45 b Lead Width 0.20 0.30 0.40 c Lead Thickness 0.09 — 0.20 D Terminal Dimension 21.9 22.0 22.1 D1 Package Body 19.9 20.0 20.1 E Terminal Dimension 15.9 16.0 16.1 E1 Package Body 13.9 14.0 14.1 e Lead Pitch — 0.65 — L Foot Length 0.45 0.60 0.75 L1 Lead Length — 1.00 — Y Coplanarity Lead Angle D D1 Symbol Pin 1 TQFP Package Drawing (Package GT) L c L1 Min. Nom. Max e b A1 A2 0.10 Y 0 — 7 E1 E Notes: 1. All dimensions are in millimeters (mm). 2. Package width and length do not include mold protrusion. Rev: 1.03a 9/2013 20/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV Ordering Information for GSI Synchronous Burst RAMs Org Part Number1 Type Voltage Option Package Speed2 (MHz/ns) TJ3 1M x 18 GS8160E18DGT-333 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 1M x 18 GS8160E18DGT-250 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 1M x 18 GS8160E18DGT-200 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 1M x 18 GS8160E18DGT-150 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 512K x 32 GS8160E32DGT-333 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 512K x 32 GS8160E32DGT-250 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 512K x 32 GS8160E32DGT-200 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 512K x 32 GS8160E32DGT-150 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 512K x 36 GS8160E36DGT-333 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 512K x 36 GS8160E36DGT-250 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 512K x 36 GS8160E36DGT-200 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 512K x 36 GS8160E36DGT-150 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 1M x 18 GS8160E18DGT-333I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 1M x 18 GS8160E18DGT-250I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 1M x 18 GS8160E18DGT-200I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 1M x 18 GS8160E18DGT-150I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I 512K x 32 GS8160E32DGT-333 DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 512K x 32 GS8160E32DGT-250I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 512K x 32 GS8160E32DGT-200I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 512K x 32 GS8160E32DGT-150I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I 512K x 36 GS8160E36DGT-333I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 512K x 36 GS8160E36DGT-250I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 512K x 36 GS8160E36DGT-200I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 512K x 36 GS8160E36DGT-150I DCD Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8160E18DGT-150IVT. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user. 3. C = Commercial Temperature Range. I = Industrial Temperature Range. 4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings. Rev: 1.03a 9/2013 21/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS8160E18/32/36DGT-xxxV 18Mb Sync SRAM Datasheet Revision History File Name Types of Changes Format or Content Description of changes • Creation of new datasheet 8160ExxD_V_r1 8160ExxD_V_r1_01 Content • Addition of IDD numbers 8160ExxD_V_r1_02 Content • Updated Absolute Maximum Ratings 8160ExxD_V_r1_03 Content • Updated to reflect MP status • (Rev1.03a: Corrected tHZ and tOHZ 333 MHz and 300 MHz max to 3.0 ns; corrected TQFP thermal numbers) Rev: 1.03a 9/2013 22/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology