APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 1. Introduction Macronix offers MX29GL_F high performance parallel flash in densities from 128Mb to 1Gb. MX29GL_F and Micron® M29EW devices have similar hardware, software, and features, but there are some differences as indicated in blue text below. This application note explains how to migrate from Micron® M29EW devices to equivalent Macronix MX29GL_F series flash products in densities from 256Mb to 1Gb. 2. Feature Comparison Both flash device families have similar features and functions. Type / Function Macronix MX29GL_F Vcc voltage range 2.7V ~ 3.6V 2.7V ~ 3.6V (H/L type*1) I/O voltage range 1.65V ~ 3.6V (U/D type*2) Bus Width x16 / x8 Sector Size 128KB Page Read buffer 8Words / 16Bytes Write buffer 32Words / 64Bytes Highest/Lowest address WP# pin function sector Password (64bits) Software Protected Mode Solid Protection*3 OTP Security Region 128Words / 256Bytes Memory Structure SLC Blank Check Command*5 No Manufacture ID C2h 256Mb 227E/2222/2201 Device ID 512Mb 227E/2223/2201 1Gb 227E/2228/2201 56-TSOP (14x20mm) Package 64-LFBGA (11x13mm) Micron M29EW 2.7V ~ 3.6V 1.65V ~ 3.6V x16 / x8 128KB 16Words / 32Bytes 512Words / 256Bytes*4 Highest/Lowest address sector Password (64bits) Non-volatile Protection*3 128Words / 256Bytes MLC Yes 89h 227E/2222/2201 227E/2223/2201 227E/2228/2201 56-TSOP (14x20mm) 64-LFBGA (11x13mm) Note: 1. Macronix offers ‘H/L’ type H type is “VI/O = Vcc = 2.7 ~ 3.6V, highest address sector protected.” L type is “VI/O = Vcc = 2.7 ~ 3.6V, lowest address sector protected.” ® ® 2. Macronix ‘U/D’ is same as Micron default part number. Macronix: 256Mb~512Mb; Micron : 256Mb~1Gb ® U type / Micron device is “VI/O = 1.65 ~ Vcc, Vcc = 2.7 ~ 3.6V, highest address sector protected.” ® D type / Micron device is “VI/O = 1.65 ~ Vcc, Vcc = 2.7 ~ 3.6V, lowest address sector protected.” 3. Solid Protection is same function as Non-volatile Protection, which is just different naming ® 4. Micron device in x8 mode could only offer 256 Byte buffer lengths in write buffer. ® 5. Micron provides Blank Check command to determine if memory cells are programmed or over-erased. Publication Number: AN-169V1 1 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 3. Performance Comparison The following table shows MX29GL_F series and M29EW series Read/Write performance; this should be used as a reference for the design. Read Function Performance (random read and page read): Read function Macronix MX29GL_F Micron® M29EW 100ns (H/L type) 100ns (BGA package) 256Mb 110ns (U/D type) 110ns (TSOP package) Random Read 110ns (H/L type) 100ns (BGA package) 512Mb Access time*2 120ns (U/D type) 110ns (TSOP package) (Taa/Tce or tAVQV/tELQV) 100ns (BGA package) 1Gb 110ns (H/L type) *1 110ns (TSOP package) 25ns (H/L type ) Page Access time 25ns (Tpa or tAVQV1) 30ns (U/D type) Note: 1.Macronix 1Gb device only offers VI/O = Vcc (H/L type). ® 2. Random Read Access time: Macronix performance is density dependent, and Micron is package dependent. 3. System needs to align read speed for replacement. 4. Align ‘wait state’ setting of the controller or SoC, if speed is a critical factor in the system. Write Function Performance (program and erase): Write Function Macronix MX29GL_F Write Buffer 32 word*1 120us (typ.) *1 Program time 256 word N/A Word Program time 11us (typ.) Sector Erase time 0.6s 256Mb 128s (typ.) Chip Erase time 512Mb 256s (typ.) 1Gb 512s (typ.) Write/Erase Cycles (Endurance) 100,000 Micron® M29EW 270us(typ.) 505us(typ.) 210us(typ.) 0.8s N/A N/A N/A 100,000 Note: 1. Write Buffer length: Maximum length is different; align length to 32 words to provide system compatibility. 3-1. Write Buffer length alignment Write buffer maximum length is different between both devices. Software modification is necessary if MX29EW longer buffer length is being used. There are two methods for length alignment: (i) Modify write buffer length to 32 words for both devices. (ii) Read maximum buffer length from CFI offset address 2Ah (word mode) and adjust the algorithm to use this length. Publication Number: AN-169V1 2 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 4. DC Characteristics Comparison Both flash series characteristics are similar in primary features and functions. However, there are minor differences in DC characteristics. Designers should evaluate these differences to determine if they would be a concern in their application. Read / Write Current: DC Characteristic Macronix MX29GL_F Micron® M29EW 256Mb 50mA (max.) 31mA (max.) Read Current 512Mb 50mA (max.) 31mA (max.) @ 5MHz 1Gb 50mA (max.) 31mA (max.) Page Read Current 20mA (max.) @ 33MHz 16mA (max.) @ 13MHz 256Mb 30uA (typ.); 100uA (max.) 65uA (typ.); 210uA (max.) Standby Current 512Mb 60uA (typ.); 200uA (max.) 70uA (typ.); 225uA (max.) 1Gb 120uA (typ.); 400uA (max.) 75uA (typ.); 240uA (max.) 256Mb 26mA (typ.); 30mA(max.) 35mA(typ.); 50mA (max.) Write Current 512Mb 26mA (typ.); 30mA(max.) 35mA(typ.); 50mA (max.) 1Gb 36mA (typ.); 60mA(max.) 35mA(typ.); 50mA (max.) Generally, both have slightly different ranges of input and output voltages. The designer should consider the minimum and maximum voltage values needed for the migration. Input / Output Voltage: DC Characteristic Very High Voltage 256Mb Input Low 512Mb Voltage 1Gb 256Mb Input High 512Mb Voltage 1Gb Output Low Voltage 256Mb Output High 512Mb Voltage 1Gb Macronix MX29GL_F 9.5V ~ 10.5V -0.1V (Min) / 0.3VI/O (Max) -0.1V (Min) / 0.3VI/O (Max) -0.1V (Min) / 0.3Vcc (Max) *1 0.7VI/O (Min) / VI/O+0.3V (Max) 0.7VI/O (Min) / VI/O+0.3V (Max) 0.7Vcc (Min) / Vcc+0.3V(Max) *1 0.45V (Max) 0.85VI/O (Min) 0.85VI/O (Min) 0.85Vcc (Min) *1 Micron® M29EW 11.5V ~ 12.5V -0.5V (min.) / 0.8 (max.) -0.5V (min.) / 0.8 (max.) -0.5V (min.) / 0.8 (max.) 0.7VI/O (Min) / VI/O+0.4V (Max) 0.7VI/O (Min) / VI/O+0.4V (Max) 0.7VI/O (Min) / VI/O+0.4V (Max) 0.15VI/O (Max) 0.85VI/O (Min) 0.85VI/O (Min) 0.85VI/O (Min) Note: 1. Macronix 1Gb device only offer VI/O = Vcc option, the Input and output voltage are defined by Vcc range. Publication Number: AN-169V1 3 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 5. Hardware Consideration The Macronix device has a similar footprint with the Micron® device. theTSOP56 & LFBGA64 diagrams below. Please refer to Note: Macronix 1Gb device only offers a VI/O = Vcc option; VI/O = 1.65 ~ Vcc is not supported. 56-TSOP (14x20mm) A23 A22 A15 A14 A13 A12 A11 A10 A9 A8 A19 A20 WE# RESET# A21 WP#/ACC RY/BY# A18 A17 A7 A6 A5 A4 A3 A2 A1 NC NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 NC on MX29GL256F 56 NC on MX29GL256F/512F 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 MX29GL_F A24 A23 A25 A22 A16 A15 BYTE# A14 GND A13 Q15/A-1 A12 Q7 A11 Q14 A10 Q6 A9 Q13 A8 Q5 A19 Q12 A20 Q4 WE# VCC RESET# Q11 A21 WP#/Vpp Q3 Q10 RY/BY# Q2 A18 Q9 A17 Q1 A7 Q8 A6 Q0 A5 OE# A4 GND A3 CE# A2 A0 A1 NC RFU VI/O RFU Macronix GND (Pin 52, Pin 33) = Micron VSS ( Pin 52, Pin 33) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Reserve for Future Use 28 Reserve for Future Use RFU on JS28F256M29EW 56 RFU on JS28F255/512M29EW 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 Reserve for Future Use 30 29 M29EW Macronix VI/O pin ( Pin 29) = Micron VCCQ (Pin 29) 64-LFBGA (11x13mm) MX29GL_F M29EW 8 NC A22 A23 VIO GND A24 A25 NC 8 NC A22 A23 VCC Q VSS A24 A25 RFU 7 A13 A12 A14 A15 A16 BYTE # Q15/A -1 GND 7 A13 A12 A14 A15 A16 BYTE # Q15/A -1 VSS 6 A9 A8 A10 A11 Q7 Q14 Q13 Q6 6 A9 A8 A10 A11 D7 D14 D13 D6 5 WE# RESET# A21 A19 Q5 Q12 VCC Q4 5 WE# RESET# A21 A19 D5 D12 VCC D4 4 RY/ BY# WP#/ ACC A18 A20 Q2 Q10 Q11 Q3 4 RY/ BY# WP#/ Vpp A18 A20 D2 D10 D11 D3 3 A7 A17 A6 A5 Q0 Q8 Q9 Q1 3 A7 A17 A6 A5 D0 D8 D9 D1 2 A3 A4 A2 A1 A0 CE# OE# GND 2 A3 A4 A2 A1 A0 CE# OE# VSS 1 NC NC NC NC NC VIO NC NC 1 RFU RFU RFU RFU RFU VCC Q RFU RFU E F G H F G H A B C D F8: NC on MX29GL256F G8: NC on MX29GL256F/512F Publication Number: AN-169V1 A B C D E F8: RFU on PC28F256M29EW G8: RFU on PC28F256/512M29EW 4 Jun. 25, 2012 A24 A25 A16 BYTE# VSS DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE# VSS CE# A0 RFU VCCQ APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 6. Software Considerations Basic command sets and write status checking methods are similar between both flash families. The algorithm descriptions may be slightly different, but the concepts are the same. Basic Command Table (Word mode) MX29GL_F and M29EW have the same basic command set. The read operation and write command can be used directly without any modification. The table below shows the command set in Word mode. Basic Command Table of MX29GL_F and M29EW Read Reset Program Write to Buffer Chip Erase Sector Erase Program/Erase Suspend Program/Erase Resume Addr Addr XXX 555h 555h 555h 555h XXX XXX Data Data F0h AAh AAh AAh AAh B0h 30h Addr 2AAh 2AAh 2AAh 2AAh Data 55h 55h 55h 55h Addr 555h SA 555h 555h Data A0h 25h 80h 80h Addr Addr SA 555h 555h Data Data N-1 *2 AAh AAh *3 2AAh 2AAh *4 55h 55h Command st 1 Bus Cycle nd 2 Bus Cycle rd 3 Bus Cycle th 4 Bus Cycle th 5 Bus Cycle th 6 Bus Cycle *1 Addr WA Data WD Addr WBL 555h SA WD 10h 30h Data Note: 1. SA: Sector Address 2. N-1: Word Count 3. WA: Write Address 4. WD: Write Data 5. WBL: Write Buffer Location Publication Number: AN-169V1 *5 5 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F Write Status Checking Method When a flash program/erase operation is in progress, either the “Polling Method” or “Toggle Bit Method” may be used to monitor the operation. Both are standard algorithms in parallel flash and can be used for both device families. Polling Method: Polling method checks Q7 (data complement bit) and Q5 (time out bit) values during the operation. After the operation has finished, Q7 will output true Data. Toggle Bit Method: The toggle bit method checks the Q6 (toggle bit) value during writes. When the write operation ends, Q6 will stop toggling. Start Start Read Q7~Q0 Twice Read Q7~Q0 at valid address Q7 = Data# ? Q6 Toggle ? No Yes No Yes No No Q5 = 1 ? Q5 = 1 ? Yes Yes Read Q7~Q0 Twice Read Q7~Q0 at valid address Q7 = Data# ? No Q6 Toggle? No Yes Yes Fail Publication Number: AN-169V1 PGM/ERS fail Write Reset CMD Pass 6 PGM/ERS Complete Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 7. Manufacturer ID & Device ID Command Manufacturer IDs are different and permits software to identify the device manufacturer, but Device IDs are the same. Same command set is used read the different Manufacturer IDs. Automatic Select Command Flash Vender 1st Bus Cycle (command) 2nd Bus Cycle (command) 3rd Bus Cycle (command) 4th Bus Cycle (ID output) Address Data Address Data Address Data Address Data Address 5th Bus Cycle (ID output) Data 6th Bus Cycle (ID output) Address Data Manufacturer ID MX29GL_F M29EW 555h 555h AAh AAh 2AAh 2AAh 55h 55h 555h 555h 90h 90h X00h X00h C2h 89h Device ID MX29GL_F M29EW 555h 555h AAh AAh 2AAh 2AAh 55h 55h 555h 555h 90h 90h X01h X01h 227Eh 227Eh X0Eh X0Eh 2222h (256Mb) 2222h (256Mb) 2223h (512Mb) 2223h (512Mb) 2228h (1Gb) 2228h (1Gb) X0Fh X0Fh 2201h 2201h Note. 1. Device ID can be read out after Manufacturer ID with proper address and does not need another command sequence. 2. Use Reset command (F0h) to return to normal read mode. 8. Power on timing Macronix and Micron® power on sequences are similar, but the timing is slightly different. Check system timing to determine if a timing adjustment is needed. Power on timing table: H/W Timing Characteristic Macronix MX29GL_F Micron® M29EW Tvr (Vcc Rise Time) 20us/V (min.) / 500ms/V (max.) N/A Tvcs or tVCHPH + tPHEL (Vcc Setup Time) 500us (min) 60us (min) Tvios or tVCQHPH + tPHEL (Vio Setup time) N/A 50ns (min) Vcc VI/O Tvcs/tVCHPH + tPHEL Tvr Tvios/tVCQHPH + tPHEL Tvr CE# AC timing at device power up Publication Number: AN-169V1 7 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 9. H/W Reset# pin timing Macronix and Micron® offer hardware reset function. The operation is same but timing is slightly different. System timing may need to be adjusted for auto algorithm and non-auto algorithm. Reset# timing table: H/W Timing Characteristic Macronix MX29GL_F Micron® M29EW 200ns (min) 50ns (min) 10us (min) 100ns (min) 20us (max) 25us (max) 500ns (min) 100ns (min) 500ns (max) N/A Trh or tPHEL/tPHGL (Reset# high to Read) During auto Trp1 or tPLPH algorithm mode*1 (Reset# pulse width) Tready1 or tPLRH (Reset# low to read or write) During non-auto Trp2 or tPLPH algorithm mode*1 (Reest# pulse width) Tready2 (Reset# low to read or write) * Macronix defines different reset timing between auto and non-auto algorithm; Micron® defines same value in both. CE#, OE# || CE#, OE# Trb1 Trh/tPHEL/tPHGL WE# || RY/BY# RY/BY# Trb2 Tready1/tPLRH Reset# || || Reset# Tready2 Trp2/tPLPH Trp1/tPLPH During non-auto algorithm mode During auto algorithm mode 10. Summary Macronix MX29GL_F and Micron® M29EW Parallel Flash occupy the same PCB footprint and have similar features. Overall, the M29EW to MX29GL_F migration will only require minimal firmware modifications. Publication Number: AN-169V1 8 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F 11. Data Sheet Version The following data sheets are used for comparison in this application note. Data sheet Location Date Issue Revision MX29GL256F MX29GL512F MX29GL1G0F M29EW Website Website Website Website Jan. 12, 2012 Jan. 19, 2012 Nov. 03, 2011 Apr, 2012 Rev. 1.3 Rev. 1.2 Rev. 0.00 Rev. A Note: 1. Macronix data sheet is subject to change without notice. 2. For more functional and parametric specifications, please refer to the datasheet on the Macronix Website at http://www.macronix.com/ and go to: Products/Flash Memory/Parallel Flash. 12. Appendix The table will show basic part number and package information cross reference between Macronix MX29GL_F and Micron® M29EW. Density 256Mb 512Mb 1Gb Macronix Part Spansion Part MX29GL256FUT2I-11G MX29GL256FDT2I-11G MX29GL256FUXFI-11G MX29GL256FDXFI-11G MX29GL512FHXFI-10Q*1 MX29GL512FLXFI-10Q*1 MX29GL512FHXFI-10Q*1 MX29GL512FLXFI-10Q*1 MX68GL1G0FHT2I-11G*1,2 MX68GL1G0FLT2I-11G*1,2 MX68GL1G0FHXFI-11G*1,2 MX68GL1G0FLXFI-11G*1,2 JS28F256M29EWH JS28F256M29EWL PC28F256M29EWH PC28F256M29EWL JS28F512M29EWH JS28F512M29EWL PC28F512M29EWH PC28F512M29EWL JS28F00AM29EWH JS28F00AM29EWL PC28F00AM29EWH PC28F0AM29EWL Package Dimension 56-TSOP 14x20mm 64-LFBGA 11x13x14mm 0.6mm ball 56-TSOP 14x20mm 64-LFBGA 11x13x14mm 0.6mm ball 56-TSOP 14x20mm 64-LFBGA 11x13x14mm 0.6mm ball Note: 1. MX68GL1G0F and MX29GL512F-10Q are2 dies solution, they’re same family as MX29GL_F, and it will use MX29GL_F to present it. 2. MX68GL1G0F only offers VI/O=Vcc option, can’t cover Micron® VI/O range. Publication Number: AN-169V1 9 Jun. 25, 2012 APPLICATION NOTE Migrating Micron® M29EW to Macronix MX29GL_F Except for customized products which have been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or distributors shall be released from any and all liability arisen therefrom. Copyright© Macronix International Co., Ltd. 2011~2012. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit, NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Au-dio, Rich Book, Rich TV, and FitCAM. The names and brands of third party referred thereto (if any) are for identification purposes only For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com Publication Number: AN-169V1 10 Jun. 25, 2012