19-0735; Rev 0; 1/07 EVALUATION KIT AVAILABLE MAX9450 Evaluation Kit Features The MAX9450 evaluation kit (EV kit) is a fully assembled and tested PCB that demonstrates the performance of the MAX9450 high-precision clock generator for timing in SONET/SDH systems or Gigabit Ethernet systems. The EV kit is installed with a 155.52MHz crystal. For evaluating other frequencies, remove and replace the Y1 crystal with a target crystal. The MAX9450 EV kit includes Windows® 98SE/2000/ XP-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX9450. ♦ Both I2C and SPI™ Interfaces Provided to Control the MAX9450 The EV kit comes with the MAX9450EHJ installed. Contact the factory for free samples of the pin-compatible MAX9451EHJ or MAX9452EHJ to evaluate these devices. ♦ Proven PCB Layout ♦ Windows 98SE/2000/XP-Compatible Evaluation Software ♦ Convenient Configuration Jumpers and Test Points ♦ USB-PC Connection Ordering Information PART TYPE INTERFACE MAX9450EVKIT EV kit USB Windows is a registered trademark of Microsoft Corp. SPI is a trademark of Motorola, Inc. Component List DESIGNATION QTY DESCRIPTION C1–C4, C30, C31 6 10µF ±10%, 10V X5R ceramic capacitors (0805) Murata GRM21BR61A106K or TDK C2012X5R1A106K or equivalent C5, C6, C11–C16, C19, C20, C22–C29, C37 19 0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104K C7, C8 0 C9 C10, C17, C18, C21 C32, C33 C34 1 0 2 1 Not installed, ceramic capacitors (0603) 0.01µF ±10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C103K Not installed, ceramic capacitors (0603) 22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J or Murata GRM1885C1H220J or equivalent 0.033µF ±10%, 25V X7R ceramic capacitor (0603) TDK C1608X7R1E333K or equivalent DESIGNATION QTY DESCRIPTION C35, C36 2 10pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H100J or TDK C1608C0G1H100J or equivalent D1 1 Red LED (0603) Lite-On LTST-C190CKT D2 1 Green LED (0603) Lite-On LTST-C190GKT FB1 1 Ferrite bead TDK MPZ1608S101A INT, LOCK, SDA, SCL 4 Test points (red) Keystone Electronics 5000 or equivalent J1–J8 8 SMA connectors, edge mount Johnson 142-0701-851 J9 1 USB type B, right-angle PC mount receptacle J10 0 Not installed, vertical header, 2 x 5 pins JU1–JU10 10 3-pin headers JU11–JU14 4 2-pin headers ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MAX9450/MAX9451/MAX9452 General Description Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Component List (continued) DESIGNATION QTY R1 1 200kΩ single-turn potentiometer R2 1 10kΩ ±1% resistor (0603) R3, R9, R12, R23 4 24Ω ±5% resistors (0603) R4, R10, R13, R24, R25, R26 6 27Ω ±5% resistors (0603) R5, R7, R15, R20, R31, R32 6 130Ω ±5% resistors (0603) R6, R8, R16, R21 4 220Ω ±5% resistors (0603) 4 51Ω ±5% resistors (0603) R11, R14, R17, R22 R18, R19 DESCRIPTION 2 4.7kΩ ±5% resistors (0603) R27 1 470Ω ±5% resistor (0603) R28 1 1.5kΩ ±5% resistor (0603) R29 1 2.2kΩ ±5% resistor (0603) R30 1 10kΩ ±5% resistor (0603) R33 1 100kΩ ±5% resistor (0603) R34, R35 2 100Ω ±5% resistors (0603) U1 1 MAX9450EHJ (32 TQFP-EP, EP grounded) high-precision clock generator U2 1 MAXQ2000-RAX+ (68 QFN) microcontroller MAX9450 EV Kit Files FILE DESCRIPTION INSTALL.EXE Installs the EV kit files on your computer MAX9450.EXE Application program FTD2XX.INF USB device driver file UNINST.INI Uninstalls the EV kit software TROUBLESHOOTING_USB.PDF USB driver installation help file DESIGNATION QTY DESCRIPTION U3 1 MAX8511EXK25+ (5L SC70) LDO regulator U4 1 USB-UART converter FTDI FT232BL U5 1 93C46 type 3-wire EEPROM Atmel AT93C46A-10SU-2.7 Y1 1 155.520MHz crystal, fundamental mode, loading capacitance 8pF, motional capacitance > 6pF KDS America DSX321S-155.52M8pF-30-30 Y2 0 Not installed, high-stability fundamental crystal Y3 1 6MHz crystal Citizen HCM49-6.000MABJ-UT Y4 1 16MHz crystal Citizen HCM49-16.000MABJ-UT — 12 Shunts — 1 MAX9450EVKIT PCB Quick Start Recommended Equipment • One 3.3VDC power supply • One 8kHz to 500MHz function generator that can generate 19.44MHz (±20PPM) square wave • One two-channel 200MHz oscilloscope • One digital voltmeter (DVM) • One USB cable • A user-supplied Windows 98SE/2000/XP PC with a spare USB port Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows 98SE/2000/XP operating system. Component Suppliers SUPPLIER Murata Mfg. Co., Ltd. PHONE 770-436-1300 WEBSITE www.murata.com TDK Corp. 847-803-6100 www.component.tdk.com Note: Indicate that you are using the MAX9450 when contacting these component suppliers. 2 _______________________________________________________________________________________ MAX9450 Evaluation Kit 4) Connect the function-generator output to SMA connector IN0+, then connect jumper JU13. Adjust the signal swing from 0 to 3.3V, square-wave frequency to 19.44MHz, and duty cycle to 50%. Use scope to verify. 5) Leave SMA connector IN1+ unconnected and connect jumper JU14. 6) Connect SMA connector CLK0+ to the oscilloscope channel-1 input. 7) Connect SMA connector CLK1+ to the oscilloscope channel-2 input. 8) Connect the USB cable from the PC to the MAX9450 EV kit board. 9) Unless installed previously, a Building Driver Database window pops up in addition to a New Hardware Found message. If you do not see a window similar to the one described above after 30 seconds and the device is not functional, remove the USB cable from the MAX9450 EV kit board and reconnect it. Administrator privileges are required to install the USB device driver on Windows 2000/XP. Refer to the TROUBLESHOOTING_USB.PDF document included with the software if you have trouble during this step. 10) Follow the directions of the Add New Hardware Wizard to install the USB device driver. Choose the Search for the Best Driver for your Device option. Specify the location of the device driver as C:\Program Files\MAX9450 (default installation directory) using the Browse button. 11) Connect the 3.3VDC power supply on the MAX9450 EV kit VDD and GND pads. 12) Connect the 3.3VDC power supply on the MAX9450 EV kit VDDQ, VLO1, VLO2, and GND pads. 13) Turn on the 3.3VDC power supply. Enable the output of the function generator. 14) Start the MAX9450 EV kit software by opening its icon in the Start menu. A small window appears, as shown in Figure 1. 15) The I2C button allows you to evaluate the MAX9450 in I2C control mode. The SPI button allows you to evaluate the MAX9450 in SPI control mode. Click the I2C button. A small notification window appears, as shown in Figure 2. 16) Follow the instructions on the window and click OK. The main software window appears, as shown in Figure 3. 17) Verify that the status bar reads MAX9450 EVKIT found and I2C Address is 0xD0. 18) In the M Divider (1-32768) text field, type in 8 and click the Set button. 19) Verify that the waveforms on oscilloscope channel-1 and channel-2 are 155.52MHz. 20) Use the DVM to verify that test point LOCK on the EV kit board is in a logic-low state. _______________________________________________________________________________________ 3 Evaluates: MAX9450/MAX9451/MAX9452 Procedure The MAX9450 EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed. website (www.microsemi.com) 1) Visit the Microsemi Maxim website (www.maxim-ic.com/evkitsoftware) to download the most recent version of the EV kit software, 9450Rxx.ZIP. 2) Install the MAX9450 EV kit software on your computer by running the INSTALL.EXE program. The program files are copied and icons are created in the Windows Start menu. 3) Verify that all jumpers are in default positions, as described in Table 1. Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Table 1. MAX9450 EV Kit Jumper Settings JUMPER JU1 JU2 JU3 JU4 JU5 JU6 JU7, JU8 JU9 JU10 SHUNT POSITION DESCRIPTION 1-2* Input clock IN0 activated (when CR5[3:2] = 00) 2-3 Input clock IN0 disabled (when CR5[3:2] = 00) 1-2* Input clock IN1 activated (when CR5[3:2] = 00) 2-3 Input clock IN1 disabled (when CR5[3:2] = 00) 1-2* Normal operation 2-3 Master reset 1-2* I2C control mode. Connect MAX9450 pin 11 to ground. 2-3 SPI control mode. Connect MAX9450 pin 11 to interface CS signal. 1-2* I2C control mode. Connect MAX9450 pin 12 to interface SCL signal. 2-3 SPI control mode. Connect MAX9450 pin 12 to interface SCLK signal. 1-2* I2C control mode. Connect MAX9450 pin 13 to interface SDA signal. 2-3 SPI control mode. Connect MAX9450 pin 13 to interface MOSI signal. 2-3* I2C slave address is 0xD0 Other See Table 2 for AD0 and AD1 configurations 2-3* Enable input clock monitor 1-2 Disable input clock monitor 2-3* Enable clock output 1-2 Disable clock output JU11 Open JU11 pins 1-2 for testing purpose only JU12 Open JU12 pins 1-2 for testing purpose only JU13 JU14 Open 1-2* Open 1-2* Input clock IN0 uses differential signaling Input clock IN0 uses single-ended signaling Input clock IN1 uses differential signaling Input clock IN1 uses single-ended signaling *Default position. 4 _______________________________________________________________________________________ MAX9450 Evaluation Kit Evaluates: MAX9450/MAX9451/MAX9452 Figure 1. MAX9450 EV Kit Software—Interface Selection Window Figure 2. MAX9450 EV Kit Software—I2C Interface Notification Window Figure 3. MAX9450 EV Kit Software—I2C Interface Tab _______________________________________________________________________________________ 5 Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Detailed Description of Software I2C Interface Tab On the I2C Interface tab, a user sets the divider registers (i.e., M, P, N0, and N1). The output frequency at CLKn (n = 0, 1) is determined by the reference clock, and dividing factors M, Ni (i = 0, 1), and P, as shown in the following equation: fCLKn = fREF × M Ni × P Chip status CR7 can be monitored by clicking the Read button in the Chip Status box. Checking the Auto Read checkbox makes the software read the chip status approximately every one second. SPI Interface Tab The SPI Interface tab (Figure 4) has the same function as the I2C Interface tab. A user can set the divider registers (i.e., M, P, N0, and N1) and control registers CR5 and CR6 as well, but chip status CR7 is not accessible in SPI control mode. Control registers CR5 and CR6 are set in the Control Register Setting box. Figure 4. MAX9450 EV Kit Software—SPI Interface Tab 6 _______________________________________________________________________________________ MAX9450 Evaluation Kit Manually Sending I2C or SPI Commands In addition to the controls on the main window, the MAX9450 software allows the I 2 C or SPI commands to be entered manually. To bring up the Maxim Command Module Interface window (see Figure 5), click the Diagnose button. Enter the device address (0xD0–0xDE) under Target Device Address, or click the Hunt for active listeners button to automatically find the I 2 C address. Under the General Commands tab, select 1 - SMBusWriteByte(addr,cmd,data8). Under Command byte, enter the register address, and under Data Out, enter the data byte to write to the register. Note that the byte can be entered in hexadecimal prefixed with “0x” or in binary with no prefix. Similar operations can be done in SPI control mode using the 3-wire interface tab. AD1 JU7 (AD0) JU8 (AD1) ADDRESS 2-3 (Low) 2-3 (Low) 1101 000x 2-3 (Low) Open 1101 001x 2-3 (Low) 1-2 (High) 1101 010x Open 2-3 (Low) 1101 011x Open Open 1101 100x Open 1-2 (High) 1101 101x 1-2 (High) 2-3 (Low) 1101 110x 1-2 (High) Open 1101 111x 1-2 (High) 1-2 (High) Convert to SPI Figure 5. MAX9450 EV Kit Software—Maxim Command Module Interface Window _______________________________________________________________________________________ 7 Evaluates: MAX9450/MAX9451/MAX9452 I2C Address Setting The MAX9450 I2C slave addresses are hardware-programmable by configuring jumpers JU7 and JU8, as shown in Table 2. This configuration provides eight selectable addresses for the MAX9450, allowing eight devices to be connected to one master. Once jumpers JU7 and JU8 are changed, the user should change the I2C Address Setting dropdown menu on the right side of the software window to match the correct address. Table 2. I2C Address Setting by AD0 and Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Detailed Description of Hardware The MAX9450 (U1) is a high-precision clock generator. The digital power supply is VDD; the clock output power supply is VDDQ. Both operate from 2.4V to 3.6V. The device registers are controlled through an I2C or SPI interface. On the left portion of the EV kit PCB, I2C and SPI interfaces are provided. The MAXQ2000 microcontroller (U2) generates both I2C and SPI control signals. A PC communicates with the microcontroller through a USBUART converter. SMA connectors are provided for the clock input and output connections. If clock input signals are differential, leave JU13 or JU14 open. If clock input signals are single-ended, connect the input clock signal to IN0+ or IN1+, and place a shunt on JU13 or JU14. Evaluating the MAX9451/MAX9452 The MAX9450 EV kit supports the MAX9451 with HSTL output and the MAX9452 with LVDS output. Request a free sample from Maxim and change the component values as shown in Table 3 for proper output signaling. Table 3. Output Bias Network Component Values for Evaluating MAX9451/MAX9452 8 COMPONENT MAX9451 (HSTL OUTPUT) (Ω) Evaluating Other Frequencies The EV kit is installed with a 155.52MHz crystal. For evaluating other frequencies, remove and replace the Y1 crystal with a target crystal. For details, refer to Maxim application note 3920, Component Selection and Performance Test for the MAX945x High-Precision CLK Generators, located at www.maxim-ic.com/appnotes.cfm/an_pk/3920. Clock Monitor Functions To test the features of the clock monitor, apply the same frequency at the input IN0+ to the input IN1+ and connect jumper JU14. To avoid using two clock generators, use a T connector to split the input clock in two for IN0+ and IN1+. In such a case, you may need to increase the clock signal swing to compensate the increase on the load. Reset the clock monitor by connecting the shunt on jumper JU9 in the 1-2 position and then back to the 2-3 position. Once the clock monitor is reset, it is ready to test the monitor functions, such as the clock-condition monitoring, input swapping, revert function, and holdover function. Clicking the Read button in the programming window provides status of the chip. After INT goes high, resetting the clock monitor as described above also resets INT. MAX9452 (LVDS OUTPUT) (Ω) R3, R9, R12, R23 0 24 R4, R10, R13, R24 0 22.4 R5, R7, R15, R20 Open 137.5 R6, R8, R16, R21 Open 220 _______________________________________________________________________________________ _______________________________________________________________________________________ J4 SMA J3 SMA J2 SMA J1 SMA IN1- IN0- R22 51Ω R17 51Ω R14 51Ω R11 51Ω JU14 JU13 IN1- IN0- R35 100Ω R34 100Ω 3 JU2 1 2 VDD 3 JU1 1 2 VDD C15 0.1μF VDD LOCK LOCK IN1- IN1+ VDD IN0- IN0+ SEL1 SEL0 INT INT 9 LOCK INT 8 7 6 5 4 3 2 1 2 10 MR LP2 30 R19 4.7kΩ R18 4.7kΩ SCL 1 JU5 1 JU4 1 JU3 VDD 3 2 3 2 SCLK SCL 12 U1 SDA 13 SDA SDA 1 JU6 3 2 14 AD0 X2 27 3 JU7 1 2 VDD VDDA 28 MOSI SCL 3 2 11 VDD C5 R2 10kΩ 0.1μF 1% MAX9450 LP1 29 C9 0.01μF GND/CS CS GNDA 31 VDD 1 RJ 32 R33 100kΩ R1 200kΩ C6 0.1μF 3 JU8 1 2 VDD 15 AD1 X1 26 C7 OPEN 3 JU9 1 2 17 18 19 20 21 22 23 24 3 JU10 1 2 VDD OE VDDQ CLK0- CLK0+ GND CLK1- CMON 16 VDD VDDQ C12 0.1μF CLK1+ VDD 25 VDD C8 OPEN VDDQ VDDQ C14 0.1μF C13 0.1μF C21 OPEN JU12 C18 OPEN C17 OPEN JU11 C10 OPEN R20 130Ω VLD2 R7 130Ω VLD1 R8 220Ω R21 220Ω R23 24Ω C20 0.1μF R15 130Ω C19 0.1μF R12 24Ω R9 24Ω C16 0.1μF R5 130Ω C11 0.1μF R3 24Ω R24 27Ω R16 220Ω R13 27Ω R10 27Ω R6 220Ω R4 27Ω J8 SMA J7 SMA J6 SMA J5 SMA VLD2 VLD1 VDDQ VDD C4 10μF C3 10μF C2 10μF C1 10μF GND VLD2 VLD1 VDDQ VDD Evaluates: MAX9450/MAX9451/MAX9452 VDD 3 Y1 155.520MHz Y2 OPEN MAX9450 Evaluation Kit Figure 6a. MAX9450 EV Kit Schematic (Sheet 1 of 2) 9 C26 0.1μF J9-4 J9-3 J9-2 VUSB 5 7 6 8 GND N.C. ORG VCC D0 D1 SK CS U5 AT93C46A R26 27Ω R25 27Ω R30 10kΩ 4 3 2 1 C33 22pF C32 22pF VUSB 4 5 7 8 6 31 2 1 32 28 Y3 6MHz 27 C22 0.1μF R27 470Ω C34 0.033μF R28 1.5kΩ R29 2.2kΩ C31 10μF TEST VCC 26 GND 17 GND 9 29 U2 FT232BL VCC 3 AGND EEDATA EESK EECS XTOUT XTIN RESET RSTOUT USBDP USBDM 3V3OUT AVCC 30 C23 0.1μF DSR DTR CTS RTS RXD TXD SLEEP PWREN PWRCTL RXLED TXLED TXDEN RI DCD VCCIO 13 VCPU C24 0.1μF C25 0.1μF SHDN 10 15 14 11 12 16 18 19 20 21 22 23 24 25 3 IN U3 GND OUT SLEEP R31 130Ω R32 130Ω DSR DTR CTS RTS RXD TXD MAX8511 2 5 RED D1 GREEN D2 VCPU VCPU C30 10μF C29 0.1μF TDI TMS TDO TCK 42 28 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 49 VCPU GND GND SEG27/P3.3 SEG26/P3.2 SEG25/P3.1 SEG24/P3.0 SEG23/P2.7 SEG22/P2.6 SEG21/P2.5 SEG20/P2.4 SEG19/P2.3 SEG18/P2.2 SEG17/P2.1 SEG16/P2.0 SEG15/P1.7 SEG14/P1.6 SEG13/P1.5 SEG12/P1.4 SEG11/P1.3 VDD 68 SEG10/P1.2 1 66 J10-2 J10-6 J10-8 J10-4 J10-9 J10-10 J10-7 J10-5 J10-3 J10-1 SLEEP VCPU 61 U2 MAXQ2000 SEG3/P0.3 C27 0.1μF VUSB SEG2/P0.2 RESET INT 59 SEG1/P0.1 LOCK 58 SEG0/P0.0 J9-1 FB1 67 SEG9/P1.1 SEG28/P3.4/INT4 18 65 20 SEG8/P1.0 SEG29/P3.5/INT5 19 SEG7/P0.7/INT3 SEG30/P3.6/INT6 55 VLCD1 RXD 52 TXD HFXOUT HFXIN VDDIO 32KOUT 32KIN P5.2/RX1/INT10 P5.3/TX1/INT11 P5.4/SS P5.5/MOSI P5.6/SCLK P5.7/MISO P6.0/T1B/INT12 P6.1/T1/INT13 P6.2/T2B/OW_OUT P6.3/T2/OW_IN P6.4/T0B/WKOUT0 P6.5/T0/WKOUT1 P7.0/TXO/INT14 C28 0.1μF 22 64 SEG6/P0.6/INT2 SEG31/P3.7/INT7 21 63 SEG5/P0.5/INT1 SEG32 62 SEG33/COM3 23 SEG4/P0.4/INT0 SEG34/COM2 24 60 SEG35/COM1 25 57 TCK COM0 26 56 VADJ P4.0/TCK/INTB 29 VLCD2 P4.1/TDI/INT9 30 TDI P4.2/TMS 31 TMS 54 VLCD P4.3/TDO 32 TDO 53 P7.1/RXO/INT15 RESET 33 10 RESET J9 USB 35 34 36 37 38 39 40 41 43 44 45 46 47 48 50 51 27 C37 0.1μF Y4 16MHz VCPU RTS DTR CS MOSI SCLK SCL SDA DSR CTS C36 10pF C35 10pF Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Figure 6b. MAX9450 EV Kit Schematic (Sheet 2 of 2) ______________________________________________________________________________________ MAX9450 Evaluation Kit Evaluates: MAX9450/MAX9451/MAX9452 Figure 7. MAX9450 EV Kit Component Placement Guide—Component Side ______________________________________________________________________________________ 11 Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Figure 8. MAX9450 EV Kit PCB Layout—Component Side 12 ______________________________________________________________________________________ MAX9450 Evaluation Kit Evaluates: MAX9450/MAX9451/MAX9452 Figure 9. MAX9450 EV Kit PCB Layout—Inner Layer 2 ______________________________________________________________________________________ 13 Evaluates: MAX9450/MAX9451/MAX9452 MAX9450 Evaluation Kit Figure 10. MAX9450 EV Kit PCB Layout—Inner Layer 3 14 ______________________________________________________________________________________ MAX9450 Evaluation Kit Evaluates: MAX9450/MAX9451/MAX9452 Figure 11. MAX9450 EV Kit PCB Layout—Solder Side 15 Boblet Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com. Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 © 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.