MAX9450 EV KIT

19-0735; Rev 0; 1/07
EVALUATION KIT AVAILABLE
MAX9450 Evaluation Kit
Features
The MAX9450 evaluation kit (EV kit) is a fully assembled
and tested PCB that demonstrates the performance of
the MAX9450 high-precision clock generator for timing
in SONET/SDH systems or Gigabit Ethernet systems.
The EV kit is installed with a 155.52MHz crystal. For
evaluating other frequencies, remove and replace the
Y1 crystal with a target crystal.
The MAX9450 EV kit includes Windows® 98SE/2000/
XP-compatible software that provides a simple graphical user interface (GUI) for exercising the features of
the MAX9450.
♦ Both I2C and SPI™ Interfaces Provided to Control
the MAX9450
The EV kit comes with the MAX9450EHJ installed.
Contact the factory for free samples of the pin-compatible
MAX9451EHJ or MAX9452EHJ to evaluate these devices.
♦ Proven PCB Layout
♦ Windows 98SE/2000/XP-Compatible Evaluation
Software
♦ Convenient Configuration Jumpers and Test
Points
♦ USB-PC Connection
Ordering Information
PART
TYPE
INTERFACE
MAX9450EVKIT
EV kit
USB
Windows is a registered trademark of Microsoft Corp.
SPI is a trademark of Motorola, Inc.
Component List
DESIGNATION
QTY
DESCRIPTION
C1–C4, C30, C31
6
10µF ±10%, 10V X5R ceramic
capacitors (0805)
Murata GRM21BR61A106K or
TDK C2012X5R1A106K or
equivalent
C5, C6,
C11–C16, C19,
C20, C22–C29,
C37
19
0.1µF ±10%, 16V X7R ceramic
capacitors (0603)
TDK C1608X7R1C104K
C7, C8
0
C9
C10, C17, C18,
C21
C32, C33
C34
1
0
2
1
Not installed, ceramic capacitors
(0603)
0.01µF ±10%, 16V X7R ceramic
capacitor (0603)
Murata GRM188R71C103K
Not installed, ceramic capacitors
(0603)
22pF ±5%, 50V C0G ceramic
capacitors (0603)
TDK C1608C0G1H220J or
Murata GRM1885C1H220J or
equivalent
0.033µF ±10%, 25V X7R ceramic
capacitor (0603)
TDK C1608X7R1E333K or
equivalent
DESIGNATION
QTY
DESCRIPTION
C35, C36
2
10pF ±5%, 50V C0G ceramic
capacitors (0603)
Murata GRM1885C1H100J or
TDK C1608C0G1H100J or
equivalent
D1
1
Red LED (0603)
Lite-On LTST-C190CKT
D2
1
Green LED (0603)
Lite-On LTST-C190GKT
FB1
1
Ferrite bead
TDK MPZ1608S101A
INT, LOCK, SDA,
SCL
4
Test points (red)
Keystone Electronics 5000 or
equivalent
J1–J8
8
SMA connectors, edge mount
Johnson 142-0701-851
J9
1
USB type B, right-angle PC mount
receptacle
J10
0
Not installed, vertical header,
2 x 5 pins
JU1–JU10
10
3-pin headers
JU11–JU14
4
2-pin headers
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX9450/MAX9451/MAX9452
General Description
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Component List (continued)
DESIGNATION
QTY
R1
1
200kΩ single-turn potentiometer
R2
1
10kΩ ±1% resistor (0603)
R3, R9, R12, R23
4
24Ω ±5% resistors (0603)
R4, R10, R13,
R24, R25, R26
6
27Ω ±5% resistors (0603)
R5, R7, R15, R20,
R31, R32
6
130Ω ±5% resistors (0603)
R6, R8, R16, R21
4
220Ω ±5% resistors (0603)
4
51Ω ±5% resistors (0603)
R11, R14, R17,
R22
R18, R19
DESCRIPTION
2
4.7kΩ ±5% resistors (0603)
R27
1
470Ω ±5% resistor (0603)
R28
1
1.5kΩ ±5% resistor (0603)
R29
1
2.2kΩ ±5% resistor (0603)
R30
1
10kΩ ±5% resistor (0603)
R33
1
100kΩ ±5% resistor (0603)
R34, R35
2
100Ω ±5% resistors (0603)
U1
1
MAX9450EHJ (32 TQFP-EP, EP
grounded) high-precision clock
generator
U2
1
MAXQ2000-RAX+ (68 QFN)
microcontroller
MAX9450 EV Kit Files
FILE
DESCRIPTION
INSTALL.EXE
Installs the EV kit files on
your computer
MAX9450.EXE
Application program
FTD2XX.INF
USB device driver file
UNINST.INI
Uninstalls the EV kit
software
TROUBLESHOOTING_USB.PDF
USB driver installation help
file
DESIGNATION
QTY
DESCRIPTION
U3
1
MAX8511EXK25+ (5L SC70) LDO
regulator
U4
1
USB-UART converter
FTDI FT232BL
U5
1
93C46 type 3-wire EEPROM
Atmel AT93C46A-10SU-2.7
Y1
1
155.520MHz crystal, fundamental
mode, loading capacitance 8pF,
motional capacitance > 6pF
KDS America DSX321S-155.52M8pF-30-30
Y2
0
Not installed, high-stability
fundamental crystal
Y3
1
6MHz crystal
Citizen HCM49-6.000MABJ-UT
Y4
1
16MHz crystal
Citizen HCM49-16.000MABJ-UT
—
12
Shunts
—
1
MAX9450EVKIT PCB
Quick Start
Recommended Equipment
• One 3.3VDC power supply
• One 8kHz to 500MHz function generator that can
generate 19.44MHz (±20PPM) square wave
• One two-channel 200MHz oscilloscope
• One digital voltmeter (DVM)
• One USB cable
• A user-supplied Windows 98SE/2000/XP PC with a
spare USB port
Note: In the following sections, software-related items
are identified by bolding. Text in bold refers to items
directly from the EV kit software. Text in bold and
underlined refers to items from the Windows
98SE/2000/XP operating system.
Component Suppliers
SUPPLIER
Murata Mfg. Co., Ltd.
PHONE
770-436-1300
WEBSITE
www.murata.com
TDK Corp.
847-803-6100
www.component.tdk.com
Note: Indicate that you are using the MAX9450 when contacting these component suppliers.
2
_______________________________________________________________________________________
MAX9450 Evaluation Kit
4) Connect the function-generator output to SMA connector IN0+, then connect jumper JU13. Adjust the
signal swing from 0 to 3.3V, square-wave frequency
to 19.44MHz, and duty cycle to 50%. Use scope to
verify.
5) Leave SMA connector IN1+ unconnected and connect jumper JU14.
6) Connect SMA connector CLK0+ to the oscilloscope
channel-1 input.
7) Connect SMA connector CLK1+ to the oscilloscope
channel-2 input.
8) Connect the USB cable from the PC to the
MAX9450 EV kit board.
9) Unless installed previously, a Building Driver
Database window pops up in addition to a New
Hardware Found message. If you do not see a window similar to the one described above after 30
seconds and the device is not functional, remove
the USB cable from the MAX9450 EV kit board and
reconnect it. Administrator privileges are required to
install the USB device driver on Windows 2000/XP.
Refer to the TROUBLESHOOTING_USB.PDF document included with the software if you have trouble
during this step.
10) Follow the directions of the Add New Hardware
Wizard to install the USB device driver. Choose the
Search for the Best Driver for your Device option.
Specify the location of the device driver as
C:\Program Files\MAX9450 (default installation
directory) using the Browse button.
11) Connect the 3.3VDC power supply on the MAX9450
EV kit VDD and GND pads.
12) Connect the 3.3VDC power supply on the MAX9450
EV kit VDDQ, VLO1, VLO2, and GND pads.
13) Turn on the 3.3VDC power supply. Enable the output of the function generator.
14) Start the MAX9450 EV kit software by opening its
icon in the Start menu. A small window appears, as
shown in Figure 1.
15) The I2C button allows you to evaluate the MAX9450
in I2C control mode. The SPI button allows you to
evaluate the MAX9450 in SPI control mode. Click
the I2C button. A small notification window appears,
as shown in Figure 2.
16) Follow the instructions on the window and click OK.
The main software window appears, as shown in
Figure 3.
17) Verify that the status bar reads MAX9450 EVKIT
found and I2C Address is 0xD0.
18) In the M Divider (1-32768) text field, type in 8 and
click the Set button.
19) Verify that the waveforms on oscilloscope channel-1
and channel-2 are 155.52MHz.
20) Use the DVM to verify that test point LOCK on the
EV kit board is in a logic-low state.
_______________________________________________________________________________________
3
Evaluates: MAX9450/MAX9451/MAX9452
Procedure
The MAX9450 EV kit is fully assembled and tested.
Follow the steps below to verify board operation.
Caution: Do not turn on the power supply until all
connections are completed.
website
(www.microsemi.com)
1) Visit the Microsemi
Maxim website
(www.maxim-ic.com/evkitsoftware) to download the most recent version of
the EV kit software, 9450Rxx.ZIP.
2) Install the MAX9450 EV kit software on your computer by running the INSTALL.EXE program. The
program files are copied and icons are created in
the Windows Start menu.
3) Verify that all jumpers are in default positions, as
described in Table 1.
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Table 1. MAX9450 EV Kit Jumper Settings
JUMPER
JU1
JU2
JU3
JU4
JU5
JU6
JU7, JU8
JU9
JU10
SHUNT
POSITION
DESCRIPTION
1-2*
Input clock IN0 activated (when CR5[3:2] = 00)
2-3
Input clock IN0 disabled (when CR5[3:2] = 00)
1-2*
Input clock IN1 activated (when CR5[3:2] = 00)
2-3
Input clock IN1 disabled (when CR5[3:2] = 00)
1-2*
Normal operation
2-3
Master reset
1-2*
I2C control mode. Connect MAX9450 pin 11 to ground.
2-3
SPI control mode. Connect MAX9450 pin 11 to interface CS signal.
1-2*
I2C control mode. Connect MAX9450 pin 12 to interface SCL signal.
2-3
SPI control mode. Connect MAX9450 pin 12 to interface SCLK signal.
1-2*
I2C control mode. Connect MAX9450 pin 13 to interface SDA signal.
2-3
SPI control mode. Connect MAX9450 pin 13 to interface MOSI signal.
2-3*
I2C slave address is 0xD0
Other
See Table 2 for AD0 and AD1 configurations
2-3*
Enable input clock monitor
1-2
Disable input clock monitor
2-3*
Enable clock output
1-2
Disable clock output
JU11
Open
JU11 pins 1-2 for testing purpose only
JU12
Open
JU12 pins 1-2 for testing purpose only
JU13
JU14
Open
1-2*
Open
1-2*
Input clock IN0 uses differential signaling
Input clock IN0 uses single-ended signaling
Input clock IN1 uses differential signaling
Input clock IN1 uses single-ended signaling
*Default position.
4
_______________________________________________________________________________________
MAX9450 Evaluation Kit
Evaluates: MAX9450/MAX9451/MAX9452
Figure 1. MAX9450 EV Kit Software—Interface Selection
Window
Figure 2. MAX9450 EV Kit Software—I2C Interface Notification
Window
Figure 3. MAX9450 EV Kit Software—I2C Interface Tab
_______________________________________________________________________________________
5
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Detailed Description of Software
I2C Interface Tab
On the I2C Interface tab, a user sets the divider registers (i.e., M, P, N0, and N1). The output frequency at
CLKn (n = 0, 1) is determined by the reference clock,
and dividing factors M, Ni (i = 0, 1), and P, as shown in
the following equation:
fCLKn = fREF ×
M
Ni × P
Chip status CR7 can be monitored by clicking the
Read button in the Chip Status box. Checking the
Auto Read checkbox makes the software read the chip
status approximately every one second.
SPI Interface Tab
The SPI Interface tab (Figure 4) has the same function
as the I2C Interface tab. A user can set the divider registers (i.e., M, P, N0, and N1) and control registers CR5
and CR6 as well, but chip status CR7 is not accessible
in SPI control mode.
Control registers CR5 and CR6 are set in the Control
Register Setting box.
Figure 4. MAX9450 EV Kit Software—SPI Interface Tab
6
_______________________________________________________________________________________
MAX9450 Evaluation Kit
Manually Sending I2C or SPI Commands
In addition to the controls on the main window, the
MAX9450 software allows the I 2 C or SPI commands to be entered manually. To bring up the
Maxim Command Module Interface window (see
Figure 5), click the Diagnose button. Enter the
device address (0xD0–0xDE) under Target
Device Address, or click the Hunt for active
listeners button to automatically find the I 2 C
address. Under the General Commands tab, select
1 - SMBusWriteByte(addr,cmd,data8). Under
Command byte, enter the register address, and under
Data Out, enter the data byte to write to the register.
Note that the byte can be entered in hexadecimal prefixed with “0x” or in binary with no prefix.
Similar operations can be done in SPI control mode
using the 3-wire interface tab.
AD1
JU7
(AD0)
JU8
(AD1)
ADDRESS
2-3 (Low)
2-3 (Low)
1101 000x
2-3 (Low)
Open
1101 001x
2-3 (Low)
1-2 (High)
1101 010x
Open
2-3 (Low)
1101 011x
Open
Open
1101 100x
Open
1-2 (High)
1101 101x
1-2 (High)
2-3 (Low)
1101 110x
1-2 (High)
Open
1101 111x
1-2 (High)
1-2 (High)
Convert to SPI
Figure 5. MAX9450 EV Kit Software—Maxim Command Module Interface Window
_______________________________________________________________________________________
7
Evaluates: MAX9450/MAX9451/MAX9452
I2C Address Setting
The MAX9450 I2C slave addresses are hardware-programmable by configuring jumpers JU7 and JU8, as
shown in Table 2. This configuration provides eight
selectable addresses for the MAX9450, allowing eight
devices to be connected to one master.
Once jumpers JU7 and JU8 are changed, the user
should change the I2C Address Setting dropdown
menu on the right side of the software window to match
the correct address.
Table 2. I2C Address Setting by AD0 and
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Detailed Description of Hardware
The MAX9450 (U1) is a high-precision clock generator.
The digital power supply is VDD; the clock output
power supply is VDDQ. Both operate from 2.4V to 3.6V.
The device registers are controlled through an I2C or
SPI interface.
On the left portion of the EV kit PCB, I2C and SPI interfaces are provided. The MAXQ2000 microcontroller
(U2) generates both I2C and SPI control signals. A PC
communicates with the microcontroller through a USBUART converter.
SMA connectors are provided for the clock input and
output connections. If clock input signals are differential, leave JU13 or JU14 open. If clock input signals are
single-ended, connect the input clock signal to IN0+ or
IN1+, and place a shunt on JU13 or JU14.
Evaluating the MAX9451/MAX9452
The MAX9450 EV kit supports the MAX9451 with HSTL
output and the MAX9452 with LVDS output. Request a
free sample from Maxim and change the component values as shown in Table 3 for proper output signaling.
Table 3. Output Bias Network Component
Values for Evaluating MAX9451/MAX9452
8
COMPONENT
MAX9451
(HSTL OUTPUT)
(Ω)
Evaluating Other Frequencies
The EV kit is installed with a 155.52MHz crystal. For
evaluating other frequencies, remove and replace the
Y1 crystal with a target crystal.
For details, refer to Maxim application note 3920,
Component Selection and Performance Test for the
MAX945x High-Precision CLK Generators, located at
www.maxim-ic.com/appnotes.cfm/an_pk/3920.
Clock Monitor Functions
To test the features of the clock monitor, apply the
same frequency at the input IN0+ to the input IN1+ and
connect jumper JU14. To avoid using two clock generators, use a T connector to split the input clock in two
for IN0+ and IN1+. In such a case, you may need to
increase the clock signal swing to compensate the
increase on the load. Reset the clock monitor by connecting the shunt on jumper JU9 in the 1-2 position and
then back to the 2-3 position. Once the clock monitor is
reset, it is ready to test the monitor functions, such as
the clock-condition monitoring, input swapping, revert
function, and holdover function. Clicking the Read button
in the programming window provides status of the chip.
After INT goes high, resetting the clock monitor as
described above also resets INT.
MAX9452
(LVDS OUTPUT)
(Ω)
R3, R9, R12, R23
0
24
R4, R10, R13, R24
0
22.4
R5, R7, R15, R20
Open
137.5
R6, R8, R16, R21
Open
220
_______________________________________________________________________________________
_______________________________________________________________________________________
J4
SMA
J3
SMA
J2
SMA
J1
SMA
IN1-
IN0-
R22
51Ω
R17
51Ω
R14
51Ω
R11
51Ω
JU14
JU13
IN1-
IN0-
R35
100Ω
R34
100Ω
3
JU2
1
2
VDD
3
JU1
1
2
VDD
C15
0.1μF
VDD
LOCK
LOCK
IN1-
IN1+
VDD
IN0-
IN0+
SEL1
SEL0
INT
INT
9
LOCK
INT
8
7
6
5
4
3
2
1
2
10
MR
LP2
30
R19
4.7kΩ
R18
4.7kΩ
SCL
1
JU5
1
JU4
1
JU3
VDD
3
2
3
2
SCLK
SCL
12
U1
SDA
13
SDA
SDA
1
JU6
3
2
14
AD0
X2
27
3
JU7
1
2
VDD
VDDA
28
MOSI
SCL
3
2
11
VDD
C5
R2
10kΩ 0.1μF
1%
MAX9450
LP1
29
C9
0.01μF
GND/CS
CS
GNDA
31
VDD
1
RJ
32
R33
100kΩ
R1
200kΩ
C6
0.1μF
3
JU8
1
2
VDD
15
AD1
X1
26
C7
OPEN
3
JU9
1
2
17
18
19
20
21
22
23
24
3
JU10
1
2
VDD
OE
VDDQ
CLK0-
CLK0+
GND
CLK1-
CMON
16
VDD
VDDQ
C12
0.1μF
CLK1+
VDD
25
VDD
C8
OPEN
VDDQ
VDDQ
C14
0.1μF
C13
0.1μF
C21
OPEN
JU12
C18
OPEN
C17
OPEN
JU11
C10
OPEN
R20
130Ω
VLD2
R7
130Ω
VLD1
R8
220Ω
R21
220Ω
R23
24Ω
C20
0.1μF
R15
130Ω C19
0.1μF
R12
24Ω
R9
24Ω
C16
0.1μF
R5
130Ω C11
0.1μF
R3
24Ω
R24
27Ω
R16
220Ω
R13
27Ω
R10
27Ω
R6
220Ω
R4
27Ω
J8
SMA
J7
SMA
J6
SMA
J5
SMA
VLD2
VLD1
VDDQ
VDD
C4
10μF
C3
10μF
C2
10μF
C1
10μF
GND
VLD2
VLD1
VDDQ
VDD
Evaluates: MAX9450/MAX9451/MAX9452
VDD
3
Y1
155.520MHz
Y2
OPEN
MAX9450 Evaluation Kit
Figure 6a. MAX9450 EV Kit Schematic (Sheet 1 of 2)
9
C26
0.1μF
J9-4
J9-3
J9-2
VUSB
5
7
6
8
GND
N.C.
ORG
VCC
D0
D1
SK
CS
U5
AT93C46A
R26
27Ω
R25
27Ω
R30
10kΩ
4
3
2
1
C33
22pF
C32
22pF
VUSB
4
5
7
8
6
31
2
1
32
28
Y3
6MHz
27
C22
0.1μF
R27
470Ω
C34
0.033μF
R28
1.5kΩ
R29
2.2kΩ
C31
10μF
TEST
VCC
26
GND
17
GND
9
29
U2
FT232BL
VCC
3
AGND
EEDATA
EESK
EECS
XTOUT
XTIN
RESET
RSTOUT
USBDP
USBDM
3V3OUT
AVCC
30
C23
0.1μF
DSR
DTR
CTS
RTS
RXD
TXD
SLEEP
PWREN
PWRCTL
RXLED
TXLED
TXDEN
RI
DCD
VCCIO
13
VCPU
C24
0.1μF
C25
0.1μF
SHDN
10
15
14
11
12
16
18
19
20
21
22
23
24
25
3
IN
U3
GND
OUT
SLEEP
R31
130Ω
R32
130Ω
DSR
DTR
CTS
RTS
RXD
TXD
MAX8511
2
5
RED
D1
GREEN
D2
VCPU
VCPU
C30
10μF
C29
0.1μF
TDI
TMS
TDO
TCK
42
28
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
49
VCPU
GND
GND
SEG27/P3.3
SEG26/P3.2
SEG25/P3.1
SEG24/P3.0
SEG23/P2.7
SEG22/P2.6
SEG21/P2.5
SEG20/P2.4
SEG19/P2.3
SEG18/P2.2
SEG17/P2.1
SEG16/P2.0
SEG15/P1.7
SEG14/P1.6
SEG13/P1.5
SEG12/P1.4
SEG11/P1.3
VDD
68
SEG10/P1.2
1
66
J10-2
J10-6
J10-8
J10-4
J10-9 J10-10
J10-7
J10-5
J10-3
J10-1
SLEEP
VCPU
61
U2
MAXQ2000
SEG3/P0.3
C27
0.1μF
VUSB
SEG2/P0.2
RESET
INT
59
SEG1/P0.1
LOCK
58
SEG0/P0.0
J9-1
FB1
67
SEG9/P1.1
SEG28/P3.4/INT4
18
65
20
SEG8/P1.0
SEG29/P3.5/INT5
19
SEG7/P0.7/INT3
SEG30/P3.6/INT6
55
VLCD1
RXD
52
TXD
HFXOUT
HFXIN
VDDIO
32KOUT
32KIN
P5.2/RX1/INT10
P5.3/TX1/INT11
P5.4/SS
P5.5/MOSI
P5.6/SCLK
P5.7/MISO
P6.0/T1B/INT12
P6.1/T1/INT13
P6.2/T2B/OW_OUT
P6.3/T2/OW_IN
P6.4/T0B/WKOUT0
P6.5/T0/WKOUT1
P7.0/TXO/INT14
C28
0.1μF
22
64
SEG6/P0.6/INT2
SEG31/P3.7/INT7
21
63
SEG5/P0.5/INT1
SEG32
62
SEG33/COM3
23
SEG4/P0.4/INT0
SEG34/COM2
24
60
SEG35/COM1
25
57
TCK
COM0
26
56
VADJ
P4.0/TCK/INTB
29
VLCD2
P4.1/TDI/INT9
30
TDI
P4.2/TMS
31
TMS
54
VLCD
P4.3/TDO
32
TDO
53
P7.1/RXO/INT15
RESET
33
10
RESET
J9
USB
35
34
36
37
38
39
40
41
43
44
45
46
47
48
50
51
27
C37
0.1μF
Y4
16MHz
VCPU
RTS
DTR
CS
MOSI
SCLK
SCL
SDA
DSR
CTS
C36
10pF
C35
10pF
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Figure 6b. MAX9450 EV Kit Schematic (Sheet 2 of 2)
______________________________________________________________________________________
MAX9450 Evaluation Kit
Evaluates: MAX9450/MAX9451/MAX9452
Figure 7. MAX9450 EV Kit Component Placement Guide—Component Side
______________________________________________________________________________________
11
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Figure 8. MAX9450 EV Kit PCB Layout—Component Side
12
______________________________________________________________________________________
MAX9450 Evaluation Kit
Evaluates: MAX9450/MAX9451/MAX9452
Figure 9. MAX9450 EV Kit PCB Layout—Inner Layer 2
______________________________________________________________________________________
13
Evaluates: MAX9450/MAX9451/MAX9452
MAX9450 Evaluation Kit
Figure 10. MAX9450 EV Kit PCB Layout—Inner Layer 3
14
______________________________________________________________________________________
MAX9450 Evaluation Kit
Evaluates: MAX9450/MAX9451/MAX9452
Figure 11. MAX9450 EV Kit PCB Layout—Solder Side
15
Boblet
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.