LY8005 - Lyontek Inc.

®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
FEATURES
GENERAL DESCRIPTION
„ 3.3 W Into 4Ω from 5.5V power supply at
THD+N = 10% (Typ.).
„ 2.0 W Into 8Ω from 5.5V power supply at
THD+N = 10% (Typ.).
„ 2.5V~5.5V Power supply.
„ Low shutdown current.
„ Low quiescent current.
„ Minimum external components.
„ No output filter required for inductive loads.
„ Output pin short-circuit protection and
automatic recovery.
(short to output pin, short to GND, short to VDD).
„ Low noise during turn-on and turn-off transitions.
„ Lead free and green package available.
(RoHS Compliant)
„ 8-pin MSOP package.
The LY8005 is a high efficiency, 3.3 W mono class D
audio power amplifier. It is a low noise, filterless
PWM architecture eliminates the output filter,
reducing external component count, system cost,
and simplify design.
The LY8005 is designed to meet of portable
electronic devices. The LY8005 is a single 5.5V
power supply, it is capable of driving 4Ω speaker
load at a continuous average output of 3.3 W with
10% THD+N.
In cellular handsets, the earpiece, speaker phone,
and melody ringer can each be driven by the
LY8005.The gain of the LY8005 is externally
configurable which allows independent gain control
from multiple sources by summing the signals.
Output short circuit and thermal overload protection
prevent the device from damage during fault
conditions.
APPLICATION
„ Portable electronic devices
„ Mobile Phones
„ PDAs
PIN CONFIGURATION
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
1
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
PIN DESCRIPTION
SYMBOL
Pin No.
DESCRIPTION
SHUTDOWN
1
Shutdown the device.(when LOW level is shutdown mode).
NC
2
No internal connection
+IN
3
Positive input
-IN
4
Negative input
Vo+
5
Positive BTL output
VDD
6
Power supply
GND
7
Ground
Vo-
8
Negative BTL output
ORDERING INFORMATION
Ordering
Code
LY8005ULT
Packing
Type
Tape&Reel
Speaker
Channels
Mono
Pin/
Package
Output Power
(THD+N=10%)
Input
Type
Output
Type
MSOP8
3.3W/4Ω @5.5V_BTL
2.7W/4Ω @5.0V_BTL
2.0W/8Ω @5.5V_BTL
1.6W/8Ω @5.0V_BTL
SE/
DF
BTL
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
2
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
APPLICATION CIRCUIT
Figure 1. Application Schematic With Differential Input Configuration
Figure 2. Application Schematic With Single-Ended Input Cofiguration
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
3
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
ABSOLUTE MAXIMUM RATINGS*
PARAMETER
Supply Voltage
Operating Temperature
Input Voltage
Storage Temperature
Power Dissipation
ESD Susceptibility
Junction Temperature
Soldering Temperature (under 10 sec)
SYMBOL
VDD
TA
VI
TSTG
PD
VESD
TJMAX
TSOLDER
RATING
6.0
-40 to 85 (I grade)
-0.3V to VDD +0.3V
-65 to 150
Internally Limited
2000
150
260
UNIT
V
℃
V
℃
W
V
℃
℃
ELECTRICAL CHARACTERISTICS (TA = 25℃,Unless otherwise noted)
*2
SYMBOL
TEST CONDITION
MIN.
MAX.
TYP.
2.5
5.5
VDD
VIH
Shutdown
1.3
VDD
VIL
Shutdown
0
0.35
VI = 0 V, Av = 2 V/V,
25
|VOS|
VDD = 2.5 V to 5.5 V
VDD = 5.0 V, RL=4Ω,
Inputs= GND, Av=2,
-55
Power supply rejection ratio
PSRR
Vpp=200mV, Cs=Delete.
f=217Hz
3.5
VDD = 5.5V, No Load
Quiescent Current
IQ
VDD = 3.6V, No Load
3.0
VDD = 2.5V, No Load
2.5
VSHUTDOWN ≦0.5V,
Shutdown Current
ISD
0.1
2.0
VDD = 2.5V to 5.5V
VDD= 2.5V to 5.5V
Total Gain (*)
[150KΩ / (5KΩ+Ri)] x2
RL = 8Ω
(*1)Typical values are included for reference only and are not guaranteed or tested.
Typical values are measured at VCC = VCC(TYP.) and TA = 25℃
PARAMETER
Supply voltage
High-level input voltage
Low-level input voltage
Output offset voltage
(measured differentially)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
4
UNIT
V
V
V
mV
dB
mA
µA
V/V
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
OPERATING CHARACTERISTICS (TA = 25℃, Gain = 2V/V)
PARAMETER
SYMBOL
TEST CONDITION
MAX.
-
UNIT
VDD=2.5V
TYP.
3.3
2.75
1.4
0.6
2.6
2.15
1.1
0.1
2.0
1.6
0.8
0.4
1.6
1.3
0.7
0.1
VDD=5.0V
-
88
-
dB
VDD=5.0V
-
79.4
-
uVRMS
VDD=5.5V
THD+N= 10%, f = 1 kHz,
RL= 4Ω
VDD=5.0V
VDD=3.6V
VDD=2.5V
VDD=5.5V
THD+N= 1%, f = 1 kHz,
RL= 4Ω
Out Power
VDD=5.0V
VDD=3.6V
VDD=2.5V
PO
VDD=5.5V
THD+N= 10%, f = 1 kHz,
RL= 8Ω
VDD=5.0V
VDD=3.6V
VDD=2.5V
VDD=5.5V
THD+N= 1%, f = 1 kHz,
RL= 8Ω
Signal-to-noise ratio
SNR
Output voltage noise
Vn
RL = 4Ω, Input=GND,
1.0W=0dB
Input=GND,RL=4Ω,Av=2
f = 20 Hz to 20 kHz,
*1
MIN.
-
VDD=5.0V
VDD=3.6V
W
Frequency
Fc
VDD = 2.5V~5.5V
-
250
-
kHz
Start-up time from shutdown
ZI
VDD = 2.5V~5.5V
-
1
-
ms
(*1)Typical values are included for reference only and are not guaranteed or tested.
Typical values are measured at VCC = VCC(TYP.) and TA = 25℃
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
5
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
TYPICAL PERFORMANCE CHARACTERISTICS
Figure 3
Total Harmonic Distortion + Noise vs Output Power (4Ω)
Figure 4
Total Harmonic Distortion + Noise vs Output Power (8Ω)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
6
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
Figure 5
Noise Level
Figure 6
Freq. vs. Response
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
7
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
SD Current vs SD Voltage
Quiescent vs Supply voltage
QUIESCENT CURRENT
SD Current vs SD Vo;tage
140
2.5v
4
3.6v
3.8
Iq-Quiescent Current-mA
120
5v
SD Current
100
80
60
40
20
vs
SUPPLY VOLTAGE
No Load
8Ω
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
0
2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2.5
3
3.5
Voltage
Supply Current vs Output Power (RL=4Ω)
SUPPLY CURRENT vs
4.5
5
5.5
Supply Current vs Output Power (RL=8Ω)
SUPPLY CURRENT vs OUTPUT POWER
OUTPUT POWER
500
1000
900
800
700
600
500
400
300
200
100
0
2.5V
Supply Current -mA
2.5V
Supply Current-mA
3.6V
5V
3.6V
400
5V
300
200
100
0
0
0.2 0.4 0.8 1.2 1.6
2
2.4 2.8
0
3
0.2 0.4 0.6 0.8
Po-Output Power-W RL=4 ohm
1 1.2 1.4 1.6 1.8
2
Po-Output Power-W RL=8ohm
Load Resistance vs Output Power (THD+N=10%)
Load Resistance vs Output Power (THD+N=1%)
OUTPUT POWER vs RL
OUTPUT POWER vs RL
3
2.5
2.5v
2.5v
3v
2.5
3v
3.6v
2
3.6v
5v
2
Po-Output Power
Po-Output Power
4
VDD-Supply Voltage-V
5v
1.5
1.5
1
1
0.5
0.5
0
0
4Ω
8Ω
12Ω
16Ω
20Ω
24Ω
28Ω
32Ω
4Ω
8Ω
12Ω
16Ω
20Ω
RL
RL
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
8
24Ω
28Ω
32Ω
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Output Power vs VDD (RL=8Ohm)
Output Power vs VDD (RL=4Ohm)
Output Power vs.VDD(RL=4Ohm)
Output Power vs.VDD(RL=8Ohm)
4
THD+N=1%
2
1.6
1.2
0.8
2.5
2
1.5
1
0.5
0
0
3.6
5
5.5
THD+N=1%
3
0.4
2.5
THD+N=10%
3.5
THD+N=10%
2.4
Po-Output Power
Po-Output Power
2.8
2.5
6
VDD-Supply Voltage-V
5.5
6
Efficiency and Output Power (8Ohm) 5.0V
Efficiency vs Po (RL=8 ohm)
Efficiency vs Po(RL=8 ohm)
100
100
VDD=3.6V
VDD=5V
80
Efficiency(%)
Efficiency(%)
5
VDD-Supply Voltage-V
Efficiency and Output Power (8Ohm) 3.6V
60
40
80
60
40
20
20
0
0
0
0.1
0.2
0.3
Po-W
0.4
0
0.5
Efficiency and Output Power (4Ohm) 3.6V
0.2 0.4 0.6 0.8
Po-W
1
1.2 1.4
Efficiency and Output Power (4Ohm) 5.0V
Efficiency vs Po (RL=4 ohm)
Efficiency vs Po(RL=4 ohm)
100
100
VDD=3.6V
VDD=5V
80
Efficiency(%)
Efficiency(%)
3.6
60
40
20
80
60
40
20
0
0
0
0.1
0.2
0.3
Po-W
0.4
0
0.5
0.2 0.4 0.6 0.8
Po-W
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
9
1
1.2 1.4
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Dissipation vs Output Power (8Ohm)
Dissipation vs Output Power (4Ohm)
Pd vs Po
Pd vs Po
0.2
0.6
Pd(5V)
Pd(5V)
0.16
0.5
Pd(3.6V)
Pd(3.6V)
0.4
Pd-W
Pd-W
0.12
0.08
0.3
0.2
0.04
0.1
0
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0
Po-W (RL=8 ohm)
0.2
0.4 0.6 0.8
1
Po-W (RL=8 ohm)
1.2
Figure 7
THD+N & Output Power vs Temperature (VDD=3V, RL=8Ω)
100
THD+N (%)
10
1
0.1
25C
80C
85C
-20C
-40C
0.01
0.0001
0.001
0.01
0.1
Po - Output Power (W)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
10
1
1.4
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Figure 8
THD+N & Output Power vs Temperature (VDD=4.5V, RL=8Ω)
100
THD+N (%)
10
1
25C
0.1
80C
85C
-20C
-40C
0.01
0.0001
0.001
0.01
0.1
1
10
Po - Output Power (W)
Figure 9
THD+N & Output Power vs Temperature (VDD=5.0V, RL=8Ω)
100
THD+N (%)
10
1
25C
80C
85C
0
-20C
-40C
0
0.0001
0.001
0.01
0.1
Po - Output Power (W)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
11
1
10
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
Figure 10
FCC Class-B (Vertical)
Figure 11
FCC Class-B (Horizontal)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
12
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
Figure 12
CISPR Class-B (Vertical)
Figure 13
CISPR Class-B ( Horizontal)
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
13
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
APPLICATION INFORMATION
Fully Differential Amplifier
The LY8005 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier
consists of a differential amplifier and a common-mode amplifier. The differential amplifier ensures that the
amplifier outputs a differential voltage on the output that is equal to the differential input times the gain. The
common-mode feedback ensures that the common-mode voltage at the output is biased around VDD/2
regardless of the common-mode voltage at the input. The fully differential LY8005 can still be used with a
single-ended input; however, the LY8005 should be used with differential inputs when in a noisy environment,
like a wireless handset, to ensure maximum noise rejection.
Advantages of Fully Differential Amplifiers
Input-coupling capacitors not required:
The fully differential amplifier allows the inputs to be biased at voltage other than mid-supply. For example,
if a codec has a midsupply lower than the midsupply of the LY8005, the common-mode feedback circuit will
adjust, and the LY8005 outputs will still be biased at midsupply of the LY8005. The inputs of the LY8005 can
be biased from 0.5 V to VDD - 0.8 V. If the inputs are biased outside of that range, input - coupling capacitors
are required.
Midsupply bypass capacitor, C(BYPASS), not required:
The fully differential amplifier does not require a bypass capacitor. This is because any shift in the midsupply
affects both positive and negative channels equally and cancels at the differential output.
Better RF-immunity:
GSM handsets save power by turning on and shutting off the RF transmitter at a rate of 217 Hz. The
transmitted signal is picked-up on input and output traces. The fully differential amplifier cancels the signal
much better than the typical audio amplifier.
Component Selection
Figure 1 shows the LY8005 typical schematic with differential inputs and Figure 2 shows the LY8005 with
single-ended inputs.
Differential inputs should be used whenever possible because the single-ended inputs are much more
susceptible to noise.
Table 1. Typical Component Values
Reference
Description
Ri
Cs
Ci
150KΩ
1.0uF
3.3 nF
Note
1% tolerance resistors
+22%,-80%
(±10%)
(1) Ci is only needed for single-ended input or if VICM is not between 0.5 V and VDD - 0.8 V. CI = 3.3 nF
(with Ri = 150KΩ) gives a high-pass corner frequency of 321 Hz.
For example
fc = 1 / ( 2πRiCi )
fc = 1 / ( 2π x 150KΩ x 3.3nF) = 321.524 Hz
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
14
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Input Resistors (Ri)
The input resistors (RI) set the gain of the amplifier according to equation Equation 1.
150 kΩ
Pre-Amplifier Gain = ----------Ri
150 kΩ
Total Gain = 2 x -------------- …………………………………………………………….(1)
Ri
150 kΩ
AVD = 20 x log [2 x ( ----------- )]
Ri
Resistor matching is very important in fully differential amplifiers. The balance of the output on the reference
voltage depends on matched ratios of the resistors. CMRR, PSRR, and cancellation of the second harmonic
distortion diminish if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or
better to keep the performance optimized. Matching is more important than overall tolerance.
Resistor arrays with 1% matching can be used with a tolerance greater than 1%.
Place the input resistors very close to the LY8005 to limit noise injection on the high-impedance nodes.
For optimal performance the gain should be set to 2 V/V or lower. Lower gain allows the LY8005 to operate at
its best, and keeps a high voltage at the input making the inputs less susceptible to noise.
For example
Table 2. Typical Total Gain and AVD Values
Rf (KΩ)
150
150
150
150
150
150
Ri (KΩ)
150
75
50
37.5
25
18.75
Pre AMP. Gain
1
2
3
4
6
8
Total Gain
2
4
6
8
12
16
AVD (db)
6.02
12.04
15.56
18.06
21.58
24.08
Decoupling Capacitor (CS)
The LY8005 is a high-performance class-D audio amplifier that requires adequate power supply decoupling to
ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency transients,
spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically
1 μF, placed as close as possible to the device VDD lead works best. Placing this decoupling capacitor close to
the LY8005 is very important for the efficiency of the class-D amplifier, because any resistance or inductance
in the trace between the device and the capacitor can cause a loss in efficiency. For filtering lower-frequency
noise signals, a 10 μF or greater capacitor placed near the audio power amplifier would also help, but it is not
required in most applications because of the high PSRR of this device.
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
15
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Input Capacitors (Ci)
The LY8005 does not require input coupling capacitors if the design uses a differential source that is biased
from 0.5 V to VDD - 0.8 V (shown in Figure 1). If the input signal is not biased within the recommended
common-mode input range, if needing to use the input as a high pass filter (shown in Figure 1), or if using a
single-ended source (shown in Figure 2), input coupling capacitors are required.
The input capacitors and input resistors form a high-pass filter with the corner frequency, fc, determined in
equation Equation 2.
1
fc = ----------------………………………………………………………………(2)
2πRiCi
The value of the input capacitor is important to consider as it directly affects the bass (low frequency)
performance of the circuit. Speakers in wireless phones cannot usually respond well to low frequencies, so
the corner frequency can be set to block low frequencies in this application.
Equation Equation 3 is reconfigured to solve for the input coupling capacitance.
1
Ci = -----------------…………………………………………………………….(3)
2πRifc
For example
In the table 3 shows the external components. Rin in connect with Cin to create a high-pass filter.
Table 3. Typical Component Values
Description
Note
150KΩ
1% tolerance resistors
0.22uF
80%/–20%
Reference
Ri
Ci
Ci = 1 / ( 2πRifc)
Ci = 1 / ( 2π x150KΩ x4.8Hz)=0.221uF,Use 0.22uF
Summing Input Signals With The LY8005
Most wireless phones or PDAs need to sum signals at the audio power amplifier or just have two signal
sources that need separate gain. The LY8005 makes it easy to sum signals or use separate signal sources
with different gains. Many phones now use the same speaker for the earpiece and ringer, where the wireless
phone would require a much lower gain for the phone earpiece than for the ringer. PDAs and phones that
have stereo headphones require summing of the right and left channels to output the stereo signal to the
mono speaker.
Summing Two Single-Ended Input Signals
Four resistors and three capacitors are needed for summing single-ended input signals. The gain and corner
frequencies (fc1 and fc2) for each input source can be set independently (see equations Equation 11 through
Equation 14, and Figure 14). Resistor, RP, and capacitor, CP, are needed on the IN+ terminal to match the
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
16
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
impedance on the IN- terminal. The single-ended inputs must be driven by low impedance sources even if
one of the inputs is not outputting an ac signal.
150 kΩ
VO
Gain 1 = -------- = 2 X -------------------…………………………………………(11)
VI1
Ri1
Vo
150kΩ
Gain 2 = --------- = 2 X -------------------………………………………………..(12)
VI2
Ri2
1
Ci1 = -------------------…………………………………………………………...(13)
2πRi1fc1
1
Ci2 = -------------------……………………………………………………..…....(14)
2πRi2fc2
CP = Ci1 + Ci2…………………………………………………………………..(15)
Ri1 x Ri2
RP = ------------------…………………………………………………………..…(16)
Ri1 + Ri2
Figure 14. Application Schematic With LY8005 Summing Two Single-ended Input
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
17
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
PCB Layout
All the external components must place very close to the LY8005. The input resistors need to be very close to
the LY8005 input pins so noise does not couple on the high impedance nodes between the input resistors and
the input amplifier of the LY8005. Then place the decoupling capacitor Cs, close to the LY8005 is important
for the efficiency of the class-D amplifier. Any resistance or inductance in the trace between the device and
the capacitor can cause a loss in efficiency.
Making the high current traces going to VDD, GND, VO+ and VO- pins of the LY8005 should be as wide as
possible to minimize trace resistance. If these traces are too thin, the LY8005's performance and output
power will decrease. The input traces do not need to be wide, but do need to run side-by-side to enable
common-mode noise cancellation.
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
18
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
LY8005UL Demo Board Artwork
Demo Board Application Circuit
Figure 17. Demo Board Application Circuit
Demo Board BOM List
LY8005UL V2.1 BOM List
No.
Description
Reference
Note
1
Resistor, 30KΩ
R1,R2
1/16W,1%
2
Resistor, 150KΩ
R3
1/16W,1%
3
Capacitor, 330pF(Option)
C7,C8
80%/−20%, nonpolarized
4
Capacitor, 390pF(Option)
C6
80%/−20%, nonpolarized
5
Capacitor, 0.1uF
C4
80%/−20%, nonpolarized
6
Capacitor, 0.33uF
C1,C2
80%/−20%, nonpolarized
7
Capacitor, 10.0uF
C5
80%/−20%, 6.3 V
8
Chip Bead 1KΩ/100MHz(Option)
L1,L2,L3,L4
1000Ω(1KΩ)±25%/100MHz
9
IC
U1
LY8005UL, MSOP8
J1
J1, Open Æ shutdown Mode
10 1*2 Pin Header
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
19
®
LY8005
3.3 W Mono Filterless Class D Audio power Amplifier
Rev. 2.3
Demo Board Artwork
Top Silkscreen
Top Layer
Composite view
Bottom Layer
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
20
®
LY8005
Rev. 2.3
3.3 W Mono Filterless Class D Audio power Amplifier
PACKAGE OUTLINE DIMENSION
8 pin 118 mil MSOP Package Outline Dimension
Lyontek Inc. reserves the rights to change the specifications and products without notice.
5F, No. 2, lndustry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan
TEL: 886-3-6668838
FAX: 886-3-6668836
21