3A Low-Voltage Low-Dropout Regulator FEATURES LM39300/39301/39302 TO-263 3L/ 5L PKG Guaranteed Output Current of 3.0A Fixed Output Voltage: 1.5V, 1.8V, 2.5V, 3.3V and 5.0V 1% initial accuracy Low ground current Over-Temperature/Over-Current Protection Fast transient response TTL/CMOS compatible enable pin LM39301 Error flag output - LM39301 only Available in TO-263 and TO-220 packages TO-220 3L/ 5L PKG - 40℃ to 125℃ Junction Temperature Range Moisture Sensitivity Level 3 ORDERING INFORMATION Device LM39300R-X.X LM39300T-X.X LM39301R-X.X LM39301T-X.X LM39302R-ADJ LM39302T-ADJ APPLICATION Battery Powered Equipments Motherboards and Graphic Cards Microprocessor Power Supplies Peripheral Cards High Efficiency Linear Regulators Battery Chargers Package TO-263 3L TO-220 3L TO-263 5L TO-220 5L TO-263 5L TO-220 5L X.X = Output Voltage = 1.5, 1.8, 2.5, 3.3, 5.0 DESCRIPTION The LM39300, LM39301 and LM39302 are 3.0A low-dropout linear voltage regulators that provide a low voltage, high-current output with a minimum of external components. The LM39300/1 offers extremely low dropout (typically 400mV at 3.0A) and low ground current (typically 36mA at 3.0A). The LM39300/1/2 is ideal for PC add-in cards that need to convert from standard 5V or 3.3V down to new, lower core voltages. A guaranteed maximum dropout voltage of 500mV over all operating conditions allows the LM39300/1/2 to provide 2.5V from a supply as low as 3V. The LM39300/1/2 also has fast transient response for heavy switching applications. The device requires only 47uF of output capacitance to maintain stability and achieve fast transient response. The LM39300/1 is fully protected with over current limiting, thermal shutdown, reversedbattery protection, reversed-leakage protection, and reversed-lead insertion. The LM39301 offers a TTL-logic compatible enable pin and an error flag that indicates under voltage and over current conditions. Offered in fixed voltages, the LM39300/1/2 comes in the TO-220 and TO-263 packages and is an ideal upgrade to older, NPN-based linear voltage regulators. Absolute Maximum Ratings (Note 1) CHARACTERISTIC SYMBOL MIN. MAX. UNIT Supply Voltage VIN - 0.3 + 20 V Enable Voltage VEN - + 20 V Output Voltage VOUT -0.3 VIN +0.3 V Lead Temperature (Soldering, 5 sec) TSOL - 260 ℃ Storage Temperature Range TSTG -65 + 150 ℃ Feb. 2011 - Rev. 1.1 -1 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 Operating Ratings (Note 2) CHARACTERISTIC SYMBOL MIN. MAX. UNIT Supply Voltage VIN + 2.25 + 16 V Enable Voltage VEN + 2.25 + 16 V PD(max) (Note 3) (Note 3) TJ -40 + 125 Maximum Power Dissipation Junction Temperature Package Thermal Resistance ℃ θJA-TO-263 80 ℃/W θJA-TO-220 70 ℃/W Ordering Information VOUT 1.5 V 1.8V 2.5 V 3.3 V 5.0 V ADJ Package Order No. Description Supplied As Status TO-263 3L LM39300R-1.5 3A, Fixed Reel Active TO-263 3L LM39300GR-1.5 3A, Fixed Reel Obsolete TO-263 5L LM39301R-1.5 3A, Fixed, Enable Reel Active TO-263 5L LM39301GR-1.5 3A, Fixed, Enable Reel Obsolete TO-220 3L LM39300T-1.5 3A, Fixed Reel Active TO-220 5L LM39301T-1.5 3A, Fixed, Enable Reel Obsolete TO-263 3L LM39300R-1.8 3A, Fixed Reel Active TO-263 3L LM39300GR-1.8 3A, Fixed Reel Obsolete TO-263 5L LM39301R-1.8 3A, Fixed, Enable Reel Active TO-263 5L LM39301GR-1.8 3A, Fixed, Enable Reel Obsolete TO-220 3L LM39300T-1.8 3A, Fixed Reel Active TO-220 5L LM39301T-1.8 3A, Fixed, Enable Reel Active TO-263 3L LM39300R-2.5 3A, Fixed Reel Active TO-263 3L LM39300GR-2.5 3A, Fixed Reel Obsolete TO-263 5L LM39301R-2.5 3A, Fixed, Enable Reel Active TO-263 5L LM39301GR-2.5 3A, Fixed, Enable Reel Obsolete TO-220 3L LM39300T-2.5 3A, Fixed Reel Active TO-220 5L LM39301T-2.5 3A, Fixed, Enable Reel Active TO-263 3L LM39300R-3.3 3A, Fixed Reel Active TO-263 3L LM39300GR-3.3 3A, Fixed Reel Obsolete TO-263 5L LM39301R-3.3 3A, Fixed, Enable Reel Active TO-263 5L LM39301GR-3.3 3A, Fixed, Enable Reel Obsolete TO-220 3L LM39300T-3.3 3A, Fixed Reel Active TO-220 5L LM39301T-3.3 3A, Fixed, Enable Reel Active TO-263 3L LM39300R-5.0 3A, Fixed Reel Active TO-263 3L LM39300GR-5.0 3A, Fixed Reel Obsolete TO-263 5L LM39301R-5.0 3A, Fixed, Enable Reel Active TO-263 5L LM39301GR-5.0 3A, Fixed, Enable Reel Obsolete TO-220 3L LM39300T-5.0 3A, Fixed Reel Active TO-220 5L LM39301T-5.0 3A, Fixed, Enable Reel Active TO-263 5L LM39302R 3A, Adjustable, Enable Reel Active TO-263 5L LM39302GR 3A, Adjustable, Enable Reel Obsolete TO-220 5L LM39302T 3A, Adjustable, Enable Reel Active Feb. 2011 - Rev. 1.1 -2 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 LM 3930X Output Voltage : 1.5V / 1.8V / 2.5V / 3.3V / 5.0V / Blank(ADJ Only) R T Package Type :TO-263 :TO-220 Green Mode G : Halogen Free Blank : Pb Free Root Name 39300 : 3L Fixed Output 39301 : 5L Fixed Output 39302 : 5L Adjustable Output Product Code PIN CONFIGURATION TO263-3L TO263-5L VOUT GND VIN TO220-3L TO220-5L PIN DESCRIPTION TO-263 3L / TO-220 3L (for 39300) TO-263 5L / TO-220 5L (for 39301/2) Pin No. Name Function Name Function 1 VIN Input Supply EN Chip Enable 2 GND Ground VIN Input Supply 3 VOUT Output Voltage GND Ground 4 VOUT Output Voltage 5 FLG / ADJ Error Flag Output or Output Adjust Feb. 2011 - Rev. 1.1 -3 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 TYPICAL APPLICATION 100k Error Flag Output LM39300 3.3V IN LM39301 2.5V OUT 3.3V GND IN Enable Shutdown 2.5V / 3A Regulator EN OUT GND 2.5V FLG 2.5V / 3A Regulator with Error Flag LM39302 2.5V Enable Shutdown IN EN 1.5V OUT GND ADJ R1 R2 1.5V / 3A Adjustable Regulator Feb. 2011 - Rev. 1.1 -4 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 Block Diagram LM39300 Fixed (1.5V, 1.8V, 2.5V, 3.3V, 5.0V) LM39301 Fixed with Flag and Enable LM39302 Adjustable Feb. 2011 - Rev. 1.1 -5 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 ELECTRICAL CHARACTERISTICS VIN= VOUT +1V; VEN = 2.25V; TJ = 25°C, bold values indicate -40°C ≤ TJ ≤ +125°C; unless noted Symbol VOUT ΔVOUT/ΔT VDO IGND IOUT(lim) Parameters Condition Min. Output Voltage 10mA 10mA ≤ IOUT ≤ 3A, VOUT+1V ≤ VIN ≤8V -1 -2 Line Regulation IOUT=10mA, VOUT +1V ≤ VIN ≤ 8V Load Regulation VIN= VOUT +1V, 10mA ≤ IOUT ≤ 3A Max. Unit 1 2 % % 0.06 0.5 % 0.2 1 % 20 100 ppm/ °C IOUT=100mA, ΔVOUT = -1% 80 200 mV mV IOUT=750mA, ΔVOUT = -1% 200 mV IOUT=1.5A, ΔVOUT = -1% 320 mV IOUT=3.0A, ΔVOUT = -1% 400 500 mV mV IOUT=750mA, VIN= VOUT+1V 10 20 mA IOUT=1.5A, VIN= VOUT+1V 17 mA IOUT=3.0A, VIN= VOUT+1V 45 mA VOUT=0V, VIN=VOUT+1V 4.5 A Output Voltage Temp. Coefficient (Note 4) Dropout Voltage (Note 5) Ground Current (Note6) Current Limit Typ. Enable Input logic low (off) VEN 0.8 logic high (on) V 2.25 VEN= VIN IEN 15 30 75 2 4 μA μA μA μA 10 20 uA 0.01 1 2 300 400 μA μA mV mV Enable Input Current VEN=0.8V IOUT(shdn) V Enable Input Voltage Shutdown Output Current (Note7) Flag Output IFLG (leak) Output Leakage Current VOH=16V VFLG (do) Output Low Voltage VIN=2.25=V, IOL=250μA, (Note8) Low Threshold % of VOUT VFLG 220 93 % High Threshold 99.2 Hysteresis Feb. 2011 - Rev. 1.1 1 -6 - % % HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 LM39302 Only Reference Voltage 1.238 1.225 (Note9) 1.250 1.213 40 Adjust Pin Bias Current 1.262 1.275 V V 1.277 V 80 120 nA nA Reference Voltage Temp. Coefficient 20 ppm/ °C Adjust Pin Bias Current Temp. Coefficient 0.1 nA/ °C Note 1. Exceeding the absolute maximum ratings may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. PD (max)= (TJ (max) - TA) ÷ θJA, where θJA -junction-to-ambient thermal resistance. Note 4. Output voltage temperature coefficient is ΔVOUT (worst case) ÷ (TJ(max) - TJ(min)) where TJ(max) is +125°C and TJ(min) is 0°C. Note 5. VDO = VIN - VOUT when VOUT decreases to 99% of its nominal output voltage with VIN = VOUT + 1V. For output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V. Note 6. IGND is the quiescent current. IIN = IGND + IOUT. Note 7. VEN =0.8V, VIN = 8V, VOUT = 0V Note 8. For a 2.5V device, VIN = 2.250V (device is in dropout). Note 9. VREF ≤ VOUT ≤ (VIN - 1V), 2.25V ≤ VIN ≤ 16V, 10mA ≤ IL ≤ 3A. Feb. 2011 - Rev. 1.1 -7 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 TYPICAL OPERATING CHARACTERISTICS Feb. 2011 - Rev. 1.1 -8 - HTC 3A Low-Voltage Low-Dropout Regulator Feb. 2011 - Rev. 1.1 -9 - LM39300/39301/39302 HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 APPLICATION INFORMATION The LM39300/1 is a high-performance low-dropout voltage regulator suitable for moderate to high-current voltage regulator applications. Its 500mV dropout voltage at full load makes it especially valuable in batterypowered systems and as a high-efficiency noise filter in post-regulator applications. Unlike older NPN-pass transistor designs, where the mini-mum dropout voltage is limited by the base-to-emitter voltage drop and collector-to-emitter saturation voltage, dropout performance of the PNP output of these devices is limited only by the low VCE saturation voltage. A trade-off for the low dropout voltage is a varying base drive requirement. The LM39300/1/2 regulator is fully protected from damage due to fault conditions. Current limiting is provided. This limiting is linear output current during overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds the maximum safe operating temperature. Transient protection allows device (and load) survival even when the input voltage spikes above and below nominal. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow. Output Capacitor The LM39300/1/2 requires an output capacitor to maintain stability and improve transient response. Proper capacitor selection is important to ensure proper operation. The LM39300/1/2 output capacitor selection is dependent upon the ESR (equivalent series resistance) of the output capacitor to maintain stability. When the output capacitor is 47uF or greater, the output capacitor should have less than 1 of ESR. This will improve transient response as well as promote stability. Ultralow ESR capacitors, such as ceramic chip capacitors may promote instability. These very low ESR levels may cause an oscillation and/or under damped transient response. A low-ESR solid tantalum capacitor works extremely well and provides good transient response and stability over temperature. Aluminum electrolytic can also be used, as long as the ESR of the capacitor is < 1.The value of the output capacitor can be increased without limit. Higher capacitance values help to improve transient response and ripple rejection and reduce output noise. Input Capacitor An input capacitor of 1uF or greater is recommended when the device is more than 4 inches away from the bulk ac supply capacitance, or when the supply is a battery. Small, surface-mount, ceramic chip capacitors can be used for the bypassing. Larger values will help to improve ripple rejection by bypassing the input to the regulator, further improving the integrity of the output voltage. Minimum Load Current The LM39300/1/2 regulator is specified between finite loads. If the output current is too small, leakage currents dominate and the output voltage rises. A 10mA minimum load current is necessary for proper regulation. Transient Response and 3.3V to 2.5V Conversion The LM39300/1/2 has excellent transient response to variations in input voltage and load current. The device has been designed to respond quickly to load current variations and input voltage variations. Large output capacitors are not required to obtain this performance. A standard 47uF output capacitor, preferably tantalum, is all that is required. Larger values help to improve performance even further. By virtue of its low-dropout voltage, this device does not saturate into dropout as readily as similar NPN-based de-signs. When Feb. 2011 - Rev. 1.1 - 10 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 converting from 3.3V to 2.5V, the NPN-based regulators are already operating in dropout, with typical dropout requirements of 1.2V or greater. To convert down to 2.5V without operating in dropout, NPN-based regulators require an input voltage of 3.7V at the very least. The LM39300/1/2 regulator will provide excellent performance with an input as low as 3.0V. This gives the PNP-based regulators a distinct advantage over older, NPN-based linear regulator. Error Flag The LM39301 version features an error flag circuit which monitors the output voltage and signals an error condition when the voltage drops 5% below the nominal output voltage. The error flag is an open-collector output that can sink 10mA during a fault condition. Low output voltage can be caused by a number of problems, including an over current fault (device in current limit) or low input voltage. The flag is inoperative during over temperature shutdown. Enable Input The LM39301 version features an enable input for on/off control of the device. Its shutdown state draws “zero” current (only microamperes of leakage). The enable input is TTL/ CMOS compatible for simple logic interface, but can be connected to up to 20V. When enabled, it draws approximately 15A. Adjustable Regulator Design The LM39302 allows programming the output voltage any-where between 1.25V and the 16V maximum operating rating of the family. Two resistors are used. Resistors can be quite large, up to 1MΩ, because of the very high input impedance and low bias current of the sense comparator: The resistor values are calculated by: R1=R2(Vout/1.250-1) Where VO is desired output voltage. Figure 1 shows component definition. Applications with widely varying load currents may scale the resistors to draw the minimum load current required for proper operation (see below). Figure 1. Adjustable Regulator with Resistors Maximum Output Current Capability The LM39300/1/2 can deliver a continuous current of 3A over the full operating junction temperature range. However, the output current is limited by the restriction of power dissipation which differs from packages. A heat sink may be required depending on the maximum power dissipation and maximum ambient temperature of application. With respect to the applied package, the maximum output current of 3A may be still undeliverable due to the restriction of the power dissipation of LM39300/1/2. Under all possible conditions, the junction temperature must be within the range specified under operating conditions. The temperatures over the device are given by: TC = TA + PD X θCA / TJ = TC + PD X θJC / TJ = TA + PD X θJA Feb. 2011 - Rev. 1.1 - 11 - HTC 3A Low-Voltage Low-Dropout Regulator LM39300/39301/39302 Where TJ is the junction temperature, TC is the case temperature, TA is the ambient temperature, PD is the total power dissipation of the device, θCA is the thermal resistance of case-to-ambient, θJC is the thermal resistance of junction-to-case, and θJA is the thermal resistance of junction to ambient. The total power dissipation of the device is given by: PD = PIN – POUT = (VIN X IIN)–(VOUT X IOUT) = (VIN X (IOUT+IGND)) – (VOUT X IOUT) = (VIN - VOUT) X IOUT + VIN X IGND Where IGND is the operating ground current of the device which is specified at the Electrical Characteristics. The maximum allowable temperature rise (TRmax) depends on the maximum ambient temperature (TAmax) of the application, and the maximum allowable junction temperature (TJmax): TRmax = TJmax – TAmax The maximum allowable value for junction-to-ambient thermal resistance, θJA, can be calculated using the formula: θJA = TRmax / PD = (TJmax – TAmax) / PD LM39300/1/2 is available in TO-263 and TO-220 package. The thermal resistance depends on amount of copper area or heat sink, and on air flow. If the maximum allowable value of θJA calculated above is over 80°C/W for TO-263 package, 70°C/W for TO-220 package, no heat sink is needed since the package can dissipate enough heat to satisfy these requirements. If the value for allowable θJA falls near or below these limits, a heat sink or proper area of copper plane is required. In summary, the absolute maximum ratings of thermal resistances are as follow: Absolute Maximum Ratings of Thermal Resistance Characteristic Symbol Thermal Resistance Junction-To-Ambient / TO-263 Thermal Resistance Junction-To-Ambient / TO-220 Rating Unit θJA-TO-263 80 °C/W θJA-TO-220 70 °C/W 2 No heat sink / No air flow / No adjacent heat source / 20 mm copper area. (TA=25°C) Feb. 2011 - Rev. 1.1 - 12 - HTC