Cover Marvell® ARMADA 16x Applications Processor Family Hardware Manual Doc. No. MV-S301545-00, Rel. November 2010 PUBLIC RELEASE Marvell. Moving Forward Faster Marvell® ARMADA 16x Applications Processor Family Hardware Manual Document Conventions Note: Provides related information or information of special importance. Caution: Indicates potential damage to hardware or software, or loss of data. Warning: Indicates a risk of personal injury. Document Status Draft For internal use. This document has not passed a complete technical review cycle and ECN signoff process. Preliminary Tapeout (Advance) This document contains design specifications for a product in its initial stage of design and development. A revision of this document or supplementary information may be published at a later date. Marvell may make changes to these specifications at any time without notice. Contact Marvell Field Application Engineers for more information. Preliminary Information This document contains preliminary specifications. A revision of this document or supplementary information may be published at a later date. Marvell may make changes to these specifications at any time without notice. . Contact Marvell Field Application Engineers for more information. Complete Information This document contains specifications for a product in its final qualification stages. Marvell may make changes to these specifications at any time without notice. Contact Marvell Field Application Engineers for more information. Milestone Indicator: Draft = 0.xx Advance = 1.xx Preliminary = 2.xx Complete = 3.xx Doc Status: Confidential X.YZ Work in Progress Indicator Zero means document is released. Various Revisions Indicator Technical Publication: 3.0 For more information, visit our website at: www.marvell.com Disclaimer No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees: 1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2; 2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and, 3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML"). At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information. Copyright © 2010. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. Intel XScale® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. All other trademarks are the property of their respective owners. Doc. No. MV-S301545-00 Rev. Page 2 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Table of Contents Table of Contents Revision History ..........................................................................................................................11 Public Release, Release - / (November 2010) ................................................................................................11 1 Introduction..................................................................................................................................13 1.1 Product Summary ...........................................................................................................................................13 1.2 Document Purpose .........................................................................................................................................16 1.3 Number Representation ..................................................................................................................................17 1.4 Naming Conventions .......................................................................................................................................17 1.5 Applicable Documents ....................................................................................................................................17 2 Product Overview ........................................................................................................................19 3 Pin and Ball Map Views...............................................................................................................21 3.1 ARMADA 168 (88AP168) Applications Processor 15mm x 15mm TFBGA Ball Map .....................................21 3.2 ARMADA 166 (88AP166) Applications Processor 15mm x 15mm TFBGA Ball Map .....................................22 3.3 ARMADA 162 (88AP162) Applications Processor 15mm x 15mm TFBGA Ball Map .....................................23 4 Package Information ...................................................................................................................25 4.1 Introduction .....................................................................................................................................................25 4.2 Package Marking ............................................................................................................................................26 4.3 Packaging Materials ........................................................................................................................................26 4.4 ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Packaging .........................................27 5 Maximum Ratings and Operation Conditions...........................................................................29 5.1 Absolute Maximum Ratings ............................................................................................................................29 5.2 Operating Conditions ......................................................................................................................................30 6 Electrical Specifications .............................................................................................................33 6.1 DC Voltage and Current Characteristics .........................................................................................................33 6.2 Oscillator Electrical Specifications...................................................................................................................37 6.2.1 26.000 MHz Oscillator Specifications ...............................................................................................37 7 AC Electrical Characteristics .....................................................................................................41 7.1 DDR SDRAM Timing Diagrams and Specifications ........................................................................................41 7.1.1 Measurement Conditions ..................................................................................................................42 7.1.2 DDR SDRAM Timing Diagrams and Specifications..........................................................................42 7.1.3 DDR SDRAM Skew Timings.............................................................................................................45 7.2 Static Memory Controller Timing Diagrams and Specifications ......................................................................52 7.2.1 Address Cycle...................................................................................................................................52 7.2.2 Read Access Data Phases ...............................................................................................................54 7.2.3 Write Access Data Phases ...............................................................................................................58 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 3 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.3 NAND Timing Diagrams and Specifications....................................................................................................64 7.3.1 NAND Flash Program Timing ...........................................................................................................64 7.3.2 NAND Flash Erase Timing................................................................................................................64 7.3.3 Small Block NAND Flash Read Timing.............................................................................................65 7.3.4 Large Block NAND Flash Read Timing ............................................................................................65 7.3.5 NAND Flash Status Read Timing .....................................................................................................66 7.3.6 NAND Flash ID Read Timing ............................................................................................................66 7.3.7 NAND Flash Reset Timing................................................................................................................67 7.3.7.1 NAND Flash Timing Parameters ........................................................................................67 7.4 SD Host Controller (SDH) Timing Diagrams and Specifications .....................................................................69 7.5 LCD Controller Timing Diagrams and Specifications ......................................................................................70 7.5.1 LCD Smart Panel Timing and Specifications ....................................................................................70 7.5.2 LCD Dumb Panel Timing and Specifications ....................................................................................73 7.6 Quick Capture Camera Interface (CCIC) Timing Diagrams and Specifications ..............................................76 7.6.1 CCIC Parallel Interface Timing Requirements ..................................................................................76 7.7 SSP Timing Diagrams and Specifications.......................................................................................................76 7.7.1 SSP Slave Mode Timing ...................................................................................................................78 7.8 TWSI Timing Diagrams and Specifications .....................................................................................................79 7.8.1 TWSI Test Circuit..............................................................................................................................81 7.9 AC’97 Timing Diagrams and Specifications ....................................................................................................82 7.10 JTAG Interface Timing Diagrams and Specifications......................................................................................82 7.10.1 JTAG Interface Timing Diagrams .....................................................................................................83 7.10.2 JTAG Interface AC Timing Table ......................................................................................................83 7.10.3 JTAG Interface Test Circuit ..............................................................................................................84 7.11 USB 2.0 Timing Diagrams and Specifications.................................................................................................85 7.11.1 USB Interface Driver Waveforms......................................................................................................85 7.11.2 Differential Interface Electrical Characteristics .................................................................................86 7.11.2.1 USB Driver and Receiver Characteristics ..........................................................................86 7.12 PCI Express Specifications .............................................................................................................................88 7.12.1 PCIE Differential TX Output Electrical Characteristics......................................................................88 7.12.2 PCIE Differential RX Input Electrical Characteristics ........................................................................89 7.13 Ethernet MAC (MII) Timing Diagrams and Specifications ...............................................................................90 7.14 Powerup/Down Sequences.............................................................................................................................92 7.14.1 Power Up Timings ............................................................................................................................92 7.14.1.1 Host Side PMIC USB Signals.............................................................................................92 7.14.2 Powerdown Timings .........................................................................................................................95 8 Design Guidelines and Checklist ...............................................................................................97 8.1 DDR Interface General Routing Guidelines ....................................................................................................97 8.1.1 General Rules: ..................................................................................................................................97 8.1.1.1 Data and QS Signals..........................................................................................................97 8.1.1.2 Address/Command Signals................................................................................................98 8.1.1.3 Clock Signals......................................................................................................................98 8.1.2 DDR Interface Detailed Routing Guidelines .....................................................................................98 Doc. No. MV-S301545-00 Rev. Page 4 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Table of Contents 8.2 EPD Controller Design Guidelines ..................................................................................................................98 8.2.1 Introduction .......................................................................................................................................99 8.2.2 Panel Power Up Sequence...............................................................................................................99 8.2.3 Display Common Power Signal ......................................................................................................100 8.2.3.1 Vcom Setting by DPOT (Digital Potentiometer) ...............................................................100 8.2.4 Source Driver Interface ...................................................................................................................101 8.2.5 Gate Driver Interface ......................................................................................................................103 8.2.6 Start Pulse Control..........................................................................................................................104 8.3 Schematic Checklist ......................................................................................................................................105 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 5 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Doc. No. MV-S301545-00 Rev. Page 6 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE List of Figures List of Figures Revision History .............................................................................................................................. 11 1 Introduction...................................................................................................................................... 13 2 Product Overview ............................................................................................................................ 19 Figure 1: 3 4 ARMADA 16x Applications Processor Family Block Diagram ..........................................................20 Pin and Ball Map Views................................................................................................................... 21 Figure 2: ARMADA 168 (88AP168) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View.....22 Figure 3: ARMADA 166 (88AP166) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View.....23 Figure 4: ARMADA 162 (88AP162) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View.....24 Package Information ....................................................................................................................... 25 Figure 5: Sample Package Marking .................................................................................................................26 Figure 6: ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Package Information...........27 5 Maximum Ratings and Operation Conditions ............................................................................... 29 6 Electrical Specifications ................................................................................................................. 33 Figure 7: 7 Recommended GND Shielding to xtal_in and xtal_out.....................................................................38 AC Electrical Characteristics.......................................................................................................... 41 Figure 8: Differential Clock...............................................................................................................................42 Figure 9: LPDDR1 SDRAM Timing Diagrams 1...............................................................................................43 Figure 10: LPDDR1 SDRAM Timing Diagrams 2...............................................................................................43 Figure 11: LPDDR1 SDRAM Timing Diagrams 3...............................................................................................44 Figure 12: LPDDR1 SDRAM Timing Diagrams 4...............................................................................................44 Figure 13: Basic Write Timing Parameters ........................................................................................................45 Figure 14: DQ to DQS Write Skew ....................................................................................................................46 Figure 15: CLK to Address/Command Write Skew ............................................................................................46 Figure 16: DQS to CLK Write Skew ...................................................................................................................46 Figure 17: DQ to DQS Read Skew ....................................................................................................................47 Figure 18: A/D Address Phase ..........................................................................................................................53 Figure 19: AA/D Address Phase ........................................................................................................................54 Figure 20: Asynchronous Read With RDY Signal..............................................................................................55 Figure 21: Asynchronous Read Without RDY Signal.........................................................................................56 Figure 22: Synchronous Read With RDY Signal ...............................................................................................57 Figure 23: Synchronous Read Without RDY Signal ..........................................................................................58 Figure 24: Asynchronous Write With RDY Signal ..............................................................................................59 Figure 25: Asynchronous Write Data Phase Without RDY Signal .....................................................................60 Figure 26: Synchronous Write With RDY Signal................................................................................................61 Figure 27: Synchronous Write Data Phase Without RDY Signal .......................................................................62 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 7 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 8 Figure 28: NAND Flash Program Timing Diagram.............................................................................................64 Figure 29: NAND Flash Erase Timing Diagram .................................................................................................65 Figure 30: NAND Flash Small Block Read Timing Diagram ..............................................................................65 Figure 31: NAND Flash Large Block Read Timing Diagram ..............................................................................66 Figure 32: NAND Flash Status Read Timing Diagram.......................................................................................66 Figure 33: NAND Flash ID Read Timing Diagram .............................................................................................67 Figure 34: NAND Flash Reset Timing Diagram .................................................................................................67 Figure 35: MultiMedia Card Timing Diagrams....................................................................................................69 Figure 36: Smart Panel Interface 8-bit 8080-Series Parallel Mode Read Interface Protocol .............................71 Figure 37: Smart Panel Interface 8-bit 8080-Series Parallel Mode Write Interface Protocol .............................71 Figure 38: Smart Panel Interface 8-bit 6800-Series Parallel Mode Read Interface Protocol .............................72 Figure 39: Smart Panel Interface 8-bit 6800-Series Parallel Mode Write Interface Protocol .............................72 Figure 40: SPI Write/Read Protocol ...................................................................................................................73 Figure 41: Dumb LCD Panel Horizontal Timing .................................................................................................74 Figure 42: Dumb LCD Panel Vertical Timing .....................................................................................................74 Figure 43: Parallel Timing Diagram ...................................................................................................................76 Figure 44: SSP Master Mode Timing Diagram ..................................................................................................77 Figure 45: SSP Slave Mode Timing Definitions .................................................................................................78 Figure 46: TWSI Output Delay AC Timing Diagram...........................................................................................79 Figure 47: TWSI Output Delay AC Timing Diagram...........................................................................................79 Figure 48: TWSI Test Circuit..............................................................................................................................81 Figure 49: AC’97 CODEC Timing Diagram........................................................................................................82 Figure 50: JTAG Interface Output Delay AC Timing Diagram ...........................................................................83 Figure 51: JTAG Interface Input AC Timing Diagram ........................................................................................83 Figure 52: JTAG Interface Test Circuit ..............................................................................................................84 Figure 53: Low/Full Speed Data Signal Rise and Fall Time ..............................................................................85 Figure 54: High Speed TX Eye Diagram Pattern Template ...............................................................................85 Figure 55: High Speed RX Eye Diagram Pattern Template...............................................................................86 Figure 56: MII Tx Mode Interface Timing Diagrams...........................................................................................90 Figure 57: MII Rx Model Interface Timing Diagrams..........................................................................................91 Figure 58: MII Management Interface Timing Diagrams....................................................................................91 Figure 59: Power-Up Reset Timing....................................................................................................................94 Figure 60: Powerdown Timing ...........................................................................................................................96 Design Guidelines and Checklist ................................................................................................... 97 Figure 61: Panel Power Sequence ..................................................................................................................100 Figure 62: DPOT Programming Sequence ......................................................................................................101 Figure 63: Source Driver Connections .............................................................................................................102 Figure 64: Source Driver Timing ......................................................................................................................103 Figure 65: Gate Driver Connections ................................................................................................................104 Figure 66: Gate Driver Output Enable Timing..................................................................................................104 Doc. No. MV-S301545-00 Rev. Page 8 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE List of Tables List of Tables Revision History ...............................................................................................................................11 1 Introduction.......................................................................................................................................13 Table 1: ARMADA 16x Applications Processor Family Feature Breakdown ..................................................14 Table 2: ARMADA 16x Applications Processor Family Hardware Features2.................................................14 Table 3: Supplemental Documentation...........................................................................................................17 2 Product Overview .............................................................................................................................19 3 Pin and Ball Map Views....................................................................................................................21 4 5 6 7 Package Information ........................................................................................................................25 Table 4: Package Materials ............................................................................................................................26 Table 5: TFBGA Package Dimensions ...........................................................................................................28 Maximum Ratings and Operation Conditions ................................................................................29 Table 6: Absolute Maximum Ratings ..............................................................................................................29 Table 7: Voltage, Temperature, and Frequency Electrical Specifications ......................................................30 Electrical Specifications ..................................................................................................................33 Table 8: LPDDR1/LPDDR2 Input, Output and I/O pins AC/DC Operating Conditions ...................................33 Table 9: DDR3 Input, Output, and I/O Pins AC/DC Operating Conditions......................................................34 Table 10: MFP Input, Output, and I/O Pins DC Operating Conditions..............................................................35 Table 11: Typical 26.000 MHz Crystal Requirements.......................................................................................38 Table 12: Typical External 26.000 MHz Oscillator Requirements.....................................................................38 AC Electrical Characteristics...........................................................................................................41 Table 13: Standard Input, Output, and I/O-Pin AC Operating Conditions ........................................................42 Table 14: Clock Parameters .............................................................................................................................42 Table 15: DDR Timing Specifications ...............................................................................................................47 Table 16: DDR Timing Specifications for 533 MHz (VDD_M = 1.8V) ...............................................................48 Table 17: DDR Timing Specifications for 400 MHz (VDD_M = 1.8V) ...............................................................49 Table 18: DDR Timing Specifications for 200 MHz (VDD_M = 1.8V) ...............................................................51 Table 19: Static Memory Controller Interface Timing Specifications ................................................................62 Table 20: NAND Flash Interface Program Timing Specifications .....................................................................68 Table 21: MultiMedia Card Timing Specifications.............................................................................................69 Table 22: SD/SDIO Timing Specifications ........................................................................................................70 Table 23: LCD Smart Panel Controller Timing .................................................................................................73 Table 24: LCD Dumb Panel Timing ..................................................................................................................74 Table 25: CCIC Parallel Timing ........................................................................................................................76 Table 26: SSP Master Mode Timing Specifications..........................................................................................77 Table 27: SSP Slave Mode Timing Specifications............................................................................................78 Table 28: TWSI Master AC Timing Table (Standard Mode 100 kHz) ...............................................................79 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 9 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 29: 8 TWSI Master AC Timing Table (Fast Mode 400 kHz).......................................................................80 Table 30: TWSI Master AC Timing Table (high) speed 3.4 MHz).....................................................................81 Table 31: AC’97 CODEC Timing Specifications ...............................................................................................82 Table 32: JTAG Interface 10 MHz AC Timing1 ................................................................................................83 Table 33: USB Low Speed Driver and Receiver Characteristics1 ....................................................................86 Table 34: USB Full Speed Driver and Receiver Characteristics1.....................................................................87 Table 35: USB High Speed Driver and Receiver Characteristics1 ...................................................................88 Table 36: PCI Express TX Output Electrical Specifications..............................................................................89 Table 37: PCI Express RX Input Electrical Specifications ................................................................................89 Table 38: MII Tx Mode Interface Timing Specifications ....................................................................................90 Table 39: MII Rx Mode Interface Timing Specifications ...................................................................................91 Table 40: MII Management Interface Timing Specifications .............................................................................91 Table 41: Terminology ......................................................................................................................................92 Table 42: Power-Up Timing Specifications.......................................................................................................94 Table 43: Powerdown Timing Specifications ....................................................................................................96 Design Guidelines and Checklist ....................................................................................................97 Table 44: Source Driver Signals .....................................................................................................................101 Table 45: Output Gate Driver Signals .............................................................................................................103 Table 46: ARMADA 16x Applications Processor Family Schematic Checklist ...............................................105 Doc. No. MV-S301545-00 Rev. Page 10 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Revision History Public Release, Release - / (November 2010) Revision History Public Release, Release - / (November 2010) Initial Release Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 11 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Doc. No. MV-S301545-00 Rev. Page 12 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Introduction Product Summary 1 Introduction Here’s how to correlate the various Public Release versions of Marvell® ARMADA 16x Applications Processor Family documentation: Note Rev. - : signifies initial version of any release. Rev. A: first revision of any release. Rev. B: second revision of any release. Rev. B1: first minor revision of Rev. B, usually to correct documentation errors not attributed to engineering changes. This chapter describes: Section 1.1, Product Summary Section 1.2, Document Purpose Section 1.3, Number Representation Section 1.4, Naming Conventions Section 1.5, Applicable Documents The Marvell® ARMADA 16x Applications Processor Family (also referred to as the ARMADA 16x Applications Processor Family) is a high-performance and highly integrated family of devices optimized for digital picture frames, personal media players, and other personal consumer devices. Featuring an advanced 1 GHz processor ARM v5TE-compatible core with an integrated 2-D graphics engine, the ARMADA 16x Applications Processor Family offers performance headroom and flexibility for today and future applications. The common software base provides a scalable platform to cover a breadth of product offerings. Multiple complete turn-key hardware/software reference designs are available for digital picture frame, personal navigation, and portable media applications for rapid development and quick time to market. The digital picture frame platform is based on the optimized chipset of the ARMADA 16x Applications Processor Family, Marvell Power Management IC, and Marvell Wi-Fi component. Ideal for digital picture frame applications, the ARMADA 16x Applications Processor Family-based platform delivers fast response time for sophisticated user interfaces, image processing, and multimedia applications. Software supports multiple A/V standards and photo-editing capabilities for pan, zoom, and media effects. The ARMADA 16x Applications Processor Family is designed for high performance and low power, delivering extended battery life for personal consumer devices. 1.1 Product Summary The ARMADA 16x Applications Processor Family comprises several products. These products support a variety of options for packaging, speed, on-chip cache and peripheral support. Table 1 shows a breakdown of the ARMADA 16x Applications Processor Family and the options available. Refer to Table 2 for the basic features of the ARMADA 16x Applications Processor Family. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 13 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 1: ARMADA 16x Applications Processor Family Feature Breakdown ARMADA 162 ARMADA 166 ARMADA 166E ARMADA 168 Package BGA-320 BGA-320 BGA-320 BGA-320 Max CPU Speed 400 MHz 800 MHz 800 MHz 1.066 GHz Yes Yes Yes Yes LP-DDR1-200 DDR2-400 DDR3-400 LP-DDR1-200 DDR2-800 DDR3-800 LP-DDR1-200 DDR2-800 DDR3-800 LP-DDR1-200 DDR2-1066 DDR3-1066 L1, L2 Caches 32/32/64 KB 32/32/128 KB 32/32/128 KB 32/32/128 KB LCD Max Res, Color XGA 24bpp WUXGA 24bpp WUXGA 24bpp WUXGA 24bpp 2D and Qdeo™ ICR Yes Yes Yes Yes WMMX2 Memory (x16 DRAM) USB2.0 HS + PHY* 1 OTG, 1 host 1 OTG, 1 host 1 OTG, 1 host 1 OTG, 1 host xD Picture Card Yes Yes Yes Yes CompactFlash+ Yes Yes Yes Yes FE MAC - Yes Yes Yes PCIe2.0 x1 Lane - - - Yes ElectroPhoretic Display (EPD) - - Yes - Table 2: ARMADA 16x Applications Processor Family Hardware Features2 Feature Group Marvell® Sheeva™ Core and Internal Memory MULTIMEDIA Feature ® Description Marvell Sheeva™ Embedded CPU Technology ARM* v5TE instruction set compliant L1 Instruction and Data Cache 32 KB I$ + 32 KB D$ L2 Cache 128 KB Internal Boot ROM Support boot from 8-bit NAND, 16-bit NAND, MMC, SD, OneNAND, SLC, MLC NAND, SSP SPI, and XIP Multimedia acceleration with WMMX • Decode H.264 up to WVGA and MPEG-4 up to 720p • • • • Scaling Color Space Conversion Overlaying Rotation Hardware 2D graphics Doc. No. MV-S301545-00 Rev. Page 14 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Introduction Product Summary Table 2: ARMADA 16x Applications Processor Family Hardware Features2 Feature Group Feature Description 2D Graphics Bit blt Qdeo™ Intelligent Color Remapping • • Qdeo™ ICR enhances color to make vivid images without hue shifts or clipping Part of the award-winning Qdeo suite of video processing CCIR-656 Camera Interface • • Up to WUXGA (1920x1200) 16-, 18- or 241-bpp color depth DDR Memory Controller • • • 2 Chip Selects 16-bit DDR2/DDR3 at up to 533 MHz LP-DDR1 Static Memory Controller • • • 2 Chip Selects NAND Memory Controller • • • 2 Chip Selects SLC and MLC NAND x8 and x161 small block and large block Compact Flash Controller • • 2 Chip Selects Compliant with CompactFlash (CF+) Spec 4.1 xD Card Controller • • 1 Chip Select Compliant with xD-Picture Card Specification Version 1.20 MultiMediaCard/SD/SDIO Card and MS/MSPRO Controller • • Up to 4 MMC/SD/SDIO Controllers 1 Memory Stick Pro Controller w/ support for 1 Card and support serial interface and 4-bit parallel interface LCD Controller DMA EXTERNAL MEMORY Copyright © 2010 Marvell November 2010 PUBLIC RELEASE DMA Controller Interface AA/D and A/D Muxed Mode support Support for VLIO or Companion Chips Doc. No. MV-S301545-00 Rev. Page 15 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 2: ARMADA 16x Applications Processor Family Hardware Features2 Feature Group Feature Description PERIPHERALS USB 2.0 Host Controller 1 High-Speed USB2.0 Host with integrated transceiver USB 2.0 OTG Controller 1 High-Speed USB2.0 OTG with integrated transceiver and boot support Fast Ethernet Interface • • • MII interface support 10/100 Ethernet Operation MDC/MDIO interface for external PHY control • • Up to 52 MHz with Master and Slave modes for frame sync and bit clock I2S support Up to 5 general purpose SSPs Universal Asynchronous Serial Port Controller • • 3 UART Controllers Up to 3.6 Mbps data rate Two Wire Serial Bus Interface (TWSI)1 • • Interfaces to TWSI* peripherals Up to 3.4 Mbps with 7-bit addressing Power Two Wire Serial Bus Interface (PWR_TWSI)1 • • Interfaces to TWSI* peripherals Up to 400 kbps with 7-bit addressing JTAG Controller JTAG support for debugging and testing Program Flash Pulse Width Modulator (PWM) Controller 4 PWM Controllers HW Timers • AC ‘97 Interface Supports the Audio CODEC’97 Component Specification, Revision 2.3 One-Wire Interface Serial bus operation to receive/transmit 1-Wire bus data Keypad Controller • • General Purpose Input/Output (GPIO) Controller Up to 123 Multi-Function Pins with alternate GPIO functionality Synchronous Serial Port Controller • Provides three 32-bit General Purpose Timers Provides one 16-bit Watchdog timer Support for up to 8x8 Matrix Keys Support for up to 8 Direct Keys 1. Two-Wire Serial Interface (formerly referred to as I2C) 2. Not all features may be present in all SKUs - contact your Marvell sales rep. 1.2 Document Purpose This document constitutes the hardware specifications for the ARMADA 16x Applications Processor Family, including electrical, mechanical, and thermal information, functional overview, mechanical data, package signal locations, targeted electrical specifications, functional bus waveforms, and board design considerations. For software specifications including register programming information, refer to the Marvell® ARMADA 16x Application Processor Family Software Manual (MV-S301544-00). SPECIAL NOTE: Not all of the devices listed in this hardware manual have external hardware connections. Refer to the software manual (MV-S301544-00) for more information. Doc. No. MV-S301545-00 Rev. Page 16 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Introduction Number Representation 1.3 Number Representation All numbers in this document are decimal (base 10) unless designated otherwise. Hexadecimal numbers have a prefix of 0x, and binary numbers have a prefix of 0b. For example, 107 is represented as 0x6B in hexadecimal and 0b110_1011 in binary. 1.4 Naming Conventions All signal and register-bit names appear in uppercase. Active low items are prefixed with a lowercase “n”. Pins within a signal name are enclosed in angle brackets: EXTERNAL_ADDRESS<31:0> nCS<1> Bits within a register bit field are enclosed in square brackets: REGISTER_BITFIELD[3:0] REGISTER_BIT[0] Single-bit items have either of two states: Clear — the item contains the value 0b0 Set — the item contains the value 0b1 1.5 Applicable Documents Table 3 lists supplemental information sources for the ARMADA 16x Applications Processor Family. Contact a Marvell representative for the latest document revisions and ordering instructions. Table 3: Supplemental ARMADA 16x Applications Processor Family Documentation, Releases, and Availability D o c u m e n t Ti tl e Av a i l a b l e ARMADA 16x Applications Processor Family Hardware Manual (MV-S301545-00) Public Release Available Now ARMADA 16x Applications Processor Family Software Manual (MV-S301544-00) Public Release Available Now ARMADA16x Applications Processor Family Alternate Function Spreadsheet Now ARMADA 16x Applications Processor Family Boot ROM Reference Manual Public Release Available Now ARMADA 16x Applications Processor Family PMIC Application Note Now USB 2.0 PHY Calibration/ Compliance Guidelines for ARMADA 16x Applications Processor Family (MV-S301722-00) Now ARMADA 16x Applications Processor Family JTAG Application Note (MV-S301720-00) Now ARMADA 16x Applications Processor Family Board Design and Layout Guidelines (MV-S301721-00) Now ARMADA 16x Applications Processor Family Temperature Sensor App Note (MV-S301707-00) Now Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 17 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 3: Supplemental ARMADA 16x Applications Processor Family Documentation, Releases, and Availability (Continued) D o c u m e n t Ti tl e Av a i l a b l e ARMADA16x Applications Processor Family Spec Update(s) Spec Updates are released periodically Check the Marvell website for the latest versions of available documents Note Doc. No. MV-S301545-00 Rev. Page 18 Refer to the Marvell® ARMADA 16x Applications Processor Family Specification Update (MV-S501140-00) for corrections and updates to content between documentation releases. The specification update is revised on a periodic basis. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Product Overview 2 Product Overview The ARMADA 16x Applications Processor Family application is an integrated system-on-a-chip microprocessor targets mid- to high-end picture frame, personal navigation devices, and smart-monitor applications, among others. It incorporates the Marvell® Sheeva™ Embedded CPU Technology microarchitecture with sophisticated power management to provide optimum MIPS/mW performance across its wide range of operating frequencies. The ARMADA 16x Applications Processor Family complies with the ARM* Architecture V5TE instruction set (excluding floating point instructions) and follows the ARM* programmers model. The ARMADA 16x Applications Processor Family multimedia coprocessor provides enhanced Intel® WMMX 2 instructions to accelerate audio and video processing. The ARMADA 16x Applications Processor Family is available in a discrete package configuration. The ARMADA 16x Applications Processor Family memory architecture provides greater flexibility and higher performance than that of previous products. The ARMADA 16x Applications Processor Family provides the configuration support for two dedicated memory interfaces to support high-speed DDR SDRAM, VLIO devices, and NAND Flash devices. This flexibility enables high performance “store and download” as well as “execute-in-place” system architectures. The ARMADA 16x Applications Processor Family memory architecture features a memory switch that allows multiple simultaneous memory transactions between different sources and targets. For example, the ARMADA 16x Applications Processor Family architecture allows memory traffic between the core and DDR SDRAM to move in parallel with DMA-generated traffic between the camera interface and the LCD Controller. Figure 1 illustrates the ARMADA 16x Applications Processor Family. The diagram shows a multi-port memory switch and system bus architecture with the core attached, along with an LCD Controller and hardware accelerators for graphics and color remapping. The key features of all of the sub-blocks are described in this section, with more detail provided in the respective chapters. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 19 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 1: ARMADA 16x Applications Processor Family Block Diagram J T A G Main PMU Temp Sensor Application Subsystem PMU Boot ROM Marvell Sheeva™ Core L1$ L2 $ DDR Controller Addr Decoder SQU BIU RTC Timer Keypad Controller UART 1 UART 2 TWSI1 UART 3 PWR_TWSI mcb1 mcb2 SD3 SD4 mcb3 AXI Fabric SD1 DMA SD2 SDH1 SDH2 CI OneWire AC97 3x Timers WDT AXI Decoder APB Bus AXI 1 XD SMC NFC ICU General and Configuration Registers Bridge/ DMA APB2AXI APB2 Bus SSP1 SSP2 SSP3 SSP4 SSP5 USB 2.0 OTG CF AHB AXI-AHB Bridge USB 2.0 Host MS Pro GC300 FE CMU AXI 2 LCD Doc. No. MV-S301545-00 Rev. Page 20 PCIE EPD Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Pin and Ball Map Views ARMADA 168 (88AP168) Applications Processor 15mm x 15mm TFBGA Ball Map 3 Pin and Ball Map Views In the following pin and ball map figures, the lowercase letter “n”, which normally indicates negation, appears as uppercase “N”. “RFU” means “Reserved For Future Use”. NC means “No Connect”. Do not connect these pins. 3.1 Section 3.1, ARMADA 168 (88AP168) Applications Processor 15mm x 15mm TFBGA Ball Map Section 3.2, ARMADA 166 (88AP166) Applications Processor 15mm x 15mm TFBGA Ball Map Section 3.3, ARMADA 162 (88AP162) Applications Processor 15mm x 15mm TFBGA Ball Map ARMADA 168 (88AP168) Applications Processor 15mm x 15mm TFBGA Ball Map Figure 2 shows the ball map for the 320-ball 15mm x 15mm TFBGA ARMADA 168 (88AP168) Applications Processor package. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 21 Marvell® ARMADA 100 Applications Processor Family Hardware Manual Figure 2: ARMADA 168 (88AP168) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A MFP_92 MFP_88 MFP_86 MFP_84 MFP_80 MFP_76 MFP_72 MFP_68 MFP_64 MFP_63 MFP_59 MFP_35 MFP_31 MFP_29 MFP_22 MFP_19 MFP_17 MFP_16 A B MFP_93 MFP_90 MFP_87 MFP_85 MFP_81 MFP_77 MFP_73 MFP_69 MFP_65 MFP_62 MFP_58 MFP_33 MFP_30 MFP_28 MFP_21 MFP_18 MFP_15 MFP_14 B C MFP_97 MFP_95 MFP_91 D MFP_10 E MFP_10 MFP_10 F MFP_10 MFP_10 MFP_10 MFP_10 VDD_IO G MFP_11 MFP_10 MFP_10 MFP_10 VD D _ H MFP_11 MFP_11 MFP_11 MFP_11 VD D _ J MFP_11 MFP_11 MFP_11 MFP_11 VDD_IO K MFP_11 MFP_12 MFP_12 MFP_12 VDD_IO L RESET_ PWR_S PWR_S M PRI_TM PRI_TC PRI_TD PRI_TR VDD_C 1 4 6 0 4 8 9 IN_N S N VREF P DQM0 R DQS0_ T VD D _ I O2 MFP_82 VSS VD D _ I O2 2 5 9 3 7 0 CL K MFP_99 MFP_96 3 0 8 7 2 1 6 5 1 DA O 2 PRI_TDI ST_N J TAG_S EXT_WA CALPA VDD_IO 4 MFP_79 MFP_75 I O2 VSS MFP_57 MFP_34 MFP_27 MFP_24 MFP_20 C OR E C OR E 3 3 VD D _ C OR E ORE VD D _ C OR E MFP_67 MFP_60 VD D _ C OR E MFP_36 MFP_26 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS SEC_C VSS VSS VSS VSS D S_EN MDQ0 MDQ1 MDQ2 VSS MDQ12 VDD_M MDQ3 VDD_M MDQ10 MDQ13 DQS0 VSS MDQ4 VSS MDQ11 MDQ14 VDD_M U MDQ5 MDQ6 VDD_M MDQ9 VDD_M V MDQ7 MDM1 MDQ8 DQS1_N DQS1 1 2 3 4 5 VSS VSS VD D _ C OR E SDCKE nSDCS 0 MDQ15 0 VSS VSS SDCKE1 nSDCS1 VDD_M SDBA2 SDBA1 MA0 VSS VSS VSS VSS VD D _ VDD_IO 0 VDD_IO VSS 4 KEUP 3.2 VD D _ VSS MFP_13 MFP_12 MFP_98 MFP_94 MFP_89 MFP_83 MFP_78 MFP_74 MFP_71 MFP_66 MFP_61 MFP_56 MFP_32 MFP_25 MFP_23 MFP_11 MFP_10 MFP_9 EL N MFP_70 0 VSS VD D _ CORE VD D _ CORE VDD_IO 1 VDD_IO 1 VD D _ CORE VD D _ CORE VSS VSS MA13 VSS MA3 MA9 MA12 MA14 C OR E VSS SDBA0 VDD_M VSS MA8 VDD_M VSS ODT nSDWE MA1 MA4 MA7 MA11 ODT1 MA2 MA5 MA6 MA10 10 11 12 13 SDCLK SDCLK nSDRA nSDCA 0 0_N S S 6 7 8 9 C MFP_8 D MFP_7 MFP_6 MFP_5 MFP_4 E MFP_3 MFP_2 MFP_1 MFP_0 F MFP_55 MFP_54 MFP_53 MFP_52 G MFP_51 MFP_50 MFP_49 MFP_48 H MFP_44 MFP_45 MFP_46 MFP_47 J MFP_40 MFP_41 MFP_42 MFP_43 K MFP_37 MFP_38 USBID L MFP_39 AVDD_ OTG VSS RFU_ R15 AVDDT_ PCIE VSS AVDD_ USBH_ USBH_ UHC VSS P N USBOT USBOT G_P G_N AVDD_ USBVB AVDD5_ OSC US RT_SEN A_ISET VSS USB PXTAL_ IN VD D _ PXTAL_ CORE OUT PCIETX AVDD_ PCIERX PCIECL P nDDR_ PCIETX RESET N 14 15 PCIE VSS 16 P KKP PCIERX PCIECL N KKN 17 18 M N P R T U V ARMADA 166 (88AP166) Applications Processor 15mm x 15mm TFBGA Ball Map Figure 3 shows the ball map for the 320-ball 15mm x 15mm TFBGA ARMADA 166 (88AP166) Applications Processor package. Doc. No. MV-S301545-00 Rev. Page 22 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Pin and Ball Map Views ARMADA 162 (88AP162) Applications Processor 15mm x 15mm TFBGA Ball Map Figure 3: ARMADA 166 (88AP166) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View A MFP_92 MFP_88 MFP_86 MFP_84 MFP_80 MFP_76 MFP_72 MFP_68 MFP_64 MFP_63 MFP_59 MFP_35 MFP_31 MFP_29 MFP_22 MFP_19 MFP_17 MFP_16 A B MFP_93 MFP_90 MFP_87 MFP_85 MFP_81 MFP_77 MFP_73 MFP_69 MFP_65 MFP_62 MFP_58 MFP_33 MFP_30 MFP_28 MFP_21 MFP_18 MFP_15 MFP_14 B C MFP_97 MFP_95 MFP_91 D MFP_10 E MFP_10 MFP_10 F MFP_10 MFP_10 MFP_10 MFP_10 VDD_IO G MFP_11 MFP_10 MFP_10 MFP_10 VD D _ H MFP_11 MFP_11 MFP_11 MFP_11 VD D _ J MFP_11 MFP_11 MFP_11 MFP_11 VDD_IO K MFP_11 MFP_12 MFP_12 MFP_12 VDD_IO L RESET_ PWR_S PWR_S M PRI_TM PRI_TC PRI_TD PRI_TR ST_N CORE N VREF J TAG_S EXT_WA CALPA SEC_C P DQM0 R DQS0_ T U V 3.3 1 4 6 0 4 8 9 IN_N S VD D _ I O2 MFP_82 VSS VD D _ I O2 VD D _ I O2 VSS MFP_57 MFP_34 MFP_27 MFP_24 MFP_20 VSS MFP_13 MFP_12 MFP_98 MFP_94 MFP_89 MFP_83 MFP_78 MFP_74 MFP_71 MFP_66 MFP_61 MFP_56 MFP_32 MFP_25 MFP_23 MFP_11 MFP_10 MFP_9 2 5 9 MFP_99 MFP_96 3 8 3 2 7 6 0 CL K 1 DA O 0 7 1 5 2 PRI_TDI VDD_IO 4 MFP_79 MFP_75 C OR E C OR E 3 3 VD D _ C OR E VDD_ VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS MDQ1 MDQ2 VSS MDQ12 VDD_M MDQ3 VDD_M MDQ10 MDQ13 DQS0 VSS MDQ4 VSS MDQ11 MDQ14 VDD_M MDQ5 MDQ6 VDD_M MDQ9 VDD_M DQS1 1 2 3 4 5 VSS VSS VSS VSS VD D _ C OR E SDCKE nSDCS 0 MDQ15 0 VSS VSS SDCKE1 nSDCS1 VDD_M SDBA2 SDBA1 MA0 VSS VSS VD D _ VSS VSS VSS CORE MFP_1 MFP_0 F MFP_55 MFP_54 MFP_53 MFP_52 G MFP_51 MFP_50 MFP_49 MFP_48 H MFP_44 MFP_45 MFP_46 MFP_47 J MFP_40 MFP_41 MFP_42 MFP_43 K MFP_37 MFP_38 USBID L MFP_39 AVDD_ OTG UHC VSS VSS VSS VSS ODT1 VSS MA2 MA5 MA6 MA10 10 11 12 13 RESET 14 P N USBOT USBOT G_P G_N AVDD_ USBVB AVDD5_ VSS nDDR_ VSS AVDD_ USBH_ USBH_ MA14 MA11 9 VD D _ MFP_2 MA12 MA7 8 VD D _ CORE MFP_3 MA9 MA4 7 1 E MA3 nSDWE 6 VDD_IO MFP_4 VSS ODT S 1 D MFP_5 VSS VDD_M S VDD_IO MFP_8 MFP_6 MA13 MA8 0_N VD D _ CORE C MFP_7 VSS C OR E VSS 0 VD D _ CORE VSS SDBA0 VDD_M MA1 0 0 VSS SDCLK SDCLK nSDRA nSDCA VDD_IO VDD_IO VSS MDQ0 DQS1_N MFP_36 MFP_26 VSS S_EN MDQ8 VD D _ C OR E VSS D MDM1 MFP_67 MFP_60 VSS KEUP MDQ7 VD D _ C OR E VSS 4 EL N MFP_70 OSC US RT_SEN A_ISET USB PXTAL_ IN M N P R VD D _ PXTAL_ CORE OUT VSS VSS VSS U VSS VSS VSS VSS V 15 16 17 18 T ARMADA 162 (88AP162) Applications Processor 15mm x 15mm TFBGA Ball Map Figure 4 shows the ball map for the 320-ball 15mm x 15mm TFBGA ARMADA 162 (88AP162) Applications Processor package. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 23 Marvell® ARMADA 100 Applications Processor Family Hardware Manual Figure 4: ARMADA 162 (88AP162) Applications Processor 15mm x 15mmTF-BGA Ball Map - Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A MFP_92 MFP_88 MFP_86 MFP_84 MFP_80 MFP_76 MFP_72 MFP_68 MFP_64 MFP_63 MFP_59 MFP_35 MFP_31 MFP_29 MFP_22 MFP_19 MFP_17 MFP_16 A B MFP_93 MFP_90 MFP_87 MFP_85 MFP_81 MFP_77 MFP_73 MFP_69 MFP_65 MFP_62 MFP_58 MFP_33 MFP_30 MFP_28 MFP_21 MFP_18 MFP_15 MFP_14 B C MFP_97 MFP_95 MFP_91 D MFP_10 E MFP_10 MFP_10 F MFP_10 MFP_10 MFP_10 MFP_10 VDD_IO G MFP_11 MFP_10 MFP_10 MFP_10 VD D _ H MFP_11 MFP_11 MFP_11 MFP_11 VD D _ J MFP_11 MFP_11 MFP_11 MFP_11 VDD_IO K MFP_11 MFP_12 MFP_12 MFP_12 VDD_IO 1 4 6 0 4 8 9 VD D _ I O2 MFP_82 2 5 9 3 7 0 MFP_99 MFP_96 3 0 8 7 2 1 6 5 1 2 VDD_IO 4 C OR E C OR E 3 3 VD D _ M PRI_TM PRI_TC PRI_TD PRI_TR VDD_C N VREF P DQM0 R DQS0_ T I O2 CL K DA O PRI_TDI ST_N J TAG_S EXT_WA CALPA MFP_79 MFP_75 I O2 VSS MFP_57 MFP_34 MFP_27 MFP_24 MFP_20 C OR E ORE C OR E MFP_67 MFP_60 VD D _ C OR E MFP_36 MFP_26 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS SEC_C VSS VSS VSS VSS VSS S_EN MDQ0 MDQ1 MDQ2 VSS MDQ12 VDD_M MDQ3 VDD_M MDQ10 MDQ13 DQS0 VSS MDQ4 VSS MDQ11 MDQ14 VDD_M U MDQ5 MDQ6 VDD_M MDQ9 VDD_M V MDQ7 MDM1 MDQ8 DQS1_N DQS1 1 2 3 4 5 VSS VSS VSS VD D _ C OR E SDCKE nSDCS 0 MDQ15 0 VSS VSS VSS VSS SDCKE1 nSDCS1 VDD_M SDBA2 SDBA1 MA0 VSS VSS VSS VSS VSS VSS VD D _ VDD_IO 0 VDD_IO VSS D Doc. No. MV-S301545-00 Rev. - VD D _ VSS KEUP Page 24 VD D _ VSS EL N MFP_70 VSS 4 RESET_ PWR_S PWR_S S VD D _ VSS MFP_13 MFP_12 MFP_98 MFP_94 MFP_89 MFP_83 MFP_78 MFP_74 MFP_71 MFP_66 MFP_61 MFP_56 MFP_32 MFP_25 MFP_23 MFP_11 MFP_10 MFP_9 L IN_N VSS 0 VSS VSS VD D _ CORE VD D _ CORE VDD_IO 1 VDD_IO 1 VD D _ CORE VD D _ CORE VSS MFP_5 MFP_4 E MFP_3 MFP_2 MFP_1 MFP_0 F MFP_55 MFP_54 MFP_53 MFP_52 G MFP_51 MFP_50 MFP_49 MFP_48 H MFP_44 MFP_45 MFP_46 MFP_47 J MFP_40 MFP_41 MFP_42 MFP_43 K MFP_37 MFP_38 USBID L MFP_39 AVDD_ OTG MA13 VSS VSS MA3 MA9 MA12 MA14 VSS UHC VSS OSC U VSS VSS VSS VSS V 15 16 17 18 MA4 MA7 MA11 ODT1 VSS MA2 MA5 MA6 MA10 10 11 12 13 14 R VSS MA1 RESET IN VSS nSDWE 9 PXTAL_ P VSS ODT 8 USB OUT VSS 7 US N PXTAL_ VSS 6 G_N VD D _ VSS nDDR_ G_P M CORE VDD_M S N USBOT USBOT RT_SEN A_ISET MA8 S P AVDD_ USBVB AVDD5_ VSS 0_N VSS AVDD_ USBH_ USBH_ SDBA0 VDD_M 0 D MFP_6 VSS SDCLK SDCLK nSDRA nSDCA MFP_8 MFP_7 VSS C OR E C T Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Package Information Introduction 4 Package Information This chapter describes the following: 4.1 Section 4.1, Introduction Section 4.2, Package Marking Section 4.3, Packaging Materials Section 4.4, ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Packaging Introduction This chapter provides the package marking and mechanical specifications for the ARMADA 16x Applications Processor Family. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 25 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 4.2 Package Marking Figure 5 shows an example of the package marking for the ARMADA 16x Applications Processor Family. The Booking Part Number for this specific example is 88AP166EB0-BJD2C008 Figure 5: Sample Package Marking Package Code: BJD for TFBGA TLA for TQFP Marvell Logo Environment Code: 2 for Green 8 8 A P 1 - B J D 2 Product Line Assembly Date Code L O T # Y Y WW Country of Origin T W Assembly Lot # B 0 P E S C 0 0 8 8 8 A P 1 6 6 E Pin 1 Die Revision ES Mark, for ES only Temperature and Speed: Commercial Temp 800 MHz, Product: (booking P/N prefix) Aspen-EPD, Auto boot Assembly Plant Code: P for SPIL E for ASE-K NOTE: The individual text boxes illustrated above are only used to demonstrate the relative location for the marking. 4.3 Packaging Materials Table 4 shows the solder ball material list. Table 4: Package Materials S o l d er B al l s ( S A C 3 05 ) Solder balls: 96.5 Sn/3.0 Ag/0.5 Cu NOTE: Pb-free parts, lead has not been added intentionally, but lead may persist as an impurity below 1000 ppm Doc. No. MV-S301545-00 Rev. Page 26 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Package Information ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Packaging 4.4 ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Packaging Figure 6 shows the 320-ball TFBGA packaging for the ARMADA 16x Applications Processor Family. Table 5 provides TFBGA package dimensions. . Figure 6: ARMADA 16x Applications Processor Family 15mm x 15mm TFBGA Package Information Top View -A- aaa D PIN # 1 -B- CAVITY C A1 E C A2 bbb A // -C- SOLDER BALL ddd aaa C SEATING PLANE DETAIL: “A” eee fff C C A B “A” D1 E1 b e DETAIL: “B” “B” Bottom View 1. Solder Ball size: 0.45mm 2. BGA solder ball pad: 0.4mm SMD Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 27 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 5: Symbol TFBGA Package Dimensions D i m e n si o n s i n m m Min Nom D im e n s io n s i n i n c h ( se e N o t e ) M ax Min Nom Max A --- --- 1.40 --- --- 0.055 A1 0.30 0.35 0.40 0.012 0.014 0.016 A2 0.84 0.89 0.94 0.033 0.035 0.037 c 0.32 0.36 0.40 0.013 0.014 0.016 D 14.90 15.00 15.10 0.587 0.591 0.594 E 14.90 15.00 15.10 0.587 0.591 0.594 D1 --- 13.60 --- --- 0.535 --- E1 --- 13.60 --- --- 0.535 --- e --- 0.80 --- --- 0.031 --- b 0.40 0.45 0.50 0.016 0.018 0.020 aaa 0.15 0.006 bbb 0.10 0.004 ddd 0.12 0.005 eee 0.15 0.006 fff 0.08 0.003 MD/WE 18/18 18/18 NOTE: If the PCB is designed with English units on outer rows, solder balls may not align with PCB pads due to rounding error from converting from mm to inches. Once solder ball and PCB pad positional tolerances are factored, there is a risk of SMT failure due to outer balls not aligning with PCB pads. Doc. No. MV-S301545-00 Rev. Page 28 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Maximum Ratings and Operation Conditions Absolute Maximum Ratings 5 Maximum Ratings and Operation Conditions This chapter discusses: 5.1 Section 5.1, Absolute Maximum Ratings Section 5.2, Operating Conditions Absolute Maximum Ratings The absolute maximum ratings (shown in Table 6) define limitations for electrical and thermal stresses. These limits prevent permanent damage to the ARMADA 16x Applications Processor Family. Note Table 6: Absolute maximum ratings are not operating ranges. Operation at absolute maximum ratings is not guaranteed. Absolute Maximum Ratings S ym b o l D e s c ri p t i o n M in Max U n its TS Storage temperature –40 125 °C Voltage applied to IO peripherals VDD_IO0, VDD_IO1, VDD_IO2, VDD_IO3, VDD_IO4 VSS–0.3 VSS+4.0 AVDD_UHC (AVDD_USB03P3) and AVDD_OTG (AVDD_USB13P3) VSS–0.3 VSS+3.6 V VCC_MV Voltage applied to DDR supply pins (VDD_M) VSS–0.5 VSS+2.3 V VCC_LV Voltage applied to VDD_Core supply pins VSS-0.3 VSS+1.155 V VIP_X Voltage applied to analog blocks (XTAL_IN, XTAL_OUT, AVDD_OSC) VSS–0.3 VSS+1.9 V VESD Maximum ESD stress voltage, three stresses maximum: • Any pin to any supply pin, either polarity, or • Any pin to all non-supply pins together, either polarity HBM1 — 2000 V CDM2 — 500 V — 5 mA V VCC_HV IEOS Maximum DC input current (electrical overstress) for any non-supply pin Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 29 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 6: S ym b o l Absolute Maximum Ratings (Continued) D e s c ri p t i o n M in Max U n its NOTE: 1. HBM = human body model 2. CDM = charge device model 5.2 Operating Conditions This section discusses operating voltage, frequency, and temperature specifications for the ARMADA 16x Applications Processor Family. Refer to the “Clocks Controller and Power Management Unit” chapter of the Marvell®ARMADA 16x Applications Processor Family Software Manual for supported frequencies and clock-register settings as listed in Table 7. Table 7: Symbol Voltage, Temperature, and Frequency Electrical Specifications D e s cr i p t i o n Min Typical Max Units N o te s O p e ra ti n g Tem p er at u r e Tj Junction Temperature -25 — +85 °C 1 Tj Junction Temperature -40 — +105 °C 1 Case Temperature — — See Notes 2 and 3 °C 4, 5, 6, 8 Thermal parameter characterization junction to top center of package 0.2 — 7.20 °C / watt — Tcase Ψjt AV D D _ O S C Vo l ta g e Vccosc_1 Voltage applied on VDD_OSC Tsysramp Ramp Rate 1.70 1.80 1.90 V — — — 25.00 mV/μs — AV D D C O R E Vo l ta g e a t F r e q u e n cy R a n g e s ( A 0 St e p p i n g ) M ax 10 Vcccore_1 Voltage applied for modes 0 and 1 0.9 1.00 1.155 V 12, 13, 20 Vcccore_2 Voltage applied for modes 2, 2.3, 3 and 3.1 1.05 1.10 1.155 V 14, 15, 16, 17, 20, 21 Tpwrramp Ramp Rate 1.0 — AV D D C O R E Vo l ta g e a t F r e q u e n cy R a n g e s ( B 0 St e p p i n g ) mV/μs 25.00 M ax 11 M ax 10 Vcccore_1 Voltage applied for modes 0 and 1 0.90 0.945 1.000 1.155 V 12, 13, 22 Vcccore_2 Voltage applied for modes 2, 2.3, 3 and 3.1 0.97 1.000 1.030 1.155 V 14, 15, 16, 17, 22 Doc. No. MV-S301545-00 Rev. Page 30 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Maximum Ratings and Operation Conditions Operating Conditions Table 7: Voltage, Temperature, and Frequency Electrical Specifications (Continued) Symbol D e s cr i p t i o n Min Vcccore_3 Voltage applied for modes 4 and 4.1 Tpwrramp Ramp Rate Typical Max Units 1.086 1.120 1.155 1.155 V 1.0 — 25.00 25.00 mV/μs N o te s 18, 19, 21 V D D _ M Vo l ta g e Vcc_m_1 Voltage applied on VDD_M Tsysramp Ramp Rate 1.425 1.5 1.575 V — — — 25.00 mV/μs — V D D _I O { 0, 1, 2 ,3 , 4} Vo l ta g e Vcciox_1 Voltage applied when using 1.8v devices 1.70 1.80 1.98 V — Vcciox_3 Voltage applied when using 3.3v devices 2.97 3.30 3.63 V — Tsysramp Ramp Rate — — 25.00 mV/μs — V D D _ U S B Vo lta g e Vccusb_0 Voltage applied on AVDD_OTG 3.00 3.30 3.6 V — Vccusb_1 Voltage applied on AVDD_UHC 3.00 3.30 3.6 V — Tsysramp Ramp Rate — — 25.00 mV/μs — AV D D 5 _U S B (U S B O T G 5 V su p p l y ) vccusb_0 Voltage applied on AVDD5_USB 4.5 5.0 5.5 V — Tsysramp Ramp Rate — — 25.00 mV/μs — Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 31 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 7: Symbol Voltage, Temperature, and Frequency Electrical Specifications (Continued) D e s cr i p t i o n Min Typical Max Units N o te s NOTE: 1. Minimum/maximum junction temperature depends on SKU 2. The case temperature spec for Marvell® ARMADA 16x Applications Processor Family is a function of the Ψjt value that varies pending OEM system configuration. Ψjt value should be modeled and/or tested for each system configuration. 3. Allowable case temperature should be calculated using following formula. Maximum Ψjt can be used for maximum allowable case temperature calculation where testing or modeling resources are nor available or system can absorb the extra guard band introduced using max Ψjt values 4. Tcase(max) = Tj(max) - Ψjt * P(max) 5. Tcase(max) = Maximum allowable case temperature (°C). 6. Tj(max) = Maximum allowable junction temperature (°C) 7. P(max) = Maximum Sustainable ARMADA Power (W) 8. System design must ensure that the device case temperature is maintained within the specified limits. In some system applications it may be necessary to use external thermal management (for example, a package-mounted heat spreader) or configure the device to limit power consumption and maintain acceptable case temperatures. 9. The voltage ranges specified for VDD_CORE are the targeted voltage ranges for the product. These ranges may extend or narrow depending on actual product performance and product SKUs. Marvell recommends that extended voltage and current capabilities be designed into the power management IC to accommodate future changes to this specification without requiring changes to the power management IC. 10. Maximum allowable operating voltage on VDD_CORE. 11. Maximum allowable voltage on VDD_CORE to meet maximum 1.4 W Pmax 12. Mode 0 is PCLK = 156 MHz and DCLK = 156 MHz 13. Mode 1 is PCLK = 400 MHz and DCLK = 200 MHz 14. Mode 2 is PCLK = 624 MHz and DCLK = 312 MHz 15. Mode 2.3 is PCLK = 624 MHz and DCLK = 156 MHz 16. Mode 3 is PCLK = 800 MHz and DCLK = 400 MHz 17. Mode 3.1 is PCLK = 800 MHz and DCLK = 200 MHz 18. Mode 4 is PCLK = 1.066 GHz and DCLK = 533 MHz 19. Mode 4.1 is PCLK = 1.066 GHz and DCLK = 355 MHz 20. Maximum VDD_CORE power (Pmax) is 1.5W 21. Maximum full chip power (Pmax_fullchip) is 2.0W 22. Maximum full chip power (Pmax_fullchip) is 1.9W. Doc. No. MV-S301545-00 Rev. Page 32 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Electrical Specifications DC Voltage and Current Characteristics 6 Electrical Specifications This chapter includes DC voltage and current characteristics as well as crystal and oscillator specifications for the ARMADA 16x Applications Processor Family. 6.1 Section 6.1, DC Voltage and Current Characteristics Section 6.2, Oscillator Electrical Specifications DC Voltage and Current Characteristics The DC characteristics for each pin include input-sense levels, output-drive levels, current and pullup/down resistive values. These parameters can be used to determine maximum DC loading and to determine maximum transition times for a given load. Table 8 shows the DC operating conditions for the input, output, and I/O pins used by the Dynamic Memory Controller. Table 9 shows operating conditions for DDR3. Table 8: LPDDR1/LPDDR2 Input, Output and I/O pins AC/DC Operating Conditions Symbols D e s cr i p t io n Min Typ ic al Max U n it N o te s Vih(dc) Input high voltage VREF + 0.125 — VDD_M V — Vil(dc) Input low voltage VSS — VREF - 0.125 V — Vih(ac) Input high voltage VREF + 0.200 — 6 V — Vil(ac) Input low voltage 6 — VREF - 0.200 V — VOH High-level output voltage Absolute Load Current achieving Voh 1.4 — V 1, 2 VOL Low-level output voltage Absolute Load Current achieving Vol — — 0.4 V 1, 2 120 150 180 Ω 3, 4, 5 RTT Rtt Effective impedance value 60 75 90 Ω 3, 4, 5 4 4.5 5 pF Cpin Pin Capacitance Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 33 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 8: Symbols LPDDR1/LPDDR2 Input, Output and I/O pins AC/DC Operating Conditions (Continued) D e s cr i p t io n Min Typ ic al Max U n it N o te s NOTE: 1. IOH (min) = 13.4 mA 2. Measurement conditions VDDIO=1.8V, ZPDRV=ZNDRV=0xF, ZPR=ZNR=0xF, ZD=1 3. Refer to the Functional Description section in the DDR Memory Controller chapter in the Marvell® ARMADA 16x Applications Processor Family Software Manual for ODT configuration. 4. Measurement definition for RTT: Apply VREF +/- 0.25 to input pin separately, then measure current I(VREF + 0.25) and I(VREF - 0.25) respectively. Current does not include the current flowing through the pullup/pulldown resistor. 5. RTT = 0.5 / (I(VREF + 0.25) - I (VREF - 0.25)) 6. Input DC Operating Conditions (SSTL receiver) VIH overshoot: VIH (max) = VDD_M + 0.7V for a pulse width less than or equal to 3ns and the pulse width can not be greater than 1/3 the cycle rate. VIL undershoot: VIL (min) = -1.0V for a pulse width less than or equal to 3ns and the pulse width can not be greater than 1/3 the cycle rate Where VDD_M <=1.8V Table 9: DDR3 Input, Output, and I/O Pins AC/DC Operating Conditions Symbols D esc r ip ti o n/ Tes t C o n d it i o n VIL (AC) Input low level AC Note 7 -- VREF - 0.175 V -- VIH (AC) Input high level AC VREF + 0.175 -- Note 7 V -- VIL (DC) Input low level DC VSS -- VREF - 0.100 V -- VIH (DC) Input high level DC VREF + 1.00 -- VDDIO V -- VDIL Differential input low level Note 6 -- -0.2 V 6 VDIH Differential input high level 0.2 -- Note 6 V 6 VOL Output low level/ See Note 6 -- -- 0.2*VDDIO V 7 VOH Ouput high level/ See Note 6 0.8*VDDIO -- -- V 7 RTT Rtt effective impedance value/See Note 2 48 60 72 0hm 1, 2 Cpin Pin capacitance -- 4 4.5 pF -- Doc. No. MV-S301545-00 Rev. Page 34 M in Typ i cal M ax Unit N o te s Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Electrical Specifications DC Voltage and Current Characteristics Table 9: DDR3 Input, Output, and I/O Pins AC/DC Operating Conditions Notes: 1. See SDRAM functional description section for ODT configuration 2. Measurement defintion for RTT: Apply VREF +/-0.25 to input pin separately. Then measure current I(VREF + 0.25) and I(VREF - 0.25), respectively. RTT = 0.35/I(VREF +0.175) - I(VREF - 0.175) 3. Includes pad + pkg cap 4. This current does not include the current flowin g through the pullup/pulldown resistor. 5. Limitations are same as for single-ended signals. 6. Defined when driver impedance is calibrated to 21 ohm. See JEDEC Overshoot and Undershoot Spec. Table 10 applies to all signals powered by VCC_high. VCC_high is the term used to refer to the collective groups of high voltage supplies which consist of VDD_IO0, VDD_IO1, VDD_IO2, VDD_IO3, VDD_IO4, VDD_M, VDD_OTG, VDD_PLL and VDD_UHC. Table 10: MFP Input, Output, and I/O Pins DC Operating Conditions S y m b o ls D e s cr i p t io n Min Ty p i ca l Max Unit N o t es I n p u t D C O p e ra ti n g C o n d i ti o n s ( vc c = 1 .8 V Typ i cal ) Vih Input high voltage VCC_high * 0.8 — VCC_high + 0.3 V 3 Vil Input low voltage -0.3 — VCC_high * 0.2 V 3 Vhys Hysteresis (VIT+ - VIT-) 0.4 — VCC_high * 0.5 V 3 RPULLUP Pullup Resistance 401 110 2002 KΩ 4 RPULLDOWN Pulldown Resistance 401 110 2002 KΩ 5 I n p u t D C O p e ra ti n g C o n d i ti o n s ( 3. 3 V Typ i c al ) Vih Input high voltage 0.8 * VCC_high — VCC_high + 0.3 V 3 Vil Input low voltage -0.3 — VCC_high * 0.2 V 3 Vhys Hysteresis (VIT+ - VIT-) 0.4 — VCC_high * 0.5 V 3 RPULLUP Pullup Resistance 201 45 1002 KΩ 4 RPULLDOWN Pulldown Resistance 201 45 1002 KΩ 5 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 35 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 10: MFP Input, Output, and I/O Pins DC Operating Conditions (Continued) S y m b o ls D e s cr i p t io n Min Ty p i ca l Max Unit N o t es V IOH = (mA min) O u tp u t D C O p e ra t in g C o n d i t io n s ( V C C = 1 . 8 V Ty p i c a l ) ( N o r m a l I O P i n s ) VOH6 1X 2X 3X VOL6 1X 2X 3X High-level output voltage Absolute Load Current achieving Voh 0.9 * VCC_high Low-level output voltage Absolute Load Current achieving Vol VSS — VCC_high -3 -6 -9 — 0.1 * VCC_high V IOL = (mA min) 3 6 9 O u tp u t D C O p e ra t in g C o n d i t io n s ( V C C = 1. 8 V Ty p i ca l ) ( F a st IO P in s ( M F P _ <5 6: 85 >) ) VOH6 1X 2X 3X 4X VOL6 1X 2X 3X 4X High-level output voltage Absolute Load Current achieving Voh 0.9 * VCC_high Low-level output voltage Absolute Load Current achieving Vol VSS — VCC_high V IOH = (mA min) -3 -6 -8 -10 — 0.1 * VCC_high V IOL = (mA min) 3 6 8 10 O u tp u t D C O p e ra t in g C o n d i t io n s ( vc cp = 3 . 3 V Ty p i c a l ) ( N o r m a l I O P i n s ) VOH6 1X 2X 3X VOL6 1X 2X 3X High-level output voltage Absolute Load Current achieving Voh Low-level output voltage Absolute Load Current achieving Vol VCC_high * 0.9 VCC_high V IOH = (mA min) — -3 -9 -11 VSS — 0.1 * VCC_high V IOL = (mA min) 3 6 11 O u tp u t D C O p e ra t in g C o n d i t io n s ( vc cp = 3. 3 V Ty p i ca l ) ( F a st IO P in s ( M F P _ <5 6: 85 >) ) Doc. No. MV-S301545-00 Rev. Page 36 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Electrical Specifications Oscillator Electrical Specifications Table 10: MFP Input, Output, and I/O Pins DC Operating Conditions (Continued) S y m b o ls D e s cr i p t io n Min Ty p i ca l VOH6 High-level output voltage Absolute Load Current achieving Voh VCC_high * 0.9 — 1X 2X 3X 4X VOL6 1X 2X 3X 4X Low-level output voltage Absolute Load Current achieving Vol Max Unit N o t es VCC_high V IOH = (mA min) -5.0 -8.0 -10.0 -12.0 VSS — 0.1 * VCC_high V IOL = (mA min) 5.0 8.0 10.0 12.0 O u tp u t D C O p e ra t in g C o n d i t io n s ( V C C = 1. 8 a n d 3 .3 V Typ ic al ) IOZ Three-state output leakage current — — 40 nA — IDDQ Quiescent supply current — — 1 nA — NOTE: 1. Max voltage, Minimum temperature 2. Min voltage, Maximum temperature 3. VCC_high references to VDD_IO0, VDD_IO1, VDD_IO2, VDD_IO3, VDD_IO4, VDD_M, VDD_OTG, VDD_PLL and VDD_UHC supplies. 4. Use MFPRxx[pull_sel] and MFPRxx[pullup_en] bits to enable or disable pullups. 5. Use MFPRxx[pull_sel] and MFPRxx[pulldown_en] bits to enable or disable pulldowns. 6. Multi-Function Pin (MFP) drive strength is programmable using MFPRxx[drive] bitfield. MFPR register definitions are found in the Marvell® ARMADA 16x Applications Processor Family Software Manual. 6.2 Oscillator Electrical Specifications 6.2.1 26.000 MHz Oscillator Specifications The 26.000 MHz crystal is connected between the PXTAL_IN (amplifier input) and PXTAL_OUT (amplified output). Table 11 lists the 26.000 MHz crystal specifications. To drive the 26.000 MHz crystal pins from an external source: 1. 2. Drive the PXTAL_IN pin with a digital signal with low and high levels as listed in Table 12. Float the PXTAL_OUT pin Table 12 lists the 26.000 MHz oscillator specifications. Figure 7 shows recommended GND shielding to xtal_in and xtal_out. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 37 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 7: Recommended GND Shielding to xtal_in and xtal_out Table 11: Typical 26.000 MHz Crystal Requirements P ar am e te r Minimum Typ i c al M ax im u m U n i ts Frequency range 25.997 26.000 26.002 MHz Frequency tolerance at 25°C –50 — +50 ppm Oscillation mode Fundamental Parallel Resonant — Maximum change over temperature range –50 — +50 ppm Drive level — 10 100 uW Load capacitance (CL) — 10 — pf Series resistance (RS) — 50 — Ω NOTE: Table 12: Typical External 26.000 MHz Oscillator Requirements S ym b o l D e s cr i p t i o n Min Typ i c al Max U n i ts A m p l i fi e r Sp e ci f i cat i o n s VIH_X Input high voltage, PXTAL_IN 1.7 1.8 1.9 V VIL_X Input low voltage, PXTAL_IN –0.10 0.00 0.10 V IIN_XP Input leakage, PXTAL_IN — — 10 μA CIN_XP Input capacitance, PXTAL_IN/PXTAL_OUT — 20 25 pf tS_XP Stabilization time — — 7 ms SR_XP Slew Rate 1 — — V/ns Doc. No. MV-S301545-00 Rev. Page 38 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Electrical Specifications Oscillator Electrical Specifications Table 12: Typical External 26.000 MHz Oscillator Requirements (Continued) S ym b o l D e s cr i p t i o n Min Typ i c al Max U n i ts B o ar d Sp e c if i ca ti o n s RP_XP Parasitic resistance, PXTAL_IN/PXTAL_OUT to any node 20 — — MΩ CP_XP Parasitic capacitance, PXTAL_IN/PXTAL_OUT, total — — 5 pf COP_XP Parasitic shunt capacitance, PXTAL_IN to PXTAL_OUT — — 0.4 pf a Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 39 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Doc. No. MV-S301545-00 Rev. Page 40 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications 7 AC Electrical Characteristics This chapter includes alternating-current (AC) characteristics, timing diagrams and timing parameters for the ARMADA 16x Applications Processor Family controllers/interfaces listed below. Section 7.1, DDR SDRAM Timing Diagrams and Specifications Section 7.2, Static Memory Controller Timing Diagrams and Specifications Section 7.3, NAND Timing Diagrams and Specifications Section 7.4, SD Host Controller (SDH) Timing Diagrams and Specifications Section 7.5, LCD Controller Timing Diagrams and Specifications Section 7.6, Quick Capture Camera Interface (CCIC) Timing Diagrams and Specifications Section 7.7, SSP Timing Diagrams and Specifications Section 7.8, TWSI Timing Diagrams and Specifications Section 7.9, AC’97 Timing Diagrams and Specifications Section 7.10, JTAG Interface Timing Diagrams and Specifications Section 7.11, USB 2.0 Timing Diagrams and Specifications Section 7.12, PCI Express Specifications Section 7.13, Ethernet MAC (MII) Timing Diagrams and Specifications Section 7.14, Powerup/Down Sequences 7.1 DDR SDRAM Timing Diagrams and Specifications This section describes the timing diagrams and timing parameters for the DDR Controller. The following diagrams are included in this section: Figure 8, Differential Clock Figure 9, LPDDR1 SDRAM Timing Diagrams 1 Figure 10, LPDDR1 SDRAM Timing Diagrams 2 Figure 11, LPDDR1 SDRAM Timing Diagrams 3 Figure 12, LPDDR1 SDRAM Timing Diagrams 4 Figure 13, Basic Write Timing Parameters Figure 14, DQ to DQS Write Skew Figure 15, CLK to Address/Command Write Skew Figure 16, DQS to CLK Write Skew Figure 17, DQ to DQS Read Skew Refer to Table 15 through Table 18 for the DDR specifications. Refer to the JEDEC Spec for complete timing diagrams and specifications. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.1.1 Measurement Conditions The diagrams in the section use the following conventions: Table 13: Standard Input, Output, and I/O-Pin AC Operating Conditions Symbol D e s c ri p ti o n CIO IO capacitance, all standard I/O pins Min Typ i c al Max U n i ts — — 5 Min Typ i c al Max 0.45*VDDQ — 0.55*VDDQ V 1.36 1.44 1.52 V pf Figure 8: Differential Clock Clock Crossing SDRAM_CLKn VID vx SDRAM_CLK Table 14: Clock Parameters Symbol D e s c ri p ti o n Vx Differential Clock Cross over point relative to gnd VID DC Differential Output Voltage 7.1.2 U n i ts DDR SDRAM Timing Diagrams and Specifications Figure 9 through Figure 12 shows the typical LPDDR1 SDRAM timings. Figure 15 shows the skew timings. Refer to Table 15 for the DDR specifications. Refer to the JEDEC Spec for complete timing diagrams and specifications. Doc. No. MV-S301545-00 Rev. Page 42 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications Figure 9: LPDDR1 SDRAM Timing Diagrams 1 SDCLK[1] SDCKE tRCD tRP tRAS tRCD tRC Command NOP ACT NOP READ NOP PRE NOP ACT NOP WRITE NOP PRE NOP nSDCS[0] nSDRAS nSDCAS nWE tRPSTmc tWPREmc tRPREmc tWPSTmc DQS tDQSCKmc tCL tWR tHZmc MD[31:0] tLZmc 1111 DQM[1:0] mask0 mask1 mask6 mask7 Figure 10: LPDDR1 SDRAM Timing Diagrams 2 trwd_ext_dly BL Data DR0 tRP CMD BA tRCD tCCD DR1 DR2 DW0 tCCD + trwd_ext_dly + 1 tRTP PRE ACT RD RD PRE RD WR ACT a a a a a b b a CSn0 tRC CSn1 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 11: LPDDR1 SDRAM Timing Diagrams 3 tWTR Data DW0 tRRD CMD BA ACT a DW1 DW2 tCCD ACT WR b ACT WR a c ACT b WR d RD c d CSn0 CSn1 Figure 12: LPDDR1 SDRAM Timing Diagrams 4 tWR Data DW0 tRFC CMD REF BA DW1 DW2 DW3 tRC ACT ACT a b ACT WR c a ACT WR WR PRE WR d b c a d ACT ACT a e WR e tFAW Doc. No. MV-S301545-00 Rev. Page 44 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications Figure 13 Basic Write Timing Parameters. Figure 13: Basic Write Timing Parameters tDQSSmc tDSHmc tDQSHmc tDSHmc tDQSLmc DO n tDQSSmc tDSSmc tDQSHmc tDSSmc tDQSLmc DO n 1 ) DO n = Data Out for column n 2 ) 3 subsequent elements of Data Out are applied in the programmed order following DO n 3 ) tDQSS: each rising edge of DQS must fall within the +/-25 % window of the corresponding positive clock edge 7.1.3 DDR SDRAM Skew Timings Figure 15 shows the Data, Command and Address skew parameters for read and write accesses. Refer to Table 15 for timing specifications for these parameters. Figure 14 Shows the DQ to DQS skew during Write cycles. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 14: DQ to DQS Write Skew 0ps 1000ps 2000ps 3000ps DQS DQS t DQTVB tDQTVA tDQTVB tDQTVA DQ Figure 15 Shows the CLK to Address/Command skew during Write cycles. Figure 15: CLK to Address/Command Write Skew CLKn CLK tATVB tATVA ADDR/CMD/CNTRL Figure 16 shows the DQS-to-CLK skew during Write cycles. Figure 16: DQS to CLK Write Skew 0ps 1000ps CLK 2000ps 3000ps CLK CLK C LK# DQS DQS tDQSSmc h DQS DQS# Doc. No. MV-S301545-00 Rev. Page 46 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications Figure 17 Shows the DQ to DQS allowable skew during read cycles. Figure 17: DQ to DQS Read Skew 0ps 1000ps 2000ps 3000ps DQS DQS tSUmch tHDmch tSUmch tHDmch DQ Table 15: DDR Timing Specifications Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tRCD ACTIVE to internal read or write delay time 1 SDRAM_TIMING_2[tRCD] 15 DCLK tRAS Active to Precharge command period 1 SDRAM_TIMING_5[tRAS] 63 DCLK tRC ACTIVE-to-ACTIVE or REFRESH (same bank) command delay 1 SDRAM_TIMING_1[tRC] 63 DCLK tRP Pre-charge command period 1 SDRAM_TIMING_2[tRP] 15 DCLK tCCD CAS# to CAS# command delay 1 SDRAM_TIMING_1[tCCD] 7 DCLK tXP Exit power down to next valid command delay 1 SDRAM_TIMING_3[tXP] SDRAM_TIMING_3[tXARDS] 7 DCLK tCL CAS Latency 1 SDRAM_CTRL4[CAS_LATENCY] 7 DCLK tCCD_CCS CAS# to CAS# read command delay (System level requirement) 1 SDRAM_TIMING_5[tCCD_CCS_E XT_DLY] 7 DCLK READ to WRITE command delay (System level requirement) 1 SDRAM_TIMING_4[tRWD_EXT_D LY] 7 DCLK _DLY tCCD_CCS CAS# to CAS# write command delay _EXT_DLY tRWD_EXT SDRAM[TIMING_5[tCCD_CCS_W R_EXT_DLY] _WR_EXT_ DCLK DLY tWTR Internal write to read delay 1 SDRAM_TIMING_1[tWTR] 15 DCLK tRRD ACTIVE bank A to ACTIVE bank B command period 1 SDRAM_TIMING_2[tRRD] 15 DCLK tWR Write recovery 1 SDRAM_TIMING_2[tWR] 15 DCLK Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 15: DDR Timing Specifications (Continued) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tFAW Maximum number of ACTIVE or per-bank refreshes within this period. 2 SDRAM_TIMING_5[tFAW] 2 DCLK tXSR Self refresh exit to next valid command delay 1 SDRAM_TIMING_3[tXSNR] SDRAM_TIMING_3[tXSRD] 511 DCLK tCKE CKE minimum pulse width (High and low pulse width) 1 SDRAM_TIMING_4[tCKE] 7 DCLK tMRD Mode Register Set command cycle time 1 SDRAM_TIMING_2[tMRD] 7 DCLK tREFI Auto-Refresh Interval Counter 1 SDRAM_TIMING_1[tREFI] 65535 FCLK tRFC Refresh to Active or Refresh to Refresh internal 1 SDRAM_TIMING_2[tRFC] 511 DCLK tCCD CAS# to CAS# command delay 1 SDRAM_TIMING_1[tCCD] 7 DCLK tRTP Internal Read to Precharge command delay 1 SDRAM_TIMING_1[tRTP] 7 DCLK tINIT_COU Power up delay after stable power and clocks 1 SDRAM_TIMING_4[INIT_COUNT] 255 DCLK Power up delay after stable power and clocks 1 SDRAM_TIMING_4[INIT_COUNT _NOP] 255 DCLK NT tINIT_COU NT_NOP NOTE: 1. Timing Specified to Reference Load (50 Ohms T line connected to 20pF) 2. The setup and hold timing is for reference slew rate of 1V/ns for DQ and 1V/ns for DQS. For slower slew rates, apply 100ps extra derating for setup/hold. 3. Drive Strength reference setting for timing ZPR=ZNR=0111 Table 16: DDR Timing Specifications for 533 MHz (VDD_M = 1.8V) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tCK(Jitter) CLK Jitter at output pin (c-c) -100 — 100 ps tCL Clock low level width 0.47 — 0.53 tCK tCH Clock high level width 0.47 — 0.53 tCK tCK_DC Duty Cycle at output pin 0.42 — 0.53 tCK tDQTVB DQ Valid time before DQS 0.27 — — ns 1 tDQTVA DQ Valid time after DQS 0.3 — — ns 1 tATVB ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time before CK 0.6 — — ns 1 Doc. No. MV-S301545-00 Rev. Page 48 No tes Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications Table 16: DDR Timing Specifications for 533 MHz (VDD_M = 1.8V) (Continued) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units No tes tATVA ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time after CK 0.64 — — ns 1 tDQSSmc DQS Output access time from CLK pos edge — — 0.08 ns 1 tSUmc Max Setup skew allowed between DQ and DQS during READ from DQS transition — — 0.29 ns 2 tHDmc Hold factor for valid DQ w.r.t DQS rising/falling edge during READ 0.65 — — ns 2 tDIPWmc DQ and DM output pulse width 0.45 — — tCK tDQSHmc DQS output high pulse width 0.45 — — tCK tDQSLmc DQS output low pulse width 0.45 — — tCK tDSSmc DQS falling edge to CLK-CLKn rising edge 0.4 — — tCK tDSHmc DQS falling edge from CLK-CLKn rising edge 0.4 — — tCK tDQSSmc Write command to first DQS latching transition -0.1 — 0.1 tCK tWPREmc DQS write preamble 0.4 — — tCK tWPSTmc DQS write postamble 0.45 — 0.55 tCK tIPWmc Address and Control output pulse width 0.9 — — tCK tRPREmc DQS read preamble 0.9 — 1.1 tCK tRPSTmc DQS read postamble 0.4 — 0.6 tCK tDQSCKmc DQS input access time from CLK/CLKn 2.0 — 7.0 ns tLZmc DQ and DQS low-impedance time from CLK/CLKn 1 — — ns tHZmc DQ and DQS high-impedance time from CLK/CLKn — — 7 ns NOTE: 1. Timing Specified to Reference Load (50 Ohms T line connected to 20pF) 2. The setup & hold timing is for reference slew rate of 1V/ns for DQ and 1V/ns for DQS. For slower slew rates, apply 100ps extra derating for setup/hold. 3. Drive Strength reference setting for timing ZPR=ZNR=0111 Table 17: DDR Timing Specifications for 400 MHz (VDD_M = 1.8V) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tCK(Jitter) CLK Jitter at output pin (c-c) -100 — 100 ps Copyright © 2010 Marvell November 2010 PUBLIC RELEASE No tes Doc. No. MV-S301545-00 Rev. Page 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 17: DDR Timing Specifications for 400 MHz (VDD_M = 1.8V) (Continued) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tCL Clock low level width 0.47 — 0.53 tCK tCH Clock high level width 0.47 — 0.53 tCK tCK_DC Duty Cycle at output pin 0.42 — 0.53 tCK tDQTVB DQ Valid time before DQS 0.42 — — ns 1 tDQTVA DQ Valid time after DQS 0.42 — — ns 1 tATVB ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time before CK 0.9 — — ns 1 tATVA ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time after CK 0.94 — — ns 1 tDQSSmc DQS Output access time from CLK pos edge — — 0.06 ns 1 tSUmc Max Setup skew allowed between DQ and DQS during READ from DQS transition — — 0.41 ns 2 tHDmc Hold factor for valid DQ w.r.t DQS rising/falling edge during READ 0.84 — — ns 2 tDIPWmc DQ and DM output pulse width 0.45 — — tCK tDQSHmc DQS output high pulse width 0.45 — — tCK tDQSLmc DQS output low pulse width 0.45 — — tCK tDSSmc DQS falling edge to CLK-CLKn rising edge 0.4 — — tCK tDSHmc DQS falling edge from CLK-CLKn rising edge 0.4 — — tCK tDQSSmc Write command to first DQS latching transition -0.1 — 0.1 tCK tWPREmc DQS write preamble 0.4 — — tCK tWPSTmc DQS write postamble 0.45 — 0.55 tCK tIPWmc Address and Control output pulse width 0.9 — — tCK tRPREmc DQS read preamble 0.9 — 1.1 tCK tRPSTmc DQS read postamble 0.4 — 0.6 tCK tDQSCKmc DQS input access time from CLK/CLKn 2.0 — 7.0 ns tLZmc DQ and DQS low-impedance time from CLK/CLKn 1 — — ns tHZmc DQ and DQS high-impedance time from CLK/CLKn — — 7 ns Doc. No. MV-S301545-00 Rev. Page 50 No tes Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics DDR SDRAM Timing Diagrams and Specifications Table 17: DDR Timing Specifications for 400 MHz (VDD_M = 1.8V) (Continued) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units No tes NOTE: 1. Timing Specified to Reference Load (50 Ohms T line connected to 20pF) 2. The setup & hold timing is for reference slew rate of 1V/ns for DQ and 1V/ns for DQS. For slower slew rates, apply 100ps extra derating for setup/hold. 3. Drive Strength reference setting for timing ZPR=ZNR=0111 Table 18: DDR Timing Specifications for 200 MHz (VDD_M = 1.8V) Sym bo l D e s cr i p t i o n Min Typ ic al Max Units tCK(Jitter) CLK Jitter at output pin (c-c) -100 — 100 ps tCL Clock low level width 0.47 — 0.53 tCK tCH Clock high level width 0.47 — 0.53 tCK tCK_DC Duty Cycle at output pin 0.42 — 0.53 tCK tDQTVB DQ Valid time before DQS 1.02 — — ns 1 tDQTVA DQ Valid time after DQS 1.05 — — ns 1 tATVB ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time before CK 2.1 — — ns 1 tATVA ADDR/CMD/CNTRL (RAS, CS, CAS, WE, CKE, ADDR) Valid time after CK 2.14 — — ns 1 tDQSSmc DQS Output access time from CLK pos edge — — 0.05 ns 1 tSUmc Max Setup skew allowed between DQ and DQS during READ from DQS transition — — 1.04 ns 2 tHDmc Hold factor for valid DQ w.r.t DQS rising/falling edge during READ 1.46 — — ns 2 tDIPWmc DQ and DM output pulse width 0.45 — — tCK tDQSHmc DQS output high pulse width 0.45 — — tCK tDQSLmc DQS output low pulse width 0.45 — — tCK tDSSmc DQS falling edge to CLK-CLKn rising edge 0.4 — — tCK tDSHmc DQS falling edge from CLK-CLKn rising edge 0.4 — — tCK tDQSSmc Write command to first DQS latching transition -0.1 — 0.1 tCK tWPREmc DQS write preamble 0.4 — — tCK tWPSTmc DQS write postamble 0.45 — 0.55 tCK tIPWmc Address and Control output pulse width 0.9 — — tCK Copyright © 2010 Marvell November 2010 PUBLIC RELEASE No tes Doc. No. MV-S301545-00 Rev. Page 51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 18: DDR Timing Specifications for 200 MHz (VDD_M = 1.8V) (Continued) Sym bo l D e s cr i p t i o n Min Typ ic al Max tRPREmc Units DQS read preamble 0.9 — 1.1 tCK tRPSTmc DQS read postamble 0.4 — 0.6 tCK tDQSCKmc DQS input access time from CLK/CLKn 2.0 — 7.0 ns tLZmc DQ and DQS low-impedance time from CLK/CLKn 1 — — ns tHZmc DQ and DQS high-impedance time from CLK/CLKn — — 7 ns No tes NOTE: 1. Timing Specified to Reference Load (50 Ohms T line connected to 20pF) 2. The setup & hold timing is for reference slew rate of 1V/ns for DQ and 1V/ns for DQS. For slower slew rates, apply 100ps extra derating for setup/hold. 3. Drive Strength reference setting for timing ZPR=ZNR=0111 7.2 Static Memory Controller Timing Diagrams and Specifications 7.2.1 Address Cycle Figure 18 shows the timing for the address cycles during an A/D Operating mode access. Figure 19 shows the timing for the address cycles during an AA/D Operating mode access.The DFI Configuration Control Register for Chip Selects (SMC_CSDFICFGx) determines each timing parameter using the SMC_SCLK clock frequency. Refer to Table 19 for a list of registers used to program the address phase timing parameters. Doc. No. MV-S301545-00 Rev. Page 52 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 18: A/D Address Phase SMC_SCLK SMC_NCSx SMC_NOE SMC_NWE SMC_NBE[1:0] Address[ 15:0] ND_IO[15:0] ALTS A LW A LTH SMC_ADV SMC_ADVMUX SMC_RDY Notes: 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_CSDFICFGx[ADDMODE] = 0x0 4. SMC_WE_APx[WE_AP_VAL] = 0xFFF 5. SMC_OE_APx[OE_AP_VAL] = 0xFFF Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 53 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 19: AA/D Address Phase SMC_SCLK SMC_NCSx SMC_NOE SMC_NWE SMC_NBE[1:0] Address[2 7:16] ND_IO[15:0] Address[1 5:0] SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTS ALW ALTH SMC_ADVMUX SMC_RDY Notes: 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_CSDFICFGx[ADDMODE] = 0x1 4. SMC_WE_APx[WE_AP_VAL] = 0xFFF 5. SMC_OE_APx[OE_AP_VAL] = 0xFFF 7.2.2 Read Access Data Phases Figure 20 - Figure 23 show timing diagrams of the data phase during Read accesses. The Static Memory Control Register (SMC_MCSx) and Synchronous Static Memory Controller Register (SMC_SXCNFGx) determines each timing parameter using the SMC_SCLK clock frequency. Refer to Table 19 for a list of registers used to program the read data timing parameters. Doc. No. MV-S301545-00 Rev. Page 54 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 20: Asynchronous Read With RDY Signal SMC_NCSx OE_GEN SMC_NOE SMC_NWE SMC_NBE[1:0] OE_SU ND_IO[15:0] Address[27:16] OE_D_HO Address[15:0] OE_HO Data SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTS ALW ALTH SMC_ADVMUX OE_D_SU SMC_RDY N o te s : 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFFF 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_MCSx[OE_SU] = 0x1 6. SMC_MCSx[OE_GEN] = 0x1 7. SMC_CSDFICFGx[RDY_SPEC4] = 0x1 8. SMC_CSDFICFGx[RDY_SPEC3] = 0x0 9. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x1 or 0x3 10. SMC_CSDFICFGx[RDY_SPEC0] = 0x1 11. SMC_CSDFICFGx[RDSYNC] = 0x2 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 55 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 21: Asynchronous Read Without RDY Signal SMC_NCSx OE_GEN SMC_NOE SMC_NWE OE_D_ SU SMC_NBE[1:0] OE_ SU ND_IO[15:0] Address[27:16] Address[15:0] OE_D_HO OE_HO Data SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTS ALW ALTH SMC_ADVMUX SMC_RDY N o t es: 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFFF 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_MCSx[OE_SU] = 0x1 6. SMC_MCSx[OE_D_SU] = 0x3 7. SMC_MCSx[OE_D_HO] = 0x3 8. SMC_MCSx[OE_HO] = 0x1 9. SMC_MCSx[OE_GEN] = 0x1 10. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x0 or 0x2 11. SMC_CSDFICFGx[RDSYNC] = 0x0 Doc. No. MV-S301545-00 Rev. Page 56 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications Figure 22: Synchronous Read With RDY Signal tCLKL tCLKH SCLK OE_GEN SMC_NCSx OE_SU SMC_NOE SMC_NWE SMC_NBE[1:0] tIH tISU ND_IO[15:0] Address[27:16] Address[15:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTH ALTS ALW Access time determiined by RDY SMC_ADVMUX SMC_RDY NOTE: 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFFF 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_SXCNFGx[SXRA] = 0x5 6. SMC_MCSx[OE_SU] = 0x1 7. SMC_MCSx[OE_GEN] = 0x1 8. SMC_CSDFICFGx[RDY_SPEC4] = 0x1 9. SMC_CSDFICFGx[RDY_SPEC3] = 0x0 10. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x1 or 0x3 11. SMC_CSDFICFGx[RDY_SPEC0] = 0x1 12. SMC_CSDFICFGx[RDSYNC] = 0x1 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 57 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 23: Synchronous Read Without RDY Signal tCLKL tCLKH SCLK OE_GEN SMC_NCSx OE_SU SMC_NOE SMC_NWE 0b00 SMC_NBE[1:0] tIH tISU ND_IO[15:0] Address[27:16] Address[15:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTH ALTS ALW SXRA SMC_ADVMUX SMC_RDY Notes: 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFFF 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_SXCNFGx[SXRA] = 0x6 6. SMC_MCSx[OE_SU] = 0x1 7. SMC_MCSx[OE_GEN] = 0x1 8. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x0 or 0x2 9. SMC_CSDFICFGx[RDSYNC] = 0x1 7.2.3 Write Access Data Phases Figure 24 - Figure 27 show timing diagrams of the data phase during Write accesses.The Static Memory Control Register (SMC_MCSx) and Synchronous Static Memory Controller Register (SMC_SXCNFGx) determines each timing parameter using the SMC_SCLK clock frequency. Refer to Table 19 for a list of registers used to program the write data timing paramaters. Doc. No. MV-S301545-00 Rev. Page 58 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 24: Asynchronous Write With RDY Signal WE_GEN SMC_NCSx SMC_NOE WE_HO SMC_NWE SMC_NBE[1:0] WE_SU ND_IO[15:0] Address[27:16] Address[15:0] Data SMC_ADDR[20:16] AL TS ALW ALTH SMC_ADV ALTS ALW ALTH SMC_ADVMUX WE_LEN SMC_RDY N o t es : 1. SMC_CSDFICFGx[ALTS] = 0x1 2. SMC_CSDFICFGx[ALTH] = 0x1 3. SMC_CSDFICFGx[ALW] = 0x1 4. SMC_WE_APx[WE_AP_VAL] = 0xFFF 5. SMC_OE_APx[OE_AP_VAL] = 0xFFF 6. SMC_MCSx[WE_SU] = 0x1 7. SMC_MCSx[WE_LEN] = 0x1 8. SMC_MCSx[WE_D_HO] = 0x1 9. SMC_CSDFICFGx[RDY_SPEC4] = 0x1 10. SMC_CSDFICFGx[RDY_SPEC3] = 0x0 11. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x2 or 0x3 12. SMC_CSDFICFGx[RDY_SPEC0] = 0x1 13. SMC_CSDFICFGx[WRSYNC] = 0x0 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 59 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 25: Asynchronous Write Data Phase Without RDY Signal WE_GEN SMC_NCSx SMC_NOE WE_LEN WE_HO SMC_NWE SMC_NBE[1:0] WE_SU ND_IO[15:0] Address[27:16] A ddress[15:0] Data SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTS ALW ALTH SMC_ADVMUX SMC_RDY N o te s : 1. SMC_CSDFICFGx[ALTS] = 0x1 2. SMC_CSDFICFGx[ALTH] = 0x1 3. SMC_CSDFICFGx[ALW] = 0x1 4. SMC_WE_APx[WE_AP_VAL] = 0xFFF 5. SMC_OE_APx[OE_AP_VAL] = 0xFFF 6. SMC_MCSx[WE_SU] = 0x1 7. SMC_MCSx[WE_LEN] = 0x1 8. SMC_MCSx[WE_D_HO] = 0x1 9. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x0 or 0x1 10. SMC_CSDFICFGx[WRSYNC] = 0x2 Doc. No. MV-S301545-00 Rev. Page 60 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications Figure 26: Synchronous Write With RDY Signal SMC_SCLK WE_GEN SMC_NCSx SMC_NOE ALW ALTS ALTH SMC_NWE SMC_NBE[1:0] tODH tODV DF_IO[15:0] Address[27:16] Address[15:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV ALTH ALTS ALW SXWA SMC_ADVMUX Access time depends on RDY SMC_RDY N o te s : 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFF7 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_CSDFICFGx[RDY_SPEC4] = 0x1 6. SMC_CSDFICFGx[RDY_SPEC3] = 0x0 7. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x2 or 0x3 8. SMC_CSDFICFGx[RDY_SPEC0] = 0x1 9. SMC_CSDFICFGx[WRSYNC] = 0x1 10. SMC_SXCNFGx[SXWA] = 0x5 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 27: Synchronous Write Data Phase Without RDY Signal SMC_SCLK WE_GEN SMC_NCSx SMC_NOE A LW A LTS ALTH SMC_NWE SMC_NBE[1:0] tODH tODV DF_IO[15:0] Address[27:16] Address[15:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 SMC_ADDR[20:16] ALTS ALW ALTH SMC_ADV A LTH ALTS ALW SXWA SMC_ADVMUX A cces s time depends on RDY SMC_RDY N o t es : 1. SMC_CSDFICFGx[ALTS] = 0x1 1. SMC_CSDFICFGx[ALTH] = 0x1 2. SMC_CSDFICFGx[ALW] = 0x1 3. SMC_WE_APx[WE_AP_VAL] = 0xFF7 4. SMC_OE_APx[OE_AP_VAL] = 0xFFF 5. SMC_SXCNFGx[SXWA] = 0x5 6. SMC_CSDFICFGx[RDY_SPEC2_1] = 0x0 or 0x1 7. SMC_CSDFICFGx[WRSYNC] = 0x1 Symbol Table 19: Static Memory Controller Interface Timing Specifications D e s cr i p t i o n Min 2 Min 3 Typ ic al M ax U n i ts tCK SMC_SCLK frequency 31.2 62.4 PMUA_SMC_CLK_RES_CTRL[ SMC_CLK_SEL] 62.4 MHz WE_GEN Delay after the last data is latched until the chip select is de-asserted. 1 1 SMC_MCSx[WE_GEN] 3 SMC_SCLK WE_D_HO Data hold cycles after SMC_nWE latches the data 1 1 SMC_MCSx[WE_D_HO] 7 SMC_SCLK WE_D_SU Data setup time prior to SMC_nWE assertion 1 1 SMC_MCSx[WE_D_SU] 7 SMC_SCLK Doc. No. MV-S301545-00 Rev. Page 62 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Static Memory Controller Timing Diagrams and Specifications Table 19: Static Memory Controller Interface Timing Specifications (Continued) Min 3 Typ ic al M ax Symbol Min 2 D e s cr i p t i o n U n i ts WE_LEN Length of the SMC_nWE latch 1 1 SMC_MCSx[WE_LEN] 63 SMC_SCLK OE_GEN Delay after the last data is latched until the chip select is de-asserted. 1 1 SMC_MCSx[OE_GEN] 7 SMC_SCLK OE_HO Data hold cycles after SMC_nOE latches data 1 1 SMC_MCSx[OE_HO] 3 SMC_SCLK OE_SU Setup time prior to SMC_nOE assertion 1 1 SMC_MCSx[OE_SU] 7 SMC_SCLK OE_D_HO Hold prior to SMC_NOE de-assertion 1 1 SMC_MCSx[OE_D_HO] 7 SMC_SCLK OE_D_SU Read data setup prior to SMC_nOE latching the data. 1 1 SMC_MCSx[OE_D_SU] 63 SMC_SCLK ALTS Address Latch setup time 0 0 SMC_CSDIFCFGx[ALTS] 2 SMC_SCLK ALTH Address Latch hold time 0 0 SMC_CSDIFCFGx[ALTH] 2 SMC_SCLK ALW Address latch width 1 1 SMC_CSDIFCFGx[ALTW] 7 SMC_SCLK SXWA Access time for synchronous writes 3 3 SMC_SXCNFGx[SXWA] 10 SMC_SCLK SXRA Access time for synchronous reads 3 3 SMC_SXCNFGx[SXRA] 10 SMC_SCLK tISU Synchronous Read data setup time 4.04 4.04 — — ns tIH Synchronous Read data hold time 2.0 2.0 — — ns tODV Synchronous Write data valid before SMC_SCLK 14.7 6.7 — — ns tODH Synchronous Write data hold time 17.3 9.3 — — ns 1. SMC_SCLK frequency depends on the APMU_SMC_CLK_RES_CTRL[SMC_CLK_SEL] programmed value 2. SMC_SCLK = 31.2 MHz (APMU_SMC_CLK_RES_CTRL[SMC_CLK_SEL = 0x1]) 3. SMC_SCLK = 62.4 MHz (APMU_SMC_CLK_RES_CTRL[SMC_CLK_SEL = 0x0]) Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.3 NAND Timing Diagrams and Specifications This section describes the timing diagrams for NAND flash programming, Erase, Read, Status Read, and ID Read with timing parameters. 7.3.1 NAND Flash Program Timing Figure 28 illustrates the programming sequence for a Flash device. The Flash device is addressed with up to seven cycles depending on the value of Number of Address Cycles field (ADDR_CYC) in the NAND Controller Command Buffer 0 (NDCB0) register and the external NAND device requirements. Refer to Table 20 for the detailed descriptions of the timing parameters. If the Auto-read Status bit (AUTO_RS) is set in the command, the NAND Flash Controller performs a status check (Command 0x70) to determine whether the program operation was successful. Figure 28: NAND Flash Program Timing Diagram tWEH tWEH tWEH ND_CLE ND_nCSx tADL tw(WL) tWES tWES tWRCYCLE tw(WH) tWES tWES ND_nWE tWEH ND_ALE ND_nRE tODH tODLY DF_IO<15:0> 80h tODH tODV ADDR1 ADDR2 ADDR3 ADDR41 DOUT N DOUT N+1 DOUT M2 10h 70h Status ND_RnB 1. The number of address cycles depends on the NAND device being accessed and NDCB0[ADDR_CYC]. 2. M is defined by the NDCR[PAGE_SZ], NDCR[SPARE_EN] and NDCR[ECC_EN] values. 7.3.2 NAND Flash Erase Timing Figure 29 illustrates the erase sequence for a Flash device. The block to be erased in the Flash device is addressed in up to seven cycles depending on the value of Number of Address Cycles field (ADDR_CYC) in the NAND Controller Command Buffer 0 (NDCB0) register and the external NAND device requirements. Refer to Table 20 for the detailed descriptions of the timing parameters. If the Auto-read Status bit (AUTO_RS) is set in the command, the NAND Flash Controller performs a status check (Command 0x70) to determine whether the Erase operation was successful. Doc. No. MV-S301545-00 Rev. Page 64 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics NAND Timing Diagrams and Specifications Figure 29: NAND Flash Erase Timing Diagram tWEH tWEH ND_CLE ND_nCSx tw(W H) tWES tWES tw(WL) tWES ND_nWE ND_ALE tw(RL) ND_nRE tODV tODV tODH DF_IO<15:0> 60h ADDR1 tODH ADDR2 ADDR3 D0h 70h Status ND_RnB 7.3.3 Small Block NAND Flash Read Timing Figure 30 illustrates the Read sequence for a Small-block Flash device. The Flash device is addressed in four cycles. Refer to Table 20 for detailed descriptions of the timing parameters. Figure 30: NAND Flash Small Block Read Timing Diagram tWEH ND_CLE ND_nCSx tWES tWES tw(WL) tw(WH) ND_nWE tWEH ND_ALE td(WHRL) tRDCYCLE tw(RL) tw(RH) ND_nRE tODV tODH DF_IO <15:0 > 00h ADDR1 ADDR2 tISU ADDR3 ADDR41 tIH DIN N DIN N+1 DIN M2 ND_RnB 1. The number of address cycles depends on the NAND device being accessed and NDCB0[ADDR_CYC]. 2. M is defined by the NDCR[PAGE_SZ], NDCR[SPARE_EN] and NDCR[ECC_EN] values. 7.3.4 Large Block NAND Flash Read Timing Figure 31 illustrates the Read sequence for a Large-block Flash device. The Flash device is addressed in up to seven cycles depending on the value of Number of Address Cycles field (ADDR_CYC) in the NAND Controller Command Buffer 0 (NDCB0) register and the external NAND device requirements. Refer to Table 20 for detailed descriptions of the timing parameters. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 31: NAND Flash Large Block Read Timing Diagram tWEH ND_CLE ND_nCSx tWES tWES tw(WL) tw(WH) ND_nWE tWEH ND_ALE td(WHRL) tRDCYCLE tw(RL) tw(RH) ND_nRE tODV tIH tODH DF_IO <15:0 > 00h ADDR1 ADDR2 tISU ADDR3 1 ADDR4 30h DIN N DIN N+1 DIN M2 ND_RnB 1. The number of address cycles depends on the NAND device being accessed and NDCB0[ADDR_CYC]. 2. M is defined by the NDCR[PAGE_SZ], NDCR[SPARE_EN] and NDCR[ECC_EN] values. 7.3.5 NAND Flash Status Read Timing Figure 32 illustrates the Status-Read sequence for a Flash device. Refer to Table 20 for detailed descriptions of the timing parameters. Figure 32: NAND Flash Status Read Timing Diagram tWEH ND_CLE ND_nCSx tWES tw(WH) tw(WL) ND_nWE td(WHSRL) tw(RL) ND_nRE tODV tODH DF_IO<15:0> 7.3.6 70h Status NAND Flash ID Read Timing Figure 33 illustrates the ID Read sequence for a Flash device. Refer to Table 20 for detailed descriptions of the timing parameters. Doc. No. MV-S301545-00 Rev. Page 66 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics NAND Timing Diagrams and Specifications Figure 33: NAND Flash ID Read Timing Diagram ND_nCSx tWEH ND_CLE tw(WL) tWES ND_NWE tWES tWEH ND_ALE td(ALRL) tw(RL) tw(RH) ND_NRE tODV tODH 90h DF_IO <7:0 > 00h Byte N Byte N+1 Byte M1 1. The total number of bytes is determined by the NDCR[RD_ID_CNT] value 7.3.7 NAND Flash Reset Timing Figure 34 illustrates the reset sequence for a Flash device. Refer to Table 20 for detailed descriptions of the timing parameters. Figure 34: NAND Flash Reset Timing Diagram ND_CLE ND_nCSx tWES tWEH ND_nWE ND_ALE ND_nRE DF_IO<15:0 > 0xFF ND_RnB 7.3.7.1 NAND Flash Timing Parameters Table 20 provides the values for the timing parameters seen in Figure 28, Figure 29, Figure 30, Figure 31, Figure 31, Figure 32, Figure 33 and Figure 34. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 20: NAND Flash Interface Program Timing Specifications Min1 Min 2 Typ ic al Max U n i ts Setup time of ND_CLE, ND_ALE, ND_nCS to ND_nWE falling 1 1 NDTR0CS0[tCS] + 1 8 NCLK tWEH Hold time from ND_nWE rising to ND_CLE and ND_ALE falling 2 2 Max (NDTR0CS0(tCH), NDTR0CS0(tWH)) + 1 8 NCLK tw(WL) ND_nWE low pulse width 2 2 NDTR0CS0[tWP] + 1 8 NCLK tw(WH) ND_nWE high pulse width 2 2 Max (TR0CS0(tCH), TR0CS0(tWH)) + 1 8 NCLK tw(RL) ND_nRE low pulse width 2 2 NDTR0CS0[etRP, tRP] + 1 16 NCLK tw(RH) ND_nRE high pulse width 2 2 NDTR0CS0[tRH] + 1 8 NCLK td(WHRL) ND_nWE rising to ND_nRE falling delay for Read 3900 3900 (NDTR1CS0[tR] + 2) + (NDTR0CS0[tCH] + 1) 655364 10485765 NCLK td(WHRL) ND_nWE rising to ND_nRE falling delay for Status Read/ Read ID 8 8 max(tWH,tCH) + max(tAR, max(0, tWHR-max(tWH,tCH) ) ) + 3 15 NCLK td(ALRL) ND_ALE falling to ND_nRE falling delay for ID read 8 8 Max(NDTR1CS0(tAR),max(0,NDT R1CS0(tWHR) max(NDTR0CS0(tWH, tCH))) + 2 15 NCLK tADL Final ND_nWE rising edge during the Address cycle to first ND_nWE rising edge during the Data cycle 1 1 max(tWH,tCH) + max(0, tADL-tWP-3) + tWP + 8 28 NCLK tRHW Last ND_nRE rising edge to the first falling edge of ND_nWE when read command is immediately followed by another command. 1 1 NDTR1CS0[tRHW] 3 NCLK tODH DF_IO<15:0> output data hold time after ND_nWE rising 12.8 25.6 — — ns tODV DF_IO<15:0> data valid time before ND_nWE rising 19.2 38.5 — — ns tIsu DF_IO<15:0> setup time requirement to nRE rising 3.7 3.7 — — ns tIH DF_IO<15:0> hold time requirement to nRE rising 3.2 3.2 — — ns tRDCYCLE Read cycle times 32 64 — — ns tWRCYCLE Write cycle times 32 64 — — ns Symbol D e s cr i p t i o n tWES Doc. No. MV-S301545-00 Rev. Page 68 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics SD Host Controller (SDH) Timing Diagrams and Specifications Table 20: NAND Flash Interface Program Timing Specifications (Continued) Symbol Min1 D e s cr i p t i o n Min 2 Typ ic al Max U n i ts NOTE: 1. NCLK represents the clock period using a 156 MHz clock (APMU_NFC_CLK_RES_CTRL[NF_CLK_SEL] = 0) 2. NCLK represents the clock period using a 78 MHz clock (APMU_NFC_CLK_RES_CTRL[NF_CLK_SEL] = 1) 3. Refer to the Aspen (88AP168) Processor Software Specifications Manual for more information on the NDTR0CS0 and NDTR0CS1 registers. 4. NDTR1CS0[Prescale] = 0 5. NDTR1CS0[Prescale] = 1 \ 7.4 SD Host Controller (SDH) Timing Diagrams and Specifications Figure 35 and Table 21 define the MultiMedia Card Controller (MMC) AC timing specifications. Figure 35 and Table 22 define the Secure Digital (SD), and Secure Digital I/O (SDIO) AC timing specifications. Figure 35: MultiMedia Card Timing Diagrams SDH1 SDH2 SDH3 MMCx_CLK SDH4 SDH5 CMD/DAT Input SDH7 SDH6 CMD/DAT output N o te s : 1. CMD/DAT input are inputs to the SD Host Controller and outputs from the card 2. CMD/DAT output are outputs from the SD Host Controller and inputs to the card Table 21: MultiMedia Card Timing Specifications Symbol P ar am e te r M in Max Unit N o te s SDH1 MMCx_CLK Frequency in Full Speed MMC Data Transfer Mode 0 26 MHz 1 SDH1 MMCx_CLK Frequency in High Speed MMC Data Transfer Mode 0 52 MHz 1 SDH1 MMCx_CLK Frequency Identification Mode 0 400 kHz 1 SDH2 Clock low time 9.6 — ns SDH3 Clock high time 9.6 — ns SDH4 Data input setup time 3.3 — ns SDH5 Data input hold time 3 — ns Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 69 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 21: MultiMedia Card Timing Specifications (Continued) Symbol P ar am e te r M in Max SDH6 SDH7 Unit Output data setup time 6.6 — ns Output data hold time 10.8 — ns N o te s NOTE: 1. MMCx_CLK clock frequency is determined by the APMU_SDHx_CLK_RES_CTRL[SDH1_CLK_SEL] and SD_CLOCK_CTRL[SD_FREQ_SEL] register fields. Table 22: SD/SDIO Timing Specifications Symbol P ar am e te r M in Max Unit N o te s SDH1 MMCx_CLK Frequency in Full Speed SD/SDIO Data Transfer Mode 0 24 MHz 1 SDH1 MMCx_CLK Frequency in High Speed SD/SDIO Data Transfer Mode 0 48 MHz 1 SDH1 MMCx_CLK Frequency Identification Mode 0 400 kHz 1 SDH2 Clock low time 10.4 — ns SDH3 Clock high time 10.4 — ns SDH4 Data input setup time 3.3 — ns SDH5 Data input hold time 3 — ns SDH6 Output data setup time 7.4 — ns SDH7 Output data hold time 11.6 — ns NOTE: 1. MMCx_CLK clock frequency is determined by the APMU_SDHx_CLK_RES_CTRL[SDH1_CLK_SEL] and SD_CLOCK_CTRL[SD_FREQ_SEL] register fields. 7.5 LCD Controller Timing Diagrams and Specifications Refer to the pins chapter in the Marvell® Armada 16x Applications Processor Family Software Manual for descriptions of the signals shown in Figure 36 through Figure 39 and in Table 24. 7.5.1 LCD Smart Panel Timing and Specifications This section details the LCD Smart Panel timing requirements. Additional registers as shown in Table 24 are used to configure the LCD controller for smart panel operation. Doc. No. MV-S301545-00 Rev. Page 70 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics LCD Controller Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 36: Smart Panel Interface 8-bit 8080-Series Parallel Mode Read Interface Protocol SMPN_A0 TCYCLE SMPN_CSB[1:0]n SMPN_WRB TAS TDSW_RD SMPN_RDB TAH_RD TACC Valid Data SMPN_DB[7:0] Figure 37: Smart Panel Interface 8-bit 8080-Series Parallel Mode Write Interface Protocol SMPN_A0 TCYCLE SMPN_CSB[1:0]n SMPN_RDB TAS TAH_WR SMPN_WRB TDSW_WR SMPN_DB[7:0] Valid Data TD_WRB Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 71 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 38: Smart Panel Interface 8-bit 6800-Series Parallel Mode Read Interface Protocol SMPN_A0 TCYCLE TDSW_RD SMPN_CSB[1:0]n TAH_RD TAS SMPN_WRB SMPN_RDB TACC Valid Data SMPN_DB[7:0] Figure 39: Smart Panel Interface 8-bit 6800-Series Parallel Mode Write Interface Protocol SMPN_A0 TCYCLE SMPN_CSB[1:0]n TAH_WR TAS SMPN_WRB SMPN_RDB TDSW_WR Valid Data SMPN_DB[7:0] TD_WRB Doc. No. MV-S301545-00 Rev. Page 72 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics LCD Controller Timing Diagrams and Specifications Figure 40: SPI Write/Read Protocol TCYCLE SPI_CSB[1:0] SPI_CLK Output Data to Smart Panel Input Data from Smart Panel Internal I/O Pad Output Active Low Enable Signal SPI_DIN SPI_DOUT The SPI_CLK Enable signal and Internal I/O Pad Output Active Low Enable Signal enable the I/O Pad. Table 23: LCD Smart Panel Controller Timing Symbol P a ra m et er Min Typ e Max TAS U n i ts Address setup time (A0) — Fixed 1 — SCLK_SMPN cycles1 TDSW_RD Read strobe time 1 LCD_SPU_SMPN_CTRL[CFG_ISA_RXLOW] 16 SCLK_SMPN cycles1 TDSW_WR Write strobe time 1 LCD_SPU_SMPN_CTRL[CFG_ISA_TXLOW] 16 SCLK_SMPN cycles1 TAH_RD Read data hold time 1 LCD_SPU_SMPN_CTRL[CFG_ISA_RXHIGH] 16 SCLK_SMPN cycles1 TAH_WR Write data hold time 1 LCD_SPU_SMPN_CTRL[CFG_ISA_TXHIGH] 16 SCLK_SMPN cycles1 TD_WRB Write data valid prior to SMPN_WRB 6 — — ns TACC Smart Panel read latency — — 20 ns TCYCLE SPI_CLK frequency — LCD_SPI_CTRL[CFG_SCLKCNT] 70 MHz2 TCYCLE Read Cycle time 3 TAH_RD + TDSW_RD + 1 clock cycle 33 TCYCLE Write Cycle time 3 TAH_WR + TDSW_WR + 1 clock cycle 33 1. The panel clock source frequency is derived from one of three sources (ACLK, HCLK, 312 MHz (PLL1) or external LCD_PCLK) depending on the SCLK_SOURCE_SELECT, SCLK_AHB_AXI, and SCLK_INT_EXT fields in the LCD_CFG_SCLK_DIV register. The panel clock source is then divided using LCD_SCLK_DIV[CLK_INT_DIV] and LCD_SCLK_DIV[CLK_FRAC_DIV] to generate SCLK_SMPN. For more information on generating the SCLK_SMPN frequency refer to the LCD chapter in the Marvell® Armada 16x Applications Processor Family Software Manual. 2. LCD_SPU_SPI_CTRL[CFG_SCLKCNT] is used to divide PCLK to get SPI_CLK 7.5.2 LCD Dumb Panel Timing and Specifications Figure 41 and Figure 42 show the horizontal and vertical dumb-panel timing diagrams. Refer to Table 24 for the registers used to program the LCD controller for dumb-panel operation. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 73 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 41: Dumb LCD Panel Horizontal Timing TH_TOTAL Hsync Pulse LCLK/HSYNC THBP THSW TH_ACTIVE THFP DENA 1 PCLK 2 3 4 1 2 3 HTotal Pixel Bus 1 2 3 4 HActive Figure 42: Dumb LCD Panel Vertical Timing TV_ACTIVE TVBP TVFP TV_TOTAL Vsync Pulse TVSW VCLK/VSYNC HSYNC N 1 2 3 4 1 2 3 VTotal PCLK Pixel Bus 1LINE 2LINE 1LINE LINE VActive Table 24: LCD Dumb Panel Timing1 Symbol P a ra m et er Min Typ e Max tPCLK PCLK period — — 70 MHz tCH PCLK high time 7 — — ns tCL PCLK low time 7 — — ns tDSU Data Setup time 6 — — ns tDH Data Hold time — — 5 ns Doc. No. MV-S301545-00 Rev. Page 74 U n i ts N o te s Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics LCD Controller Timing Diagrams and Specifications Table 24: LCD Dumb Panel Timing1 (Continued) Symbol P a ra m et er Min Typ e Max U n i ts N o te s THBP Horizontal back porch 0 LCD_SPU_H_PORCH[CFG_H_BACK_PORCH] 4096 PCLK cycles 2 THFP Horizontal front porch 0 LCD_SPU_H_PORCH[CFG_H_FRONT_PORCH] 4096 PCLK cycles 2 THSW Hsync pulse width 1 CFG_H_TOTAL – CFG_H_BACK_PORCH – CFG_H_ACTIVE – CFG_H_FRONT_PORCH 4096 PCLK cycles 2 TH_TOTAL Total horizontal pixels 1 LCD_SPU_V_H_TOTAL[CFG_H_TOTAL] 4096 Lines TH_ACTIVE Number of active horizontal lines 1 LCD_SPU_V_H_ACTIVE[CFG_H_ACTIVE] 4096 PCLK cycles 2,4 TVBP Vertical back porch 0 LCD_SPU_V_PORCH[CFG_V_BACK_PORCH] 4096 Lines 6 TVFP Vertical front porch 0 LCD_SPU_V_PORCH[CFG_V_FRONT_PORCH] 4096 Lines 7 TVSW Vsync pulse width 1 CFG_V_TOTAL – CFG_V_BACK_PORCH – CFG_V_ACTIVE– CFG_V_FRONT_PORCH 4096 Lines 3 TV_ACTIVE Panel Width 1 LCD_SPU_V_H_ACTIVE[CFG_V_ACTIVE] 4096 Lines 5 TV_TOTAL Total Vertical Lines 1 LCD_SPU_V_H_TOTAL[CFG_V_TOTAL] 4096 Lines Notes: 1. Pixel clock can be inverted to make its rising edge at the middle of pixel data cycle. It is always guaranteed setup and hold requirement. 2. The panel clock source frequency is derived from one of three sources (ACLK, HCLK, 312 MHz (PLL1) or external LCD_PCLK) depending on the SCLK_SOURCE_SELECT, SCLK_AHB_AXI, and SCLK_INT_EXT fields in the LCD_CFG_SCLK_DIV register. The panel clock source is then divided using LCD_SCLK_DIV[CLK_INT_DIV] and LCD_SCLK_DIV[CLK_FRAC_DIV] to generate PCLK. For more information on generating the PCLK frequency refer to the LCD chapter in the Marvell® Armada 16x Applications Processor Family Software Manual. 3. Vsync pulse can be configured as small as 1 cycle. 4. Sets the active horizontal screen display width for both Dumb Panel and Smart Panel. 5. Sets the active vertical screen display size for both Dumb Panel and Smart Panel. 6. VSYNC active edge at pixel count = TH_ACTIVE + 1. 7. VSYNC inactive edge at pixel count = TH_TOTAL + 1. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 75 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.6 Quick Capture Camera Interface (CCIC) Timing Diagrams and Specifications 7.6.1 CCIC Parallel Interface Timing Requirements Figure 43: Parallel Timing Diagram tCL tCH tpclk CAM_PCLK(Sensor output) tSU tH CAM_VSYNC/CAM_HSYNC/CAM_DATAx Table 25: CCIC Parallel Timing Symbol P a ra m et er Min Ty p e M ax U n i ts tPCLK PCLK period 0.1 — 78 MHz tSU Vsync/Hsync/Pixel Data setup 2.5 — — ns tH Vsync/Hsync/Pixel Data hold 1.5 — — ns tCH PCLK high time 6.41 — — ns tCL PCLK low time 6.41 — — ns 7.7 N o t es SSP Timing Diagrams and Specifications Figure 44 and Table 26 convey the SSP timing parameters with SSP in Master mode. The processor drives SSPx_CLK and SSPx_FRM when in Master mode. Figure 45 and Table 27 convey the SSP timing parameters with SSP in Slave mode. The processor receives SSPx_CLK and SSPx_FRM when in Slave mode. Doc. No. MV-S301545-00 Rev. Page 76 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics SSP Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 SSP Master Mode Timing Figure 44: SSP Master Mode Timing Diagram Tw(CH) Tw(CL) SSPx_ CLK t0FV tOFH SSPx_ FRM tODV tODH SSPx_ TXD tIsu tIh SSPx_ RXD 1. SCLKDIR field in the SSP Control Register 1 (SSP_SSCR1) = 0x0 2. SFRMDIR field in the SSP Control Register 1 (SSP_SSCR1) = 0x0 3. The SPO and SPH fields in the SSP Control Register 1 (SSP_SSCR1) are used to determine the polarity of SSPx_CLK Table 26: SSP Master Mode Timing Specifications S ym b o l D e s c ri p t i o n Min Max tw(CH) U n i ts SSPx_SCLK pulse width high duration 9.6 — ns tw(CL) SSPx_SCLK pulse width low duration 9.6 — ns tODV SSPx_TXD output valid prior to SSPx_CLK 1.1 — ns tODH SSPx_TXD output hold time 7.6 — ns tOFH SSPx_FRM output hold time 6.9 — ns tOFV SSPx_FRM output valid prior to SSPx_CLK 0.6 — ns tIsu SSPx_RXD to SSPx_CLK setup time 0.6 — ns tIh SSPx_CLK to SSPx_RXD hold time 14.9 — ns NOTE: 1. Timing values are based on 52 MHz SSPx_CLK frequency. 2. SSPx_SCLK is configure using the APBC_SSPx_CLK_RST[FNCLKSEL] and MPMU_ASYSDR and MPMU_SSPDR registers Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 77 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.7.1 SSP Slave Mode Timing Figure 45: SSP Slave Mode Timing Definitions Tw(CH) Tw(CL) SSPx_ CLK t0FV tOFH SSPx_ FRM tODV tODH SSPx_ TXD tIsu tIh SSPx_ RXD 1. SCLKDIR field in the SSP Control Register 1 (SSP_SSCR1) = 0x1 2. SFRMDIR field in the SSP Control Register 1 (SSP_SSCR1) = 0x1 3. The SPO and SPH fields in the SSP Control Register 1 (SSP_SSCR1) are used to determine the polarity of SSPx_CLK Table 27: SSP Slave Mode Timing Specifications Symbol D e s c ri p t i o n M in M ax U n i ts tw(CH) SSPx_SCLK pulse width high duration 19.2 — ns tw(CL) SSPx_SCLK pulse width low duration 19.2 — ns tODV SSPx_TXD output valid prior to SSPx_CLK 16.1 — ns tODH SSPx_TXD output hold time 26.7 — ns tFH SSPx_CLK to SSPx_FRM hold time 19.3 — ns tFSU SSPx_FRM to SSPx_CLK setup time 12.6 — ns tIsu SSPx_RXD to SSPx_CLK setup time 13.2 — ns tIh SSPx_CLK to SSPx_RXD hold time 21.54 — ns 1. Timing values based on 26 MHz SSPx_CLK frequency Doc. No. MV-S301545-00 Rev. Page 78 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics TWSI Timing Diagrams and Specifications 7.8 TWSI Timing Diagrams and Specifications Figure 46: TWSI Output Delay AC Timing Diagram tHIGH tLOW Vih( min) SCK Vil( max) Vih( min) SDA Vil( max) tOV( min) tOV( max) TWSI Input Figure 47: TWSI Output Delay AC Timing Diagram tLOW tHIGH Vih( min) SCK Vil( max) Vih( min) SDA Vil( max) tSU tHD Table 28: TWSI Master AC Timing Table (Standard Mode 100 kHz) Symbol D es cr ip ti o n fCK SCK clock frequency Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Min Max U n i ts — 100 kHz N o t es - Doc. No. MV-S301545-00 Rev. Page 79 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 28: TWSI Master AC Timing Table (Standard Mode 100 kHz) (Continued) Symbol D es cr ip ti o n Min Max U n i ts N o t es tLOW SCK minimum low level width 0.47 — tCK 1 tHIGH SCK minimum high level width 0.40 — tCK 1 tSU SDA input setup time relative to SCK rising edge 250.0 — ns - tHD SDA input hold time relative to SCK falling edge 0.0 — ns 3 tr SDA and SCK rise time — 1000.0 ns 1, 2 tf SDA and SCK fall time — 300.0 ns 1, 2 tOV SDA output delay relative to SCK falling edge 0.0 0.4 tCK 1 Notes: General comment: All values referred to VIH(min) and VIL(max) levels, unless otherwise specified. General comment: tCK = 1/fCK. 1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm. 2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max). 3. For this parameter, the load is CL = 10 pF. Table 29: TWSI Master AC Timing Table (Fast Mode 400 kHz) Symbol D e s cr i p t i o n M in M ax U n i ts fCK SCK clock frequency tLOW N o te s — 400 kHz - SCK minimum low level width 0.52 — tCK 1 tHIGH SCK minimum high level width 0.24 — tCK 1 tSU SDA input setup time relative to SCK rising edge 100.0 — ns - tHD SDA input hold time relative to SCK falling edge 0.0 — ns 3 tr SDA and SCK rise time 20.0 300 ns 1, 2 tf SDA and SCK fall time 20.0 300 ns 1, 2 tOV SDA output delay relative to SCK falling edge 0.0 0.4 tCK 1 Notes: General comment: All values referred to VIH(min) and VIL(max) levels, unless otherwise specified. General comment: tCK = 1/fCK. 1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm. 2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max). 3. For this parameter, the load is CL = 10 pF. Doc. No. MV-S301545-00 Rev. Page 80 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics TWSI Timing Diagrams and Specifications Table 30: TWSI Master AC Timing Table (high) speed 3.4 MHz) Symbol D es cr ip ti o n Min Max U n i ts fCK SCK clock frequency tLOW N o t es — 3.4 MHz - SCK minimum low level width 0.54 — tCK 1 tHIGH SCK minimum high level width 0.20 — tCK 1 tSU SDA input setup time relative to SCK rising edge 10.0 — ns - tHD SDA input hold time relative to SCK falling edge 0.0 — ns 3 tr SDA and SCK rise time 10.0 80.0 ns 1, 2 tf SDA and SCK fall time 10.0 80.0 ns 1, 2 tOV SDA output delay relative to SCK falling edge 0.0 0.4 tCK 1 Notes: General comment: All values referred to VIH(min) and VIL(max) levels, unless otherwise specified. General comment: tCK = 1/fCK. 1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm. 2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max). 3. For this parameter, the load is CL = 10 pF. 7.8.1 TWSI Test Circuit Figure 48: TWSI Test Circuit VDDIO Test Point RL CL Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 81 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 7.9 AC’97 Timing Diagrams and Specifications Figure 49 and Table 31 defines the AC’97 CODEC interface AC timing specifications. Figure 49: AC’97 CODEC Timing Diagram AC97_nACRESET tw(B) AC97_BITCLK tSYNCV AC97_SYNC tODV AC97_SDATA_OUT tISU tIH AC97_SDATA_INx tw(S) ASYSCLK 1. The MPMU Audio SYSCLK Dithering Divider Register (MPMU_ASYSDR) is used to select the frequency for ASYSCLK Table 31: AC’97 CODEC Timing Specifications Symbol P ar am e te r Min Max tw(B) U n its N o te s AC97_BITCLK pulse width constraint 36 — ns tSYNCV AC97_BITCLK high to AC97_SYNC valid delay — 13 ns 1 tODV AC97_BITCLK high to AC97_SDATA_OUT valid delay — 11 ns 1 tISU AC97_SDATA_INx to AC97_BITCLK setup time 3 — ns 1 tIH AC97_BITCLK to AC97_SDATA_INx hold time 4 — ns 1 tw(S) ASYSCLK pulse width delay — — ns NOTE: 1. Transition time for input BITCLK is 2.5 ns. 7.10 JTAG Interface Timing Diagrams and Specifications Refer to Table 32 for the timing specifications for Figure 50 and Figure 50 Doc. No. MV-S301545-00 Rev. Page 82 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics JTAG Interface Timing Diagrams and Specifications 7.10.1 JTAG Interface Timing Diagrams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 50: JTAG Interface Output Delay AC Timing Diagram Tprop (max) VIH TCK VIL TDO Tprop (min) Figure 51: JTAG Interface Input AC Timing Diagram TCK TMS, TDI Tsetup 7.10.2 Thold JTAG Interface AC Timing Table Table 32: JTAG Interface 10 MHz AC Timing1 Symbol D es cr ip ti o n fCK TCK frequency Tpw TCK minimum pulse width Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Min Typ e Max U n i ts N o te s — 10 13.0 MHz -- 0.40 — 0.60 tCK -- Doc. No. MV-S301545-00 Rev. Page 83 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 32: JTAG Interface 10 MHz AC Timing1 (Continued) Symbol D es cr ip ti o n Min Typ e Max U n i ts Sr/Sf TCK rise/fall slew rate 0.50 — — V/ns N o te s 2 Trst TRST_N active time 1.0 — — ms -- Tsetup TMS, TDI input setup relative to TCK rising edge 10.0 — — ns -- Thold TMS, TDI input hold relative to TCK rising edge 40.0 — — ns -- Tprop TCK falling edge to TDO output delay 1.0 — 20.0 ns 3 1. tCK = 1/fCK. 2. Defined from VIL to VIH for rise time and from VIH to VIL for fall time 3. For TDO signal, the load is CL = 10 pF. 7.10.3 JTAG Interface Test Circuit Figure 52: JTAG Interface Test Circuit Test Point CL Doc. No. MV-S301545-00 Rev. Page 84 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics USB 2.0 Timing Diagrams and Specifications 7.11 USB 2.0 Timing Diagrams and Specifications 7.11.1 USB Interface Driver Waveforms Figure 53: Low/Full Speed Data Signal Rise and Fall Time Rise Time Fall Time 90% 90% VCRS 10% Differential Data Lines 10% TR TF Figure 54: High Speed TX Eye Diagram Pattern Template +525 mV +475 mV +400 mV Differential +300 mV 0 V Differential -300 mV -400 mV Differential -475 mV -525 mV 7.5% 0% Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 37.5% 62.5% 92.5% 100% Doc. No. MV-S301545-00 Rev. Page 85 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 55: High Speed RX Eye Diagram Pattern Template +525 mV +475 mV +400 mV Differential +175 mV 0 V Differential -175 mV -400 mV Differential -475 mV -525 mV 0% 7.11.2 12.5% 35% 65% 87.5% 100% Differential Interface Electrical Characteristics This section provides the reference clock, AC, and DC characteristics for the differential interface. 7.11.2.1 USB Driver and Receiver Characteristics Table 33: USB Low Speed Driver and Receiver Characteristics1 Symbol D es cr ip ti o n L o w Sp e e d Min BR Baud rate Bppm Baud rate tolerance U n its Notes Max 1.5 — Mbps -- -15000.0 15000.0 ppm -- Driver Parameters VOH Output single ended high 2.8 3.6 V 2 VOL Output single ended low 0.0 0.3 V 3 VCRS Output signal crossover voltage 1.3 2.0 V 4 TLR Data fall time 75.0 300.0 ns 4,5 TLF Data rise time 75.0 300.0 ns 4,5 TLRFM Rise and fall time matching 80.0 125.0 % -- TUDJ1 Source jitter total to next transition -95.0 95.0 ns 5 TUDJ2 Source jitter total for paired transitions -150.0 150.0 ns 6 Receiver Parameters Doc. No. MV-S301545-00 Rev. Page 86 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics USB 2.0 Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Table 33: USB Low Speed Driver and Receiver Characteristics1 (Continued) Symbol D es cr ip ti o n L o w Sp e e d Min U n its Notes Max VIH Input single ended high 2.0 — V -- VIL Input single ended low — 0.8 V -- VDI Differential input sensitivity 0.2 — V -- 1. For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000. The load is 100 ohm differential for these parameters, unless otherwise specified. To comply with the values presented in this table, refer to your local Marvell representative for register settings. 2. Defined with 1.425 kilohm pullup resistor to 3.6V. 3. Defined with 14.25 kilohm pulldown resistor to ground. 4. See Data Signal Rise and Fall Time waveform. 5. Defined from 10% to 90% for rise time and 90% to 10% for fall time. 6. Including frequency tolerance. Timing difference between the differential data signals. Defined at crossover point of differential data signals. Table 34: USB Full Speed Driver and Receiver Characteristics1 Symbol D es cr ip ti o n L o w Sp e e d Min BR Baud rate Bppm Baud rate tolerance 12.0 -2500.0 U n its Notes Max 2500.0 Mbps -- ppm -- Driver Parameters VOH Output single ended high 2.8 3.6 V 2 VOL Output single ended low 0.0 0.3 V 3 VCRS Output signal crossover voltage 1.3 2.0 V 4 TFR Output rise time 4.0 20.0 ns 4,5 TFL Output fall time 4.0 20.0 ns 4,5 TDJ1 Source jitter total to next transition -3.5 3.5 ns 6, 7 TDJ2 Source jitter total for paired transitions -4.0 4.0 ns 6,7 TFDEOP Source jitter for differential transition to SE0 transition -2.0 5.0 ns -- Receiver Parameters VIH Input single ended high 2.0 — V -- VIL Input single ended low — 0.8 V -- VDI Differential input sensitivity 0.2 — V -- tJR1 Receiver jitter to next transition -18.5 18.5 ns 7 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 87 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 34: USB Full Speed Driver and Receiver Characteristics1 (Continued) Symbol tJR2 D es cr ip ti o n L o w Sp e e d Receiver jitter for paired transitions Min Max -9.0 9.0 U n its Notes ns 7 1. For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000. The load is 100 ohm differential for these parameters, unless otherwise specified. To comply with the values presented in this table, refer to your local Marvell representative for register settings. 2. Defined with 1.425 kilohm pullup resistor to 3.6V. 3. Defined with 14.25 kilohm pulldown resistor to ground. 4. See Data Signal Rise and Fall Time waveform. 5. Defined from 10% to 90% for rise time and 90% to 10% for fall time. 6. Including frequency tolerance. Timing difference between the differential data signals. Defined at crossover point of differential data signals. 7. Defined at crossover point of differential data signals. Table 35: USB High Speed Driver and Receiver Characteristics1 Symbol D es cr ip ti o n L o w Sp ee d M in BR Baud rate Bppm U n its Notes M ax 480.0 -500.0 500.0 Mbps -- ppm -- Driver Parameters VHSOH Data signaling high 360.0 440.0 mV -- VHSOL Data signaling low -10.0 10.0 mV -- THSR Data rise time 500.0 — ps 2 THSF Data fall time 500.0 — ps 2 See 3 Data source jitter 3 Receiver Parameters See 4 Differential input signaling levels VHSCM Data signaling common mode voltage range Receiver jitter tolerance -50.0 4 500.0 See 4 mV -4 1. For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000. The load is 100 ohm differential for these parameters, unless otherwise specified. To comply with the values presented in this able, refer to your local Marvell representative for register settings. 2. Defined from 10% to 90% for rise time and 90% to 10% for fall time. 3. Source jitter specified by the TX eye diagram pattern template figure 4. Receiver jitter specified by the RX eye diagram pattern template figure. 7.12 PCI Express Specifications Refer to Table 36 and Table 37 for PCIE output and input characteristics. For more information on PCIE timing requirements refer to the PCI Express Base Specification Revision 1.1 (http://www.pcisig.com/specifications/pciexpress/base). 7.12.1 PCIE Differential TX Output Electrical Characteristics Doc. No. MV-S301545-00 Rev. Page 88 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics PCI Express Specifications Table 36: PCI Express TX Output Electrical Specifications Symbol P a ra m et er UI Unit Interval (UI) 399.88 400 400.12 ps VTX_DIFFpp Differential Peak to Peak Output Voltage 0.800 — 1.2 V VTX_DE_RATIO De-emphasized output voltage ratio -3.0 -3.5 -4.0 dB TTX_EYE Transmitter eye including all jitter sources 0.75 — — UI TTX_EYE_MEDIAN_MAX_J Maximum time between the jitter median and maximum deviation from the median — — 0.125 UI 0.125 — — UI ITTER Min Typ e M ax U n its TTX_RISE, TTX_FALL D+/D- TX output rise/fall Time VTX_CM_ACp AC RMS common mode output voltage — — 20 mV VTX_CM_DC_ACTIVE_IDL Absolute Delta of DC Common Mode Voltage During L0 and electrical idle 0 — 100 mV VTX_CM_DC_LINE_DELTA Absolute Delta of DC Common Mode Voltage between D+ and D- 0 — 25 mV VTX_IDLE_DIFFp Electrical Idle Differential Peak Output Voltage 0 — 25 mV VTX_RCV_DETECT The amount of voltage change allowed during Receiver Detection — — 600 mV VTX_DC_CM The TX DC Common Mode Voltage 0 — 3.6 V ITX_SHORT TX Short Circuit Current Limit — 90 mA TTX_IDLE_MIN Minimum time spent in Electrical Idle 50 — TTX_IDLE_SET_TO_IDLE Maximum time to transition to a valid Electrical Idle after sending an Electrical Idle ordered set — — 20 UI TTX_IDLE_TO_DIFF_DATA Maximum time to transition to valid TX specifications after leaving an Electrical Idle condition — — 20 UI RLTX_DIFF Differential Return Loss 10 — — dB RLTX_CM Common Mode Return Loss 6 — — dB ZTX_DIFF_DC DC Differential TX Impedance 80 100 120 Ohms CTX AC Coupling Capacitor 75 100 200 nF Tcrosstalk Crosstalk Random Timeout 0 — 1 ms E_DELTA 7.12.2 UI PCIE Differential RX Input Electrical Characteristics Table 37: PCI Express RX Input Electrical Specifications Symbol P a ra m et er UI Unit Interval (UI) 399.88 400 400.12 ps VRX_DIFFpp Differential Peak to Peak Output Voltage 0.175 — 1.2 V TRX_EYE Receiver eye including all jitter sources 0.4 — — UI TRX_EYE_MEDIAN_MAX_J Maximum time between the jitter median and maximum deviation from the median — — 0.3 UI ITTER Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Min Typ e M ax U n its Doc. No. MV-S301545-00 Rev. Page 89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 37: PCI Express RX Input Electrical Specifications Symbol P a ra m et er VRX_CM_ACp AC RMS common mode output voltage — — 150 mV RLRX_DIFF Differential Return Loss 10 — — dB RLRX_CM Common Mode Return Loss 6 — — dB ZRX_DIFF_DC DC Differential RX Impedance 80 100 120 Ohms ZRX_DC RX DC input impedance 40 50 60 Ohms ZRX_HIGH_IMP_DC Power Down DC input impedance 200 — — kOhms VRX_IDLE_DET_DIFFp Electrical Idle detect threshold 65 — 175 mV TRX_IDLE_DET_DIFF_ENT — — 10 ms ERTIME Unexpected electrical idle enter detect threshold integration time LRX_SKEW Total skew — — 20 ns 7.13 Min Typ e M ax U n its Ethernet MAC (MII) Timing Diagrams and Specifications MII Tx Mode timing diagram is shown in Figure 56 and timing parameters are provided in Table 38. MII Rx Mode timing diagram is shown in Figure 57 and timing parameters are defined in Table 39. In Tx mode, the media access controller (MAC) receives TX_CLK from the Ethernet transceiver (PHY) and drives TX data and control signals. In Rx mode, the controller receives RX_CLK, data and control signals from the Ethernet transceiver. MII Management interface timing diagram is shown in Figure 58 and timing values are defined in Table 40. Figure 56: MII Tx Mode Interface Timing Diagrams Tp TX_CLK Tco Tco TXD, TX_EN, TX_ER Table 38: MII Tx Mode Interface Timing Specifications S ym b o l P a r am e te r Min M ax Unit Tp TX_CLK frequency — 25 MHz Tco TX_CLK in to TX data and control out 0 14 ns N o te s 1 NOTE: 1. Timing values are based on 30pf reference load. Doc. No. MV-S301545-00 Rev. Page 90 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Ethernet MAC (MII) Timing Diagrams and Specifications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Figure 57: MII Rx Model Interface Timing Diagrams Tp RX_CLK Thd Tsu RXD, RX_DV, RX_ER Table 39: MII Rx Mode Interface Timing Specifications S ym b o l P a r am e te r Min M ax Unit Tp RX_CLK Frequency — 25 MHz Tsu Input setup time 6 — ns Thd Input hold time 4 — ns N o te s Figure 58: MII Management Interface Timing Diagrams Tp MDC Tva Tvb MDIO_Output Thd Tsu MDIO_Input Table 40: MII Management Interface Timing Specifications S ym b o l P a r am e te r Min M ax Tp MDC Frequency — 2.5 MHz Tva MDIO output valid time before MDC rising 20 — ns Tvb MDIO output valid time after MDC rising 20 — ns Tsu MDIO input setup time 50 — ns Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Unit N o te s Doc. No. MV-S301545-00 Rev. Page 91 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 40: MII Management Interface Timing Specifications (Continued) S ym b o l P a r am e te r Thd MDIO input hold time 7.14 Min M ax 0 — Unit N o te s ns Powerup/Down Sequences This section includes specifications for the following: Section 7.14.1, Power Up Timings Section 7.14.2, Powerdown Timings Table 41: Terminology 7.14.1 Ter m Description VDD_M ASIC DRAM IO power (1.8V nominal +/- 10%) VDD_CORE Core power (assume 1.0V nominal) AVDD_USB ASIC USB power including AVDD_OTG and AVDD_UHC (3.3V nominal) AVDD5_USB ASIC USB 5V power (5 V nominal) VDD_OSC Quiet 1.8V analog power for ASIC PLL/Crystal. VDD_IOx 3.3/1.8V IO power Includes VDD_IO0, VDD_IO1, VDD_IO2, VDD_IO3, VDD_IO4 RESET_IN_N External Master Reset In pin Power Up Timings The external voltage regulators and other power-on devices must provide the processor with a specific sequence of power and resets to ensure proper operation (see Figure 59 and Table 42). 7.14.1.1 Host Side PMIC USB Signals AVDD5_USB - Supply • Host Mode Only: Connect to 5V to supply a maximum of 10mA on USBVBUS. For higher current requirements, an external PMIC must be used to drive VBUS. • Device Mode Only: Not used; can remain floating. • OTG Mode: Connect to 5V to provide a maximum of 10mA on USBVBUS during session negation. For higher current requirements as external PMIC must be used to drive VBUS. Note Doc. No. MV-S301545-00 Rev. Page 92 When the USBVBUS is driven from AVDD5_USB, the USBHPEN signal is pulled high (3.3V). Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Powerup/Down Sequences When USBHPEN = 3.3V, do not supply both AVDD5_USB and USBVBUS with 5V. Caution USBVBUS - Input/Output • Host Mode: USB power output (+5V@10mA) when USBHPEN = 3.3V • Device Mode: 5V VBUS input from host • OTG Mode: Input/Output to supply +5V during session negotiation USBHPEN - Output • Controls external power management chip to provide 5v power to VBUS a) OV: Does not drive VBUS b) 3.3V: Drives 5V power source on to VBUS Note Copyright © 2010 Marvell November 2010 PUBLIC RELEASE If the application does not need more than 10mA, float USBHPEN and connect AVDD5_USB to 5V power. VBUS is not driven inside the PHY. Doc. No. MV-S301545-00 Rev. Page 93 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 59: Power-Up Reset Timing V D D _IO 80% t1 80 % A V D D _O S C 80% A V D D _P C IE t4 t3 V D D _C O R E 80% t2 t5 80% VDD_M t6 80 % A V D D _U H C t6 80 % AVDD_OTG A V D D 5_U S B USBVBUS tP O R R E S E T _IN _N nC S 0 Table 42: Power-Up Timing Specifications Symbol D e s c ri p ti o n M in Typical M ax t1 t2 Delay from the start of the high voltage IO supplies ramp prior to AVDD_OSC ramp start. 0 — Delay from VDD_IO prior to VDD_CORE ramp start 0 — Doc. No. MV-S301545-00 Rev. Page 94 U n i ts Notes — µs 1 — µs 2 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 AC Electrical Characteristics Powerup/Down Sequences Table 42: Power-Up Timing Specifications (Continued) Symbol D e s c ri p ti o n M in Typical M ax t3 Delay from AVDD_OSC reaching 80% of its final value prior to VDD_CORE ramp start 0 — t4 Delay from AVDD_PCIE reaching 80% of its final value prior to VDD_CORE ramp start. 0 t5 Delay from VDD_CORE reaching 80% of its final value prior to VDD_M reaching 80% of its final value t6 Delay from VDD_CORE reaching 80% of its final value prior to AVDD_UHC and AVDD_OTG ramp start tPOR Time required before de-asserting RESET_IN_N after AVDD_UHC and USB_OTG reach 80%. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. U n i ts Notes — µs 3 — — µs 4,5 -500 300 — µs 6, 7 0 — — µs 8, 9 153 — — µs VDD_IO and AVDD_OSC can be enabled at the same time. VDD_IO must power to 80% prior to enabling VDD_CORE AVDD_OSC must power to 80% prior to enabling VDD_CORE. AVDD_PCIE must power to 80% prior to enabling VDD_CORE. AVDD_PCIE includes AVDD_PCIE and AVDDT_PCIE. VDD_M must not exceed VDD_CORE by more than 1.2V Ideally VDD_CORE and VDD_M will ramp to 80% of their final value at the same time. Due to voltage level differences between VDD_M and VDD_CORE, VDD_M may reach 80% of its final value after VDD_CORE depending on the ramp rates for each supplies. To reduce the power up time keep the delay after VDD_CORE at a minimum. Enable AVDD_UHC and AVDD_OTG after VDD_CORE reaches a minimum of 80% of its final value. Do not power AVDD_UHC and AVDD_OTG prior to VDD_CORE The AVDD5_USB supply can left on while the other supplies are powered off. Powering up AVDD5_USB is only required for USB OTG functionality when using host mode. USBVBUS is not a power supply but is included in this diagram for completeness. USBVBUS can be supplied with 5V while the other supplies are turned off. 7.14.2 Powerdown Timings When powering down the ARMADA 16x Applications Processor, all voltage rails can be removed simultaneously. Ideally, the power to VDD_M is removed prior to VDD_CORE. When the power to VDD_CORE is removed prior to removing VDD_M, refer to Table 43 for timing constraints between the voltage rails. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 60: Powerdown Timing AVDD5_ USB USBVBUS AVDD_ UHC AVDD_ OTG VDD_M VDD_ CORE t1 AVDD_ PCIE AVDD_ OSC VDD_IOx Table 43: Powerdown Timing Specifications Symbol t1 D es cr i p t io n VDD_CORE to VDD_M Min Typ i c al M ax — — 10 U n its N o te s ms 2,3,4 1. 2. 3. 4. AVDD5_USB can remain active while the other supplies are removed VDD_M must not exceed VDD_CORE by more than 1.8V The start of ramp down time when VDD_CORE is removed prior to VDD_M When powering down VDD_CORE prior to VDD_M, VDD_M must not exceed VDD_CORE by 1.26V for a maximum of 200ms. 5. VDD_IO can remain active while the other supplies are removed. Recommended for Hibernate mode. Doc. No. MV-S301545-00 Rev. Page 96 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Design Guidelines and Checklist DDR Interface General Routing Guidelines 8 Design Guidelines and Checklist This chapter discusses: 8.1 Section 8.1, “DDR Interface General Routing Guidelines” Section 8.2, “EPD Controller Design Guidelines” Section 8.3, “Schematic Checklist” DDR Interface General Routing Guidelines The basic routing rules for DDR devices on a PCB are shown as below. For specific guidelines, refer to the appropriate sections below. 8.1.1 General Rules: 8.1.1.1 Ground Reference Routing for all signals DQ byte groups routed on the same layer Data and QS Signals • • • • • • • • • • • • Signals within the same Data byte of must be routed to within +/-50 mils (1.27mm) of their respective QS signals. QS line length should be centered within their respective data groups and matched to within 0.05" (1.27mm). A Data byte consists of: 8 data lines (DQ), 1 data mask (DQM), 1 QS and 1 QS#. Data signals should be less than or equal to 3.0" (76.2mm) long. Whenever possible, the QS lines are to be ground guarded as GND-QS-QS#-GND. Data/DQM traces to have impedance of 50 ohms. DQS-DQS# to have differential 100-ohm traces. Signals within the same Data byte of must be routed to within +/-50mils (1.27mm) of their respective QS signals. QS line length should be centered within their respective data groups and matched to within 0.05" (1.27mm). A Data byte consists of: 8 data lines (DQ), 1 data mask (DQM), 1 QS and 1 QS#. Data and QS signals must be routed as stripline traces if possible Data signals should be less than or equal to 3.0" long. Longer lengths should be simulated for timing margins. Whenever possible, the QS lines are to be ground guarded as GND-QS-QS#-GND. If ground guarding is not possible, the spacing of QS, QS# to other signals should be at-least twice the minimum trace width Differential signals, QS and QS#, must be routed to a length within 0.025" (0.635mm) of each other. Data/DQM traces to have single ended impedance of 50 ohms. Differential signals, QS, QS#, must be routed with a differential impedance of about 100 ohms 8.QS, QS# traces to be terminated with a resistor placement on the controller side close to the pins. Use 1k ohm resistor from QS pin to gnd and 1k ohm resistor from QS# pin to VDDQ as close to the pins (controller side) as possible. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 97 Marvell® ARMADA 16x Applications Processor Family Hardware Manual 8.1.1.2 Address/Command Signals • • • • • 8.1.1.3 Clock Signals • • • • • • • • • • • • • 8.1.2 Address/Control lines to the same DRAM must be routed to within 0.5 inch of the clock signals and routed on the same layer. Address/Control lines need to have trace impedance of 50 ohms. Address/Control lines need to have a shunt termination of 50 ohms to VTT. Max length of stub (connecting from SDRAM pins to termination) should be less than 0.2" as close to the pins of dram as possible. CKE needs to have pulldown of 4.7k to gnd. There is no need to have a CKE termination to VTT. Whenever possible, clock routing should be the Ground Guarded configuration for as long as possible. Differential clock signals, CLK and CLK# should be terminated at the end of the lines between them with a 100-ohm termination resistor. Differential clock signals, CLK and CLK#, must be routed to a length within 0.025" (0.635mm) of each other, and should be routed with at least a 2:1 spacing to each other. The differential impedance of CLK,CLK# traces should be 100 ohms. Clock signals (T0 length) should also be routed to within 0.5 inch of the Address/Command signals. Clock signals (T0 length) must be routed to be within 1.0" (+/-12.7mm) of their respective QS signals to the same dram, with CKs in the middle. Max length of stub (connecting from DRAM pins to termination) should be less than 0.1" as close to the pins of DRAM as possible. Whenever possible, clock routing should be the Ground Guarded configuration for as long as possible. If ground guarding is not possible, the spacing of CLK, CLK# to other signals should be at least thrice the minimum trace width. Differential Clock signals, CLK and CLK#, must be routed to a length within 0.025" (0.635mm) of each other. Clock signals should also be routed to within 0.5 inch of the Address/Command signals. CLK, CLK# traces to have single ended impedance of 50 ohms. Differential clock signals, CLK and CLK#, must be routed with at least a 2:1 spacing to each other. Spacing from CLK/CLK# to other signals should be 3 times trace width. Differential clock signals, CLK and CLK# should be terminated at the end of the lines between them with a 100 ohm termination resistor with a common mode (termination midpoint) capacitor of 1nF. Max length of stub (connecting from SDRAM pins to termination) should be less than 0.1" as close to the pins of DRAM as possible. DDR Interface Detailed Routing Guidelines For detailed routing guidelines refer to the ARMADA 16x Applications Processor Family DDR Routing Guidelines Application note. 8.2 EPD Controller Design Guidelines This chapter describes: Section 8.2.1, “Introduction” Section 8.2.2, “Panel Power Up Sequence” Section 8.2.3, “Display Common Power Signal” Doc. No. MV-S301545-00 Rev. Page 98 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Design Guidelines and Checklist EPD Controller Design Guidelines Section 8.2.4, “Source Driver Interface” Section 8.2.5, “Gate Driver Interface” Section 8.2.6, “Start Pulse Control” 8.2.1 Introduction The EPD Controller (EPDC) is an IP block optimized for products using ElectroPhoretic Displays (EPDs). It enables an SoC solution with a direct connection to the EPD module. The EPD controller differentiates itself through High-level integration Presentation of complex content on EPDs Ease of software implementation Content security Significant power savings Due to its intrinsic bi-stable nature, power is not required when there is no change to the display image. EPDs are reflective displays so backlighting is not necessary. If an EPD display controller is in a typical EPD display system, it can drive an EPD panel through the source driver and gate driver chips. Major EPDC features include: Frame resolution: • From SVGA (600x800) up to UXGA (1200x1600) • ~150 dpi A size sheet 8.2.2 Partial and Parallel Update Capable of displaying videos and animations. Conventional software programming model Flexible interface to various EPD panels Elimination of the separate EPD SDRAM. Power management Faster update - Each pixel can detect its own waveform length and stops at the end. Shorter waveforms end sooner. Support content security though NDS secure IC. Appear as conventional Frame buffer. Host interrupt capability Panel Power Up Sequence EPD panel power-up must follow a fixed sequence as described below and in Figure 61: Power on sequence: VCC => GVEE => VNEG => VPOS => Input Signals: OE, GVDD Power off sequence: Input Signals,OE => GVDD, VPOS, VNEG,VCOM => GVEE => VCC Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 99 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 61: Panel Power Sequence The panel power supplies are controlled by the EPDC PWR[4:0] pins. PWR[4:0] timings are controlled by the POWER_[3:0] registers. 8.2.3 Display Common Power Signal The PWRCOM signal controls the common driver output Vcom to the display panel. The signal is asserted during image updates; it is asserted when entering normal operation mode, and negated when exiting normal operation mode. 8.2.3.1 Vcom Setting by DPOT (Digital Potentiometer) Vcom is the common voltage of the EPD panel, typically between -0.5V and -3.5V. Each EPD panel has a different Vcom voltage, therefore the EPDC must program a DPOT to drive the Vcom voltage. A 10-bit value is used to program the DPOT in the following sequence (see Figure 62): 1. Assert the VCOM_VOLT[DPOT_CE_n] bit. Transmit an 8-bit “write wiper register” command to the DPOT. 2. Transmit a 10-bit voltage value to DPOT, followed by six “don’t care” bits and then De-assert the VCOM_VOLT[DPOT_CE_n] bit. 3. Assert the VCOM_VOLT[DPOT_CE_n] bit. Transmit an 8-bit “copy wiper to NVRAM” command to the DPOT and then De-assert the VCOM_VOLT[DPOT_CE_n] bit. Doc. No. MV-S301545-00 Rev. Page 100 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Design Guidelines and Checklist EPD Controller Design Guidelines Figure 62: DPOT Programming Sequence With the EPDC, the VCOM_VOLT register is used for DPOT programming and is defined in Appendix A - Register Tables. In hardware DPOT mode, the SCLK frequency should be PCLK divided by 64. 8.2.4 Source Driver Interface The EPDC output controller signals, SDDO[7:0], are connected to the source drivers. Currently each source driver can drive up to 400 columns. Therefore, as many as four source drivers are used for 1600 columns (see Figure 63). The source driver timing is shown in Figure 64. The signals to the source driver are all outputs, as listed in Table 44. Table 44: Source Driver Signals Signal D e s cr i p t io n SDCLK Clock SDLE[3:0] Latch Enables SDDO[7:0] 8-Bit Data Output SDCE_L Chip Enable SEOE Output Enable SDSHR Shift-right (for 6” panel) Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 101 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 63: Source Driver Connections The EPDC uses the SDSHR pin to control the source driver data shifting direction. Doc. No. MV-S301545-00 Rev. Page 102 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Design Guidelines and Checklist EPD Controller Design Guidelines Figure 64: Source Driver Timing 8.2.5 Gate Driver Interface The gate driver turns on each panel row after the source drivers are filled with up to 1600 pixels split across up to four driver ICs. The gate driver signals are all output, as listed in Table 45. Table 45: Output Gate Driver Signals Signal D e s c ri p t i o n GDCLK Clock GDSP Start Pulse GDRL Shift right/left (6” panel) The GDRL pin controls gate driver shift up or down functionality. The gate driver connections are shown in Figure 65. Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Doc. No. MV-S301545-00 Rev. Page 103 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Figure 65: Gate Driver Connections 8.2.6 Start Pulse Control The signal, GDSP, is the gate driver start-pulse signal. It determines the beginning of a frame scanning. The timing is shown in Figure 66. Figure 66: Gate Driver Output Enable Timing Doc. No. MV-S301545-00 Rev. Page 104 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Design Guidelines and Checklist Schematic Checklist 8.3 Schematic Checklist Table 46 briefly describes requirements to add in schematics reviews. Refer to the various sections within this chapter for more information about these requirements. Table 46: ARMADA 16x Applications Processor Family Schematic Checklist 3 Signal Name Recommended Connection R e c o m m e n d e d Val u e Notes Clocks, Power and Reset Signals RESET_IN_IN Weak pull-up 4.7 - 10 kΩ to VDD_IO3 PXTAL_IN Filtering capacitor 10 pF 3 PXTAL_OUT Filtering capacitor 10 pF 3 A_ISET Pulldown 6.04 kΩ ±1% PXTAL_IN, PXTAL_OUT External clock source Connect 26 MHz clock to PXTAL_IN and leave PXTAL_OUT floating. JTAG Interface PRI_TCK Pulldown 10 - 100 kΩ PRI_TDI Pullup 10 - 100 kΩ to VDD_IO3 1 PRI_TMS Pullup 10 - 100 kΩ to VDD_IO3 1 PRI_TRST_N Pullup 10 - 100 kΩ to VDD_IO3 JTAG_SEL Pulldown Pulldown to VSS DDR SDRAM CALPAD Pulldown (for LPDDR1 or DDR2) 300 Ω ±1% CALPAD Pulldown (for DDR3) 240 Ω ±1% SEC_CS_SEL 2nd Chip Select and DDR3 Enable When using the second DDR chip select (nSDCS1) or DDR3, connect to VDD_IO3 nDDR_RESET Connect to DDR3 device reset signal 3, 4 nSDCS1 Connect to second DDR device Chip Select 3, 4 ODT1 ODT for nSDCS1 3, 4 SDCKE1 Clock Enable of nSDCS1 3, 4 VREF VDDQ +/-1% Use separate VREF supplies for SOC and SDRAM 5 SDCKE Pulldown to GND 4.7 kΩ 6 DQS<1:0> Pulldown to GND 1 kΩ 7 nDQS<1:0> Pullup to VDD_M 1 kΩ 7, 5 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE 6, 7 Doc. No. MV-S301545-00 Rev. Page 105 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Table 46: ARMADA 16x Applications Processor Family Schematic Checklist (Continued) 3 Signal Name Recommended Connection Series Termination Resistors Not Required Shunt Termination to VTT Required for address and control signals R e c o m m e n d e d Val u e Notes NAND Flash Controller ND_RnB<1:0> 2.7kΩ - 4.7kΩ Pullup to VDD_IO0 Static Memory Controller SMC_RDY 2.7kΩ - 4.7kΩ Pullup to VDD_IO0 Compact Flash Controller CF_nRESET Connect to the hardware reset of the Compact Flash Card 8 XD Controller XD_RnB 2.7kΩ - 4.7kΩ Pullup to VDD_IO0 SD/MMC Controller MMCx_CMD Pullup to MFP VDD_IOx supply 4.7kΩ - 10kΩ 9 MMCx_DAT0 Pullup to MFP VDD_IOx supply 4.7kΩ - 10kΩ 10 MMCx_DAT3 Pullup to MFP VDD_IOx supply 4.7kΩ - 10kΩ 11 XD Controller I2C_SDA, PWR_SDA Pullup to MFP VDD_IOx supply 1.2kΩ - 4.7kΩ I2C_SDA, PWR_SDA Pullup to MFP VDD_IOx supply 1.2kΩ - 4.7kΩ One-Wire Controller One_wire Pullup to MFP VDD_IOx supply 4.7kΩ USB OTG Controller AVDD5_USB Connect to 5V@10mA when using host mode Current limiting resistor needed to limit current to 10 mA. USBVBUS Connect to Host Controller VBUS Current limiting resistor needed to limit current to 10 mA. Ethernet Controller MDIO Doc. No. MV-S301545-00 Rev. Page 106 Pullup to MFP VDD_IOx supply 1.5kΩ Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Design Guidelines and Checklist Schematic Checklist Table 46: ARMADA 16x Applications Processor Family Schematic Checklist (Continued) 3 Signal Name Recommended Connection RJ-45 Capacitor Ensure at least 2kV voltage rating R e c o m m e n d e d Val u e Notes PCI Express Controller Routing Dedicated clock pair for processor and connector / peripheral (no tee/daisy chain routing) Differential pairs PCIe 2.5GHz- 75..200nF AC blocking caps on all diff pairs Multi-Function Pins Unused Multi-Function Pins Leave floating Pullup/down resistors Ensure external pull resistors match the internal pull resistor states 12, 13 NOTE: 1. Required for test logic reset sequence 2. Capacitor values depend on crystal requirements. Contact crystal manufacturer for correct capacitor values required for crystal accuracy and functionality. 3. SEC_CS_EN must be connected to the same voltage level as VDD_IO3 prior to using 4. Do Not connect to VSS when SEC_CS_EN is connected to VDD_IO3 5. Must be connected to the same power supply as Armada 16x Application Processor 6. Needed to allow DDR device to go into low power modes. 7. Place as close as possible to the DQS<1:0> pins. 8. Without this connection software cannot reset the CF card through the card register accesses 9. Response corruption will occur if the CMD signal does not rise fast enough when operating in open-drain mode during card initialation. 10. The DAT0 can float near GND incorrectly signaling a device BUSY status to the host controller. 11. The DAT3 can float near GND during CMD0 transmission which can incorrectly place some devices into SPI mode. 12. Check the pull state in the alternate function spreadsheet to verify internal pull states. 13. Pull resistors are only valid when the MFP is configured as an output Note Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Marvell’s schematic review checklist does not replace a customer’s in-house design review or substitute for training in design or Marvell architecture basics. Although Marvell makes a good faith effort to find potential design problems, the customer remains responsible for the success of their design. Marvell makes no claims or guarantees that the Marvell checklist will uncover all defects, or that the design will work. Neither does Marvell accept responsibility for any impact to the customer’s project schedules. Doc. No. MV-S301545-00 Rev. Page 107 Marvell® ARMADA 16x Applications Processor Family Hardware Manual Doc. No. MV-S301545-00 Rev. Page 108 Copyright © 2010 Marvell November 2010 PUBLIC RELEASE Back Cover Marvell Semiconductor, Inc. 5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028 www.marvell.com Marvell. Moving Forward Faster